Advertisement

Immune Properties of HSP70

  • Yves Delneste
  • Vincent Larochette
  • Pascale Jeannin
Chapter
Part of the Heat Shock Proteins book series (HESP, volume 14)

Abstract

In addition to their conventional chaperon activity, numerous studies have reported that heat shock protein 70 (HSP0) exhibit immune properties and especially the capacity (i) to induce the presentation and cross-presentation of associated or client proteins and, (ii) to control myeloid cell activation. Several studies were focused on the identification of HSP70-binding elements that contribute to their immune properties. A general consensus was reached on the nature of the endocytic receptors involved in the internalization of extracellular HSP70 with belong, for most of them, to the innate immunity receptor family. However, the nature of signaling receptors recruited by HSP70 remains unclear, because the stimulatory versus regulatory properties of HSP70 remains a subject of debate. Nevertheless, these unique immune properties allowed developing innovative prophylactic and therapeutic vaccines, especially in the treatment of cancers and chronic viral infections. Although HSP70 constitute potent vaccine vehicles in different preclinical models, clinical studies remain disappointing. The fact that the immune properties of HSP70 have not been totally clarified may explain their relative efficacy in human. In this review are presented the main immune properties of HSP70 related to the HSP70-binding elements identified to date, and discuss our current knowledge on their intrinsic immune properties.

Keywords

Adaptive immunity Hsp70 Immune regulation Innate immune receptors Innate immunity Myeloid cell Vaccine 

Abbreviations

A2M

alpha2 macroglobulin

Ac-LDL

acetylated low-density lipoprotein

ADP

adenosine dipohosphate

AGE

advanced glycation end product

AIF

apoptosis inducing factor

APAf-1

apoptotic peptidase activating factor 1

APC

antigen-presenting cell

APOER

apolipoprotein E receptor

ATP

adenosine triphosphate

Bax

Bcl-2-associated X protein

BCR

B cell receptor

BiP

binding immunoglobulin protein

CCL

C-C motif ligand

CCR

C-C chemokine receptor

CD

cluster of differentiation

CLEC8A

C-type lectin domain family 8 member A

CLEVER-1

common lymphatic endothelial and vascular endothelial receptor-1

CTL

cytotoxic T cell

DAMP

danger-associated molecular pattern

DC-SIGN

dendritic cell-specific ICAM-grabbing non-integrin

EBV

Epstein-Barr virus

EGF-like

and link domain-containing scavenger receptor-1

ER

endoplasmic reticulum

ERK

Extracellular signal-regulated kinases

FAT

fatty acid translocase

FEEL-1

fasciclin EGF-like laminin-type

HBV

hepatitis B virus

HCV

hepatitis C virus

Her2/Neu

human epidermal growth factor receptor 2/proto-oncogene Neu

HLA

human leukocyte antigen

HMGB1

high–mobility group box 1

HPV

human papilloma virus

HSP

heat shock protein

IFN

interferon

IL

interleukin

IRAK

IL-1 receptor-associated kinase

IRE1α

inositol requiring enzyme 1α

JAK

Janus kinase

LBP

LPS-binding protein

LDL

low-density lipoprotein

LRP1

low density lipoprotein receptor-related protein 1

MAGE-1

melanoma-associated antigen 1

Mart-1

melanoma antigen recognized by T-cells 1

MD2

myeloid differentiation factor 2

MDSC

myeloid-derived suppressive cells

MHC

major histocompatibility complex

MyD88

Myeloid differentiation primary response 88

NBD

nucleotide-binding domain

NF-κB

nuclear factor-kappa B

NK

natural killer

Ox-LDL

oxidized low-density lipoprotein

PAMP

pathogen-associated molecular pattern

PDZK

PDZ domain-containing protein 1

PRM

pattern recognition molecule

PRR

pattern recognition receptor

PSA

prostate-specific antigen

PTX3

pentraxin 3

RAP

receptor-associated protein

SBD

substrate-binding domain

SIGLEC

sialic-acid-binding immunoglobulin-like lectins

SP-D

surfactant protein D

SREC

scavenger receptor expressed by endothelial cells

STAT

signal transducers and activators of transcription

TAB1

TAK1-binding protein 1

TAK1

TGFβ-activated kinase

TAM

tumor-associated macrophages

TCR

T cell receptor

Th

helper T cell

TLR

toll-like receptor

TNF

tumor necrosis factor

TNFSF

TNF superfamily

TRAF

TNF receptor-associated factor

Trp2

tyrosinase-related protein 2

TSP-1

thrombospondin 1

Notes

Acknowledgements

Studies in our laboratory are supported by institutional grants from Inserm and the University of Angers and by grants from the Ligue contre le Cancer and the Cancéropole Grand Ouest. Vincent Larochette is supported by a grant fellowship from the French Ministry of Research and Higher Education. This manuscript was prepared in the context of the LabEX IGO program supported by the National Research Agency via the investment of the future program (ANR-11-LABEX-0016-01).

References

  1. Adachi, H., & Tsujimoto, M. (2002). FEEL-1, a novel scavenger receptor with in vitro bacteria-binding and angiogenesis-modulating activities. The Journal of Biological Chemistry, 277, 34264–34270.CrossRefPubMedGoogle Scholar
  2. Aneja, R., Odoms, K., Dunsmore, K., Shanley, T. P., & Wong, H. R. (2006). Extracellular heat shock protein-70 induces endotoxin tolerance in THP-1 cells. Journal of Immunology, 177, 7184–7192.CrossRefGoogle Scholar
  3. Angata, T. (2006). Molecular diversity and evolution of the Siglec family of cell-surface lectins. Molecular Diversity, 10, 555–566.CrossRefPubMedGoogle Scholar
  4. Arnold-Schild, D., Hanau, D., Spehner, D., et al. (1999). Cutting edge: Receptor-mediated endocytosis of heat shock proteins by professional antigen-presenting cells. Journal of Immunology, 162, 3757–3760.Google Scholar
  5. Asea, A., Kraeft, S. K., Kurt-Jones, E. A., et al. (2000). HSP70 stimulates cytokine production through a CD14-dependant pathway, demonstrating its dual role as a chaperone and cytokine. Nature Medicine, 6, 435–442.CrossRefPubMedGoogle Scholar
  6. Asea, A., Rehli, M., Kabingu, E., et al. (2002). Novel signal transduction pathway utilized by extracellular HSP70: Role of toll-like receptor (TLR) 2 and TLR4. The Journal of Biological Chemistry, 277, 15028–15034.CrossRefPubMedGoogle Scholar
  7. Banchereau, J., Bazan, F., Blanchard, D., et al. (1994). The CD40 antigen and its ligand. Annual Review of Immunology, 12, 881–922.CrossRefPubMedGoogle Scholar
  8. Banchereau, J., Briere, F., Caux, C., et al. (2000). Immunobiology of dendritic cells. Annual Review of Immunology, 18, 767–811.CrossRefPubMedGoogle Scholar
  9. Baraldi, P. G., Di Virgilio, F., & Romagnoli, R. (2004). Agonists and antagonists acting at P2X7 receptor. Current Topics in Medicinal Chemistry, 4, 1707–1717.CrossRefPubMedGoogle Scholar
  10. Basu, S., Binder, R. J., Ramalingam, T., & Srivastava, P. K. (2001). CD91 is a common receptor for heat shock proteins gp96, hsp90, hsp70, and calreticulin. Immunity, 14, 303–313.CrossRefGoogle Scholar
  11. Batra, L., Verma, S. K., Nagar, D. P., et al. (2014). HSP70 domain II of Mycobacterium tuberculosis modulates immune response and protective potential of F1 and LcrV antigens of Yersinia pestis in a mouse model. PLoS Neglected Tropical Diseases, 8, e3322.PubMedCentralCrossRefPubMedGoogle Scholar
  12. Bausinger, H., Lipsker, D., Ziylan, U., et al. (2002). Endotoxin-free heat-shock protein 70 fails to induce APC activation. European Journal of Immunology, 32, 3708–3713.CrossRefPubMedGoogle Scholar
  13. Becker, T., Hartl, F. U., & Wieland, F. (2002). CD40, an extracellular receptor for binding and uptake of Hsp70-peptide complexes. The Journal of Cell Biology, 158, 1277–1285.PubMedCentralCrossRefPubMedGoogle Scholar
  14. Beere, H. M., Wolf, B. B., Cain, K., et al. (2000). Heat-shock protein 70 inhibits apoptosis by preventing recruitment of procaspase-9 to the Apaf-1 apoptosome. Nature Cell Biology, 2, 469–475.CrossRefPubMedGoogle Scholar
  15. Bendz, H., Marincek, B. C., Momburg, F., et al. (2008). Calcium signaling in dendritic cells by human or mycobacterial Hsp70 is caused by contamination and is not required for Hsp70-mediated enhancement of cross-presentation. The Journal of Biological Chemistry, 283, 26477–26483.PubMedCentralCrossRefPubMedGoogle Scholar
  16. Berwin, B., Hart, J. P., Pizzo, S. V., & Nicchitta, C. V. (2002). Cutting edge: CD91-independent cross-presentation of GRP94(gp96)-associated peptides. Journal of Immunology, 168, 4282–4286.CrossRefGoogle Scholar
  17. Binder, R. J. (2009). CD40-independent engagement of mammalian hsp70 by antigen-presenting cells. Journal of Immunology, 182, 6844–6850.CrossRefGoogle Scholar
  18. Binder, R. J., & Srivastava, P. K. (2004). Essential role of CD91 in re-presentation of gp96-chaperoned peptides. Proceedings of the National Academy of Sciences of the United States of America, 101, 6128–6133.PubMedCentralCrossRefPubMedGoogle Scholar
  19. Binder, R. J., & Srivastava, P. K. (2005). Peptides chaperoned by heat-shock proteins are a necessary and sufficient source of antigen in the cross-priming of CD8+ T cells. Nature Immunology, 6, 593–599.CrossRefPubMedGoogle Scholar
  20. Binder, R. J., Harris, M. L., Menoret, A., & Srivastava, P. K. (2000). Saturation, competition, and specificity in interaction of heat shock proteins (hsp) gp96, hsp90, and hsp70 with CD11b+ cells. Journal of Immunology, 165, 2582–2587.CrossRefGoogle Scholar
  21. Blachere, N. E., Li, Z., Chandawarkar, R. Y., et al. (1997). Heat shock protein-peptide complexes, reconstituted in vitro, elicit peptide-specific cytotoxic T lymphocyte response and tumor immunity. The Journal of Experimental Medicine, 186, 1315–1322.PubMedCentralCrossRefPubMedGoogle Scholar
  22. Blander, J. M., & Medzhitov, R. (2006). Toll-dependent selection of microbial antigens for presentation by dendritic cells. Nature, 440, 808–812.CrossRefPubMedGoogle Scholar
  23. Borges, T. J., Porto, B. N., Teixeira, C. A., et al. (2010). Prolonged survival of allografts induced by mycobacterial Hsp70 is dependent on CD4+CD25+ regulatory T cells. PLoS One, 5, e14264.PubMedCentralCrossRefPubMedGoogle Scholar
  24. Borges, T. J., Wieten, L., van Herwijnen, M. J., et al. (2012). The anti-inflammatory mechanisms of Hsp70. Frontiers in Immunology, 3, 95.PubMedCentralCrossRefPubMedGoogle Scholar
  25. Borges, T. J., Lopes, R. L., Pinho, N. G., Machado, F. D., Souza, A. P., & Bonorino, C. (2013). Extracellular Hsp70 inhibits pro-inflammatory cytokine production by IL-10 driven down-regulation of C/EBPbeta and C/EBPdelta. International Journal of Hyperthermia, 29, 455–463.CrossRefPubMedGoogle Scholar
  26. Bottger, E., Multhoff, G., Kun, J. F., & Esen, M. (2012). Plasmodium falciparum-infected erythrocytes induce granzyme B by NK cells through expression of host-Hsp70. PLoS One, 7, e33774.PubMedCentralCrossRefPubMedGoogle Scholar
  27. Bozzacco, L., Trumpfheller, C., Siegal, F. P., et al. (2007). DEC-205 receptor on dendritic cells mediates presentation of HIV gag protein to CD8+ T cells in a spectrum of human MHC I haplotypes. Proceedings of the National Academy of Sciences of the United States of America, 104, 1289–1294.PubMedCentralCrossRefPubMedGoogle Scholar
  28. Brocchieri, L., Conway de Macario, E., & Macario, A. J. (2008). hsp70 genes in the human genome: Conservation and differentiation patterns predict a wide array of overlapping and specialized functions. BMC Evolutionary Biology, 8, 19.PubMedCentralCrossRefPubMedGoogle Scholar
  29. Bryant, C. E., Gay, N. J., Heymans, S., Sacre, S., Schaefer, L., & Midwood, K. S. (2015). Advances in toll-like receptor biology: Modes of activation by diverse stimuli. Critical Reviews in Biochemistry and Molecular Biology, 50, 359–379.CrossRefPubMedGoogle Scholar
  30. Campisi, J., & Fleshner, M. (2003). Role of extracellular HSP72 in acute stress-induced potentiation of innate immunity in active rats. Journal of Applied Physiology (1985), 94, 43–52.CrossRefGoogle Scholar
  31. Castelli, C., Ciupitu, A. M., Rini, F., et al. (2001). Human heat shock protein 70 peptide complexes specifically activate antimelanoma T cells. Cancer Research, 61, 222–227.PubMedPubMedCentralGoogle Scholar
  32. Castellino, F., Boucher, P. E., Eichelberg, K., et al. (2000). Receptor-mediated uptake of antigen/heat shock protein complexes results in major histocompatibility complex class I antigen presentation via two distinct processing pathways. The Journal of Experimental Medicine, 191, 1957–1964.PubMedCentralCrossRefPubMedGoogle Scholar
  33. Cella, M., Sallusto, F., & Lanzavecchia, A. (1997). Origin, maturation and antigen presenting function of dendritic cells. Current Opinion in Immunology, 9, 10–16.CrossRefPubMedPubMedCentralGoogle Scholar
  34. Chandawarkar, R. Y., Wagh, M. S., & Srivastava, P. K. (1999). The dual nature of specific immunological activity of tumor-derived gp96 preparations. The Journal of Experimental Medicine, 189, 1437–1442.PubMedCentralCrossRefPubMedGoogle Scholar
  35. Chen, T., Guo, J., Han, C., Yang, M., & Cao, X. (2009). Heat shock protein 70, released from heat-stressed tumor cells, initiates antitumor immunity by inducing tumor cell chemokine production and activating dendritic cells via TLR4 pathway. Journal of Immunology, 182, 1449–1459.CrossRefGoogle Scholar
  36. Clark, P. R., & Menoret, A. (2001). The inducible Hsp70 as a marker of tumor immunogenicity. Cell Stress & Chaperones, 6, 121–125.CrossRefGoogle Scholar
  37. Cunin, P., Beauvillain, C., Miot, C., et al. (2016). Clusterin facilitates apoptotic cell clearance and prevents apoptotic cell-induced autoimmune responses. Cell Death & Disease, 7, e2215.CrossRefGoogle Scholar
  38. Dabaghian, M., Latifi, A. M., Tebianian, M., Dabaghian, F., & Ebrahimi, S. M. (2015). A truncated C-terminal fragment of Mycobacterium tuberculosis HSP70 enhances cell-mediated immune response and longevity of the total IgG to influenza A virus M2e protein in mice. Antiviral Research, 120, 23–31.CrossRefPubMedPubMedCentralGoogle Scholar
  39. Delneste, Y., Magistrelli, G., Gauchat, J., et al. (2002). Involvement of LOX-1 in dendritic cell-mediated antigen cross-presentation. Immunity, 17, 353–362.CrossRefPubMedPubMedCentralGoogle Scholar
  40. Detanico, T., Rodrigues, L., Sabritto, A. C., et al. (2004). Mycobacterial heat shock protein 70 induces interleukin-10 production: Immunomodulation of synovial cell cytokine profile and dendritic cell maturation. Clinical and Experimental Immunology, 135, 336–342.PubMedCentralCrossRefPubMedGoogle Scholar
  41. Diao, J., Yang, X., Song, X., et al. (2015). Exosomal Hsp70 mediates immunosuppressive activity of the myeloid-derived suppressor cells via phosphorylation of Stat3. Medical Oncology, 32, 453.CrossRefPubMedGoogle Scholar
  42. Dong, L., Zhang, X., Ren, J., et al. (2013). Human prostate stem cell antigen and HSP70 fusion protein vaccine inhibits prostate stem cell antigen-expressing tumor growth in mice. Cancer Biotherapy & Radiopharmaceuticals, 28, 391–397.CrossRefGoogle Scholar
  43. Enomoto, Y., Bharti, A., Khaleque, A. A., et al. (2006). Enhanced immunogenicity of heat shock protein 70 peptide complexes from dendritic cell-tumor fusion cells. Journal of Immunology, 177, 5946–5955.CrossRefGoogle Scholar
  44. Evdonin, A. L., Guzhova, I. V., Margulis, B. A., & Medvedeva, N. D. (2004). Phospholipse c inhibitor, u73122, stimulates release of hsp-70 stress protein from A431 human carcinoma cells. Cancer Cell International, 4, 2.PubMedCentralCrossRefPubMedGoogle Scholar
  45. Facciponte, J. G., Wang, X. Y., & Subjeck, J. R. (2007). Hsp110 and Grp170, members of the Hsp70 superfamily, bind to scavenger receptor-A and scavenger receptor expressed by endothelial cells-I. European Journal of Immunology, 37, 2268–2279.CrossRefPubMedGoogle Scholar
  46. Fang, H., Wu, Y., Huang, X., et al. (2011). Toll-like receptor 4 (TLR4) is essential for Hsp70-like protein 1 (HSP70L1) to activate dendritic cells and induce Th1 response. The Journal of Biological Chemistry, 286, 30393–30400.PubMedCentralCrossRefPubMedGoogle Scholar
  47. Farzanehpour, M., Soleimanjahi, H., Hassan, Z. M., Amanzadeh, A., Ghaemi, A., & Fazeli, M. (2013). HSP70 modified response against HPV based tumor. European Review for Medical and Pharmacological Sciences, 17, 228–234.PubMedGoogle Scholar
  48. Fischer, N., Haug, M., Kwok, W. W., et al. (2010). Involvement of CD91 and scavenger receptors in Hsp70-facilitated activation of human antigen-specific CD4+ memory T cells. European Journal of Immunology, 40, 986–997.CrossRefPubMedGoogle Scholar
  49. Fleshner, M., & Johnson, J. D. (2005). Endogenous extra-cellular heat shock protein 72: Releasing signal(s) and function. International Journal of Hyperthermia, 21, 457–471.CrossRefPubMedGoogle Scholar
  50. Floto, R. A., MacAry, P. A., Boname, J. M., et al. (2006). Dendritic cell stimulation by mycobacterial Hsp70 is mediated through CCR5. Science, 314, 454–458.CrossRefPubMedGoogle Scholar
  51. Fong, J. J., Sreedhara, K., Deng, L., et al. (2015). Immunomodulatory activity of extracellular Hsp70 mediated via paired receptors Siglec-5 and Siglec-14. The EMBO Journal, 34, 2775–2788.PubMedCentralCrossRefPubMedGoogle Scholar
  52. Gao, B., & Tsan, M. F. (2003). Endotoxin contamination in recombinant human heat shock protein 70 (Hsp70) preparation is responsible for the induction of tumor necrosis factor alpha release by murine macrophages. The Journal of Biological Chemistry, 278, 174–179.CrossRefPubMedGoogle Scholar
  53. Gao, B., & Tsan, M. F. (2004). Induction of cytokines by heat shock proteins and endotoxin in murine macrophages. Biochemical and Biophysical Research Communications, 317, 1149–1154.CrossRefPubMedGoogle Scholar
  54. Gao, J., Luo, S. M., Peng, M. L., & Deng, T. (2012). Enhanced immunity against hepatoma induced by dendritic cells pulsed with Hsp70-H22 peptide complexes and CD40L. Journal of Cancer Research and Clinical Oncology, 138, 917–926.CrossRefPubMedGoogle Scholar
  55. Garcia-Vallejo, J. J., Unger, W. W., Kalay, H., & van Kooyk, Y. (2013). Glycan-based DC-SIGN targeting to enhance antigen cross-presentation in anticancer vaccines. Oncoimmunology, 2, e23040.PubMedCentralCrossRefPubMedGoogle Scholar
  56. Garrod, T., Grubor-Bauk, B., Yu, S., Gargett, T., & Gowans, E. J. (2014). Encoded novel forms of HSP70 or a cytolytic protein increase DNA vaccine potency. Human Vaccines & Immunotherapeutics, 10, 2679–2683.CrossRefGoogle Scholar
  57. Gastpar, R., Gehrmann, M., Bausero, M. A., et al. (2005). Heat shock protein 70 surface-positive tumor exosomes stimulate migratory and cytolytic activity of natural killer cells. Cancer Research, 65, 5238–5247.PubMedCentralCrossRefPubMedGoogle Scholar
  58. Ge, W., Hu, P. Z., Huang, Y., et al. (2009). The antitumor immune responses induced by nanoemulsion-encapsulated MAGE1-HSP70/SEA complex protein vaccine following different administration routes. Oncology Reports, 22, 915–920.CrossRefPubMedGoogle Scholar
  59. Gehrmann, M., Cervello, M., Montalto, G., et al. (2014a). Heat shock protein 70 serum levels differ significantly in patients with chronic hepatitis, liver cirrhosis, and hepatocellular carcinoma. Frontiers in Immunology, 5, 307.PubMedCentralCrossRefPubMedGoogle Scholar
  60. Gehrmann, M., Specht, H. M., Bayer, C., et al. (2014b). Hsp70 – A biomarker for tumor detection and monitoring of outcome of radiation therapy in patients with squamous cell carcinoma of the head and neck. Radiation Oncology, 9, 131.PubMedCentralCrossRefPubMedGoogle Scholar
  61. Gong, J., Zhu, B., Murshid, A., et al. (2009). T cell activation by heat shock protein 70 vaccine requires TLR signaling and scavenger receptor expressed by endothelial cells-1. Journal of Immunology, 183, 3092–3098.CrossRefGoogle Scholar
  62. Gong, J., Zhang, Y., Durfee, J., et al. (2010). A heat shock protein 70-based vaccine with enhanced immunogenicity for clinical use. Journal of Immunology, 184, 488–496.CrossRefGoogle Scholar
  63. Gross, C., Koelch, W., DeMaio, A., Arispe, N., & Multhoff, G. (2003a). Cell surface-bound heat shock protein 70 (Hsp70) mediates perforin-independent apoptosis by specific binding and uptake of granzyme B. The Journal of Biological Chemistry, 278, 41173–41181.CrossRefPubMedGoogle Scholar
  64. Gross, C., Schmidt-Wolf, I. G., Nagaraj, S., et al. (2003b). Heat shock protein 70-reactivity is associated with increased cell surface density of CD94/CD56 on primary natural killer cells. Cell Stress & Chaperones, 8, 348–360.CrossRefGoogle Scholar
  65. Gross, C., Holler, E., Stangl, S., et al. (2008). An Hsp70 peptide initiates NK cell killing of leukemic blasts after stem cell transplantation. Leukemia Research, 32, 527–534.CrossRefPubMedGoogle Scholar
  66. Guo, F., Sigua, C., Bali, P., et al. (2005). Mechanistic role of heat shock protein 70 in Bcr-Abl-mediated resistance to apoptosis in human acute leukemia cells. Blood, 105, 1246–1255.CrossRefPubMedGoogle Scholar
  67. Hauet-Broere, F., Wieten, L., Guichelaar, T., Berlo, S., van der Zee, R., & Van Eden, W. (2006). Heat shock proteins induce T cell regulation of chronic inflammation. Annals of the Rheumatic Diseases, 65(Suppl 3), iii65–iii68.PubMedCentralPubMedGoogle Scholar
  68. Haug, M., Schepp, C. P., Kalbacher, H., Dannecker, G. E., & Holzer, U. (2007). 70-kDa heat shock proteins: Specific interactions with HLA-DR molecules and their peptide fragments. European Journal of Immunology, 37, 1053–1063.CrossRefPubMedGoogle Scholar
  69. Heath, W. R., & Carbone, F. R. (1999). Cytotoxic T lymphocyte activation by cross-priming. Current Opinion in Immunology, 11, 314–318.CrossRefPubMedGoogle Scholar
  70. Heath, W. R., & Carbone, F. R. (2001). Cross-presentation in viral immunity and self-tolerance. Nature Reviews. Immunology, 1, 126–134.CrossRefPubMedGoogle Scholar
  71. Henson, P. M. (2017). Cell removal: Efferocytosis. Annual Review of Cell and Developmental Biology, 33, 127–144.CrossRefPubMedGoogle Scholar
  72. Herz, J., & Strickland, D. K. (2001). LRP: A multifunctional scavenger and signaling receptor. The Journal of Clinical Investigation, 108, 779–784.PubMedCentralCrossRefPubMedGoogle Scholar
  73. Ishii, T., Udono, H., Yamano, T., et al. (1999). Isolation of MHC class I-restricted tumor antigen peptide and its precursors associated with heat shock proteins hsp70, hsp90, and gp96. Journal of Immunology, 162, 1303–1309.Google Scholar
  74. Jacquemin, C., Rambert, J., Guillet, S., et al. (2017). HSP70 potentiates interferon-alpha production by plasmacytoid dendritic cells: Relevance for cutaneous lupus and vitiligo pathogenesis. British Journal of Dermatology, 177(5), 1367–1375.CrossRefPubMedGoogle Scholar
  75. Jaillon, S., Jeannin, P., Hamon, Y., et al. (2009). Endogenous PTX3 translocates at the membrane of late apoptotic human neutrophils and is involved in their engulfment by macrophages. Cell Death and Differentiation, 16, 465–474.CrossRefPubMedGoogle Scholar
  76. Jeannin, P., Jaillon, S., & Delneste, Y. (2008). Pattern recognition receptors in the immune response against dying cells. Current Opinion in Immunology, 20, 530–537.CrossRefPubMedGoogle Scholar
  77. Jiang, J., Xie, D., Zhang, W., Xiao, G., & Wen, J. (2013). Fusion of Hsp70 to Mage-a1 enhances the potency of vaccine-specific immune responses. Journal of Translational Medicine, 11, 300.PubMedCentralCrossRefPubMedGoogle Scholar
  78. Josefowicz, S. Z., Lu, L. F., & Rudensky, A. Y. (2012). Regulatory T cells: Mechanisms of differentiation and function. Annual Review of Immunology, 30, 531–564.CrossRefPubMedPubMedCentralGoogle Scholar
  79. Karyampudi, L., & Ghosh, S. K. (2008). Mycobacterial HSP70 as an adjuvant in the design of an idiotype vaccine against a murine lymphoma. Cellular Immunology, 254, 74–80.CrossRefPubMedGoogle Scholar
  80. Kimura, Y., Yamada, K., Sakai, T., et al. (1998). The regulatory role of heat shock protein 70-reactive CD4+ T cells during rat listeriosis. International Immunology, 10, 117–130.CrossRefPubMedGoogle Scholar
  81. Kropp, L. E., Garg, M., & Binder, R. J. (2010). Ovalbumin-derived precursor peptides are transferred sequentially from gp96 and calreticulin to MHC class I in the endoplasmic reticulum. Journal of Immunology, 184, 5619–5627.CrossRefGoogle Scholar
  82. Krupka, M., Zachova, K., Cahlikova, R., et al. (2015). Endotoxin-minimized HIV-1 p24 fused to murine hsp70 activates dendritic cells, facilitates endocytosis and p24-specific Th1 response in mice. Immunology Letters, 166, 36–44.CrossRefPubMedGoogle Scholar
  83. Kuppner, M. C., Gastpar, R., Gelwer, S., et al. (2001). The role of heat shock protein (hsp70) in dendritic cell maturation: hsp70 induces the maturation of immature dendritic cells but reduces DC differentiation from monocyte precursors. European Journal of Immunology, 31, 1602–1609.CrossRefPubMedGoogle Scholar
  84. Lancaster, G. I., & Febbraio, M. A. (2005). Exosome-dependent trafficking of HSP70: A novel secretory pathway for cellular stress proteins. The Journal of Biological Chemistry, 280, 23349–23355.CrossRefPubMedGoogle Scholar
  85. Lewis, D. J., Wang, Y., Huo, Z., et al. (2014). Effect of vaginal immunization with HIVgp140 and HSP70 on HIV-1 replication and innate and T cell adaptive immunity in women. Journal of Virology, 88, 11648–11657.PubMedCentralCrossRefPubMedGoogle Scholar
  86. Li, H., Ou, X., & Xiong, J. (2007). Modified HPV16 E7/HSP70 DNA vaccine with high safety and enhanced cellular immunity represses murine lung metastatic tumors with downregulated expression of MHC class I molecules. Gynecologic Oncology, 104, 564–571.CrossRefPubMedGoogle Scholar
  87. Li, H., Yu, Y., Sun, L., et al. (2010). Vaccination with B16 tumor cell lysate plus recombinant Mycobacterium tuberculosis Hsp70 induces antimelanoma effect in mice. Cancer Biotherapy & Radiopharmaceuticals, 25, 185–191.CrossRefGoogle Scholar
  88. Li, J., Xing, Y., Zhou, Z., et al. (2016). Microbial HSP70 peptide epitope 407-426 as adjuvant in tumor-derived autophagosome vaccine therapy of mouse lung cancer. Tumour Biology, 37, 15097–15105.CrossRefPubMedGoogle Scholar
  89. Liu, G., Yao, K., Wang, B., et al. (2009). Immunotherapy of Epstein-Barr virus associated malignancies using mycobacterial HSP70 and LMP2A356-364 epitope fusion protein. Cellular & Molecular Immunology, 6, 423–431.CrossRefGoogle Scholar
  90. Liu, G., Yao, K., Wang, B., et al. (2011). Reconstituted complexes of mycobacterial HSP70 and EBV LMP2A-derived peptides elicit peptide-specific cytotoxic T lymphocyte responses and anti-tumor immunity. Vaccine, 29, 7414–7423.CrossRefPubMedGoogle Scholar
  91. Lopes, R. L., Borges, T. J., Araujo, J. F., et al. (2014). Extracellular mycobacterial DnaK polarizes macrophages to the M2-like phenotype. PLoS One, 9, e113441.PubMedCentralCrossRefPubMedGoogle Scholar
  92. Lopes, R. L., Borges, T. J., Zanin, R. F., & Bonorino, C. (2016). IL-10 is required for polarization of macrophages to M2-like phenotype by mycobacterial DnaK (heat shock protein 70). Cytokine, 85, 123–129.CrossRefPubMedGoogle Scholar
  93. MacAry, P. A., Javid, B., Floto, R. A., et al. (2004). HSP70 peptide binding mutants separate antigen delivery from dendritic cell stimulation. Immunity, 20, 95–106.CrossRefPubMedGoogle Scholar
  94. Macauley, M. S., & Paulson, J. C. (2014). Siglecs induce tolerance to cell surface antigens by BIM-dependent deletion of the antigen-reactive B cells. Journal of Immunology, 193, 4312–4321.CrossRefGoogle Scholar
  95. MacKenzie, A., Wilson, H. L., Kiss-Toth, E., Dower, S. K., North, R. A., & Surprenant, A. (2001). Rapid secretion of interleukin-1beta by microvesicle shedding. Immunity, 15, 825–835.CrossRefPubMedGoogle Scholar
  96. Mambula, S. S., & Calderwood, S. K. (2006a). Heat induced release of Hsp70 from prostate carcinoma cells involves both active secretion and passive release from necrotic cells. International Journal of Hyperthermia, 22, 575–585.CrossRefPubMedGoogle Scholar
  97. Mambula, S. S., & Calderwood, S. K. (2006b). Heat shock protein 70 is secreted from tumor cells by a nonclassical pathway involving lysosomal endosomes. Journal of Immunology, 177, 7849–7857.CrossRefGoogle Scholar
  98. Mantovani, A., Marchesi, F., Malesci, A., Laghi, L., & Allavena, P. (2017). Tumour-associated macrophages as treatment targets in oncology. Nature Reviews. Clinical Oncology, 14, 399–416.CrossRefPubMedPubMedCentralGoogle Scholar
  99. Marotta, F., Koike, K., Lorenzetti, A., et al. (2007). Nutraceutical strategy in aging: Targeting heat shock protein and inflammatory profile through understanding interleukin-6 polymorphism. Annals of the New York Academy of Sciences, 1119, 196–202.CrossRefPubMedGoogle Scholar
  100. Massa, C., Guiducci, C., Arioli, I., Parenza, M., Colombo, M. P., & Melani, C. (2004). Enhanced efficacy of tumor cell vaccines transfected with secretable hsp70. Cancer Research, 64, 1502–1508.CrossRefPubMedGoogle Scholar
  101. Massa, C., Melani, C., & Colombo, M. P. (2005). Chaperon and adjuvant activity of hsp70: Different natural killer requirement for cross-priming of chaperoned and bystander antigens. Cancer Research, 65, 7942–7949.CrossRefPubMedGoogle Scholar
  102. Masse, D., Ebstein, F., Bougras, G., Harb, J., Meflah, K., & Gregoire, M. (2004). Increased expression of inducible HSP70 in apoptotic cells is correlated with their efficacy for antitumor vaccine therapy. International Journal of Cancer, 111, 575–583.CrossRefPubMedGoogle Scholar
  103. Milani, V., Noessner, E., Ghose, S., et al. (2002). Heat shock protein 70: Role in antigen presentation and immune stimulation. International Journal of Hyperthermia, 18, 563–575.CrossRefPubMedGoogle Scholar
  104. Millar, D. G., Garza, K. M., Odermatt, B., et al. (2003). Hsp70 promotes antigen-presenting cell function and converts T-cell tolerance to autoimmunity in vivo. Nature Medicine, 9, 1469–1476.CrossRefPubMedGoogle Scholar
  105. Mizukami, S., Kajiwara, C., Tanaka, M., Kaisho, T., & Udono, H. (2012). Differential MyD88/IRAK4 requirements for cross-priming and tumor rejection induced by heat shock protein 70-model antigen fusion protein. Cancer Science, 103, 851–859.CrossRefPubMedGoogle Scholar
  106. Moroi, Y., Mayhew, M., Trcka, J., et al. (2000). Induction of cellular immunity by immunization with novel hybrid peptides complexed to heat shock protein 70. Proceedings of the National Academy of Sciences of the United States of America, 97, 3485–3490.PubMedCentralCrossRefPubMedGoogle Scholar
  107. Moser, C., Schmidbauer, C., Gurtler, U., et al. (2002). Inhibition of tumor growth in mice with severe combined immunodeficiency is mediated by heat shock protein 70 (Hsp70)-peptide-activated, CD94 positive natural killer cells. Cell Stress & Chaperones, 7, 365–373.CrossRefGoogle Scholar
  108. Motta, A., Schmitz, C., Rodrigues, L., et al. (2007). Mycobacterium tuberculosis heat-shock protein 70 impairs maturation of dendritic cells from bone marrow precursors, induces interleukin-10 production and inhibits T-cell proliferation in vitro. Immunology, 121, 462–472.PubMedCentralCrossRefPubMedGoogle Scholar
  109. Multhoff, G. (2007). Heat shock protein 70 (Hsp70): Membrane location, export and immunological relevance. Methods, 43, 229–237.CrossRefPubMedGoogle Scholar
  110. Multhoff, G., & Hightower, L. E. (1996). Cell surface expression of heat shock proteins and the immune response. Cell Stress & Chaperones, 1, 167–176.CrossRefGoogle Scholar
  111. Multhoff, G., Botzler, C., Wiesnet, M., et al. (1995). A stress-inducible 72-kDa heat-shock protein (HSP72) is expressed on the surface of human tumor cells, but not on normal cells. International Journal of Cancer, 61, 272–279.CrossRefPubMedGoogle Scholar
  112. Mycko, M. P., Cwiklinska, H., Szymanski, J., et al. (2004). Inducible heat shock protein 70 promotes myelin autoantigen presentation by the HLA class II. Journal of Immunology, 172, 202–213.CrossRefGoogle Scholar
  113. Narni-Mancinelli, E., Ugolini, S., & Vivier, E. (2013). Tuning the threshold of natural killer cell responses. Current Opinion in Immunology, 25, 53–58.CrossRefPubMedGoogle Scholar
  114. Neyen, C., Mukhopadhyay, S., Gordon, S., & Hagemann, T. (2013a). An apolipoprotein A-I mimetic targets scavenger receptor A on tumor-associated macrophages: A prospective anticancer treatment? Oncoimmunology, 2, e24461.PubMedCentralCrossRefPubMedGoogle Scholar
  115. Neyen, C., Pluddemann, A., Mukhopadhyay, S., et al. (2013b). Macrophage scavenger receptor a promotes tumor progression in murine models of ovarian and pancreatic cancer. Journal of Immunology, 190, 3798–3805.CrossRefGoogle Scholar
  116. Noessner, E. (2006). Thermal stress-related modulation of tumor cell physiology and immune responses. Cancer Immunology, Immunotherapy, 55, 289–291.CrossRefPubMedGoogle Scholar
  117. Noessner, E., Gastpar, R., Milani, V., et al. (2002). Tumor-derived heat shock protein 70 peptide complexes are cross-presented by human dendritic cells. Journal of Immunology, 169, 5424–5432.CrossRefGoogle Scholar
  118. Pakravan, N., Langroudi, L., Hajimoradi, M., & Hassan, Z. M. (2010). Co-administration of GP96 and Her2/neu DNA vaccine in a Her2 breast cancer model. Cell Stress & Chaperones, 15, 977–984.CrossRefGoogle Scholar
  119. Paliwal, P. K., Bansal, A., Sagi, S. S., & Sairam, M. (2011). Intraperitoneal immunization of recombinant HSP70 (DnaK) of Salmonella Typhi induces a predominant Th2 response and protective immunity in mice against lethal Salmonella infection. Vaccine, 29, 6532–6539.CrossRefPubMedGoogle Scholar
  120. Pawaria, S., & Binder, R. J. (2011). CD91-dependent programming of T-helper cell responses following heat shock protein immunization. Nature Communications, 2, 521.PubMedCentralCrossRefPubMedGoogle Scholar
  121. Poccia, F., Piselli, P., Vendetti, S., et al. (1996). Heat-shock protein expression on the membrane of T cells undergoing apoptosis. Immunology, 88, 6–12.PubMedCentralCrossRefPubMedGoogle Scholar
  122. Pockley, A. G., Henderson, B., & Multhoff, G. (2014). Extracellular cell stress proteins as biomarkers of human disease. Biochemical Society Transactions, 42, 1744–1751.CrossRefPubMedGoogle Scholar
  123. Poon, I. K., Lucas, C. D., Rossi, A. G., & Ravichandran, K. S. (2014). Apoptotic cell clearance: Basic biology and therapeutic potential. Nature Reviews. Immunology, 14, 166–180.PubMedCentralCrossRefPubMedGoogle Scholar
  124. Pullen, S. S., Dang, T. T., Crute, J. J., & Kehry, M. R. (1999). CD40 signaling through tumor necrosis factor receptor-associated factors (TRAFs). Binding site specificity and activation of downstream pathways by distinct TRAFs. The Journal of Biological Chemistry, 274, 14246–14254.CrossRefPubMedGoogle Scholar
  125. Radons, J. (2016). The human HSP70 family of chaperones: Where do we stand? Cell Stress & Chaperones, 21, 379–404.CrossRefGoogle Scholar
  126. Radons, J., & Multhoff, G. (2005). Immunostimulatory functions of membrane-bound and exported heat shock protein 70. Exercise Immunology Review, 11, 17–33.PubMedGoogle Scholar
  127. Ravagnan, L., Gurbuxani, S., Susin, S. A., et al. (2001). Heat-shock protein 70 antagonizes apoptosis-inducing factor. Nature Cell Biology, 3, 839–843.CrossRefPubMedGoogle Scholar
  128. Redzovic, A., Gulic, T., Laskarin, G., Eminovic, S., Haller, H., & Rukavina, D. (2015). Heat-shock proteins 70 induce pro-inflammatory maturation program in decidual CD1a(+) dendritic cells. American Journal of Reproductive Immunology, 74, 38–53.CrossRefPubMedGoogle Scholar
  129. Salimu, J., Spary, L. K., Al-Taei, S., et al. (2015). Cross-presentation of the oncofetal tumor antigen 5T4 from irradiated prostate cancer cells – A key role for heat-shock protein 70 and receptor CD91. Cancer Immunology Research, 3, 678–688.CrossRefPubMedGoogle Scholar
  130. Sawamura, T., Kume, N., Aoyama, T., et al. (1997). An endothelial receptor for oxidized low-density lipoprotein. Nature, 386, 73–77.CrossRefPubMedGoogle Scholar
  131. Schwarz, F., Pearce, O. M., Wang, X., et al. (2015). Siglec receptors impact mammalian lifespan by modulating oxidative stress. eLife, 4, e06184.PubMedCentralCrossRefPubMedGoogle Scholar
  132. SenGupta, D., Norris, P. J., Suscovich, T. J., et al. (2004). Heat shock protein-mediated cross-presentation of exogenous HIV antigen on HLA class I and class II. Journal of Immunology, 173, 1987–1993.CrossRefGoogle Scholar
  133. Shevtsov, M., & Multhoff, G. (2016). Heat shock protein-peptide and HSP-based immunotherapies for the treatment of cancer. Frontiers in Immunology, 7, 171.PubMedCentralPubMedGoogle Scholar
  134. Shevtsov, M. A., Pozdnyakov, A. V., Mikhrina, A. L., et al. (2014). Effective immunotherapy of rat glioblastoma with prolonged intratumoral delivery of exogenous heat shock protein Hsp70. International Journal of Cancer, 135, 2118–2128.CrossRefPubMedGoogle Scholar
  135. Singh-Jasuja, H., Toes, R. E., Spee, P., et al. (2000). Cross-presentation of glycoprotein 96-associated antigens on major histocompatibility complex class I molecules requires receptor-mediated endocytosis. The Journal of Experimental Medicine, 191, 1965–1974.PubMedCentralCrossRefPubMedGoogle Scholar
  136. Sondermann, H., Becker, T., Mayhew, M., Wieland, F., & Hartl, F. U. (2000). Characterization of a receptor for heat shock protein 70 on macrophages and monocytes. Biological Chemistry, 381, 1165–1174.CrossRefPubMedGoogle Scholar
  137. Srivastava, P. (2002). Interaction of heat shock proteins with peptides and antigen presenting cells: Chaperoning of the innate and adaptive immune responses. Annual Review of Immunology, 20, 395–425.CrossRefPubMedGoogle Scholar
  138. Srivastava, P. K., Menoret, A., Basu, S., Binder, R. J., & McQuade, K. L. (1998). Heat shock proteins come of age: Primitive functions acquire new roles in an adaptive world. Immunity, 8, 657–665.CrossRefPubMedGoogle Scholar
  139. Stocki, P., & Dickinson, A. M. (2012). The immunosuppressive activity of heat shock protein 70. Autoimmune Diseases, 2012, 617213.PubMedCentralCrossRefPubMedGoogle Scholar
  140. Stocki, P., Morris, N. J., Preisinger, C., et al. (2010). Identification of potential HLA class I and class II epitope precursors associated with heat shock protein 70 (HSPA). Cell Stress & Chaperones, 15, 729–741.CrossRefGoogle Scholar
  141. Stocki, P., Wang, X. N., Morris, N. J., & Dickinson, A. M. (2011). HSP70 natively and specifically associates with an N-terminal dermcidin-derived peptide that contains an HLA-A*03 antigenic epitope. The Journal of Biological Chemistry, 286, 12803–12811.PubMedCentralCrossRefPubMedGoogle Scholar
  142. Suto, R., & Srivastava, P. K. (1995). A mechanism for the specific immunogenicity of heat shock protein-chaperoned peptides. Science, 269, 1585–1588.CrossRefPubMedGoogle Scholar
  143. Suzue, K., & Young, R. A. (1996). Adjuvant-free hsp70 fusion protein system elicits humoral and cellular immune responses to HIV-1 p24. Journal of Immunology, 156, 873–879.Google Scholar
  144. Tamura, Y., Peng, P., Liu, K., Daou, M., & Srivastava, P. K. (1997). Immunotherapy of tumors with autologous tumor-derived heat shock protein preparations. Science, 278, 117–120.CrossRefPubMedGoogle Scholar
  145. Tamura, Y., Adachi, H., Osuga, J., et al. (2003). FEEL-1 and FEEL-2 are endocytic receptors for advanced glycation end products. The Journal of Biological Chemistry, 278, 12613–12617.CrossRefPubMedGoogle Scholar
  146. Theriault, J. R., Mambula, S. S., Sawamura, T., Stevenson, M. A., & Calderwood, S. K. (2005). Extracellular HSP70 binding to surface receptors present on antigen presenting cells and endothelial/epithelial cells. FEBS Letters, 579, 1951–1960.CrossRefPubMedGoogle Scholar
  147. Theriault, J. R., Adachi, H., & Calderwood, S. K. (2006). Role of scavenger receptors in the binding and internalization of heat shock protein 70. Journal of Immunology, 177, 8604–8611.CrossRefGoogle Scholar
  148. Tobian, A. A., Canaday, D. H., Boom, W. H., & Harding, C. V. (2004a). Bacterial heat shock proteins promote CD91-dependent class I MHC cross-presentation of chaperoned peptide to CD8+ T cells by cytosolic mechanisms in dendritic cells versus vacuolar mechanisms in macrophages. Journal of Immunology, 172, 5277–5286.CrossRefGoogle Scholar
  149. Tobian, A. A., Canaday, D. H., & Harding, C. V. (2004b). Bacterial heat shock proteins enhance class II MHC antigen processing and presentation of chaperoned peptides to CD4+ T cells. Journal of Immunology, 173, 5130–5137.CrossRefGoogle Scholar
  150. Todryk, S., Melcher, A. A., Hardwick, N., et al. (1999). Heat shock protein 70 induced during tumor cell killing induces Th1 cytokines and targets immature dendritic cell precursors to enhance antigen uptake. Journal of Immunology, 163, 1398–1408.Google Scholar
  151. Toomey, D., Conroy, H., Jarnicki, A. G., Higgins, S. C., Sutton, C., & Mills, K. H. (2008). Therapeutic vaccination with dendritic cells pulsed with tumor-derived Hsp70 and a COX-2 inhibitor induces protective immunity against B16 melanoma. Vaccine, 26, 3540–3549.CrossRefPubMedGoogle Scholar
  152. Tsan, M. F., & Gao, B. (2004). Heat shock protein and innate immunity. Cellular & Molecular Immunology, 1, 274–279.Google Scholar
  153. Udono, H., & Srivastava, P. K. (1993). Heat shock protein 70-associated peptides elicit specific cancer immunity. The Journal of Experimental Medicine, 178, 1391–1396.CrossRefPubMedGoogle Scholar
  154. Udono, H., Levey, D. L., & Srivastava, P. K. (1994). Cellular requirements for tumor-specific immunity elicited by heat shock proteins: Tumor rejection antigen gp96 primes CD8+ T cells in vivo. Proceedings of the National Academy of Sciences of the United States of America, 91, 3077–3081.PubMedCentralCrossRefPubMedGoogle Scholar
  155. Vabulas, R. M., Ahmad-Nejad, P., Ghose, S., Kirschning, C. J., Issels, R. D., & Wagner, H. (2002). HSP70 as endogenous stimulus of the Toll/interleukin-1 receptor signal pathway. The Journal of Biological Chemistry, 277, 15107–15112.CrossRefPubMedGoogle Scholar
  156. van Eden, W., van der Zee, R., Taams, L. S., Prakken, A. B., van Roon, J., & Wauben, M. H. (1998). Heat-shock protein T-cell epitopes trigger a spreading regulatory control in a diversified arthritogenic T-cell response. Immunological Reviews, 164, 169–174.CrossRefPubMedGoogle Scholar
  157. van Eden, W., van der Zee, R., & Prakken, B. (2005). Heat-shock proteins induce T-cell regulation of chronic inflammation. Nature Reviews. Immunology, 5, 318–330.CrossRefPubMedPubMedCentralGoogle Scholar
  158. van Eden, W., Spiering, R., Broere, F., & van der Zee, R. (2012). A case of mistaken identity: HSPs are no DAMPs but DAMPERs. Cell Stress & Chaperones, 17, 281–292.CrossRefGoogle Scholar
  159. Verma, S. K., Batra, L., & Tuteja, U. (2016). A recombinant trivalent fusion protein F1-LcrV-HSP70(II) augments humoral and cellular immune responses and imparts full protection against Yersinia pestis. Frontiers in Microbiology, 7, 1053.PubMedCentralPubMedGoogle Scholar
  160. Vinokurov, M., Ostrov, V., Yurinskaya, M., et al. (2012). Recombinant human Hsp70 protects against lipoteichoic acid-induced inflammation manifestations at the cellular and organismal levels. Cell Stress & Chaperones, 17, 89–101.CrossRefGoogle Scholar
  161. Vulpis, E., Cecere, F., Molfetta, R., et al. (2017). Genotoxic stress modulates the release of exosomes from multiple myeloma cells capable of activating NK cell cytokine production: Role of HSP70/TLR2/NF-kB axis. Oncoimmunology, 6, e1279372.PubMedCentralCrossRefPubMedGoogle Scholar
  162. Wachstein, J., Tischer, S., Figueiredo, C., et al. (2012). HSP70 enhances immunosuppressive function of CD4(+)CD25(+)FoxP3(+) T regulatory cells and cytotoxicity in CD4(+)CD25(−) T cells. PLoS One, 7, e51747.PubMedCentralCrossRefPubMedGoogle Scholar
  163. Wan, T., Zhou, X., Chen, G., et al. (2004). Novel heat shock protein Hsp70L1 activates dendritic cells and acts as a Th1 polarizing adjuvant. Blood, 103, 1747–1754.CrossRefPubMedPubMedCentralGoogle Scholar
  164. Wang, Y., Kelly, C. G., Karttunen, J. T., et al. (2001). CD40 is a cellular receptor mediating mycobacterial heat shock protein 70 stimulation of CC-chemokines. Immunity, 15, 971–983.CrossRefPubMedGoogle Scholar
  165. Wang, Y., Kelly, C. G., Singh, M., et al. (2002). Stimulation of Th1-polarizing cytokines, C-C chemokines, maturation of dendritic cells, and adjuvant function by the peptide binding fragment of heat shock protein 70. Journal of Immunology, 169, 2422–2429.CrossRefGoogle Scholar
  166. Wang, R., Kovalchin, J. T., Muhlenkamp, P., & Chandawarkar, R. Y. (2006). Exogenous heat shock protein 70 binds macrophage lipid raft microdomain and stimulates phagocytosis, processing, and MHC-II presentation of antigens. Blood, 107, 1636–1642.CrossRefPubMedGoogle Scholar
  167. Wang, Y., Seidl, T., Whittall, T., Babaahmady, K., & Lehner, T. (2010). Stress-activated dendritic cells interact with CD4+ T cells to elicit homeostatic memory. European Journal of Immunology, 40, 1628–1638.CrossRefPubMedGoogle Scholar
  168. Wang, H., Feng, F., Wang, X. P., et al. (2016). Dendritic cells pulsed with Hsp70 and HBxAg induce specific antitumor immune responses in hepatitis B virus-associated hepatocellular carcinoma. Molecular Medicine Reports, 13, 1077–1082.CrossRefPubMedGoogle Scholar
  169. Wassenberg, J. J., Dezfulian, C., & Nicchitta, C. V. (1999). Receptor mediated and fluid phase pathways for internalization of the ER Hsp90 chaperone GRP94 in murine macrophages. Journal of Cell Science, 112(Pt 13), 2167–2175.PubMedGoogle Scholar
  170. Wei, Y., Xu, Y., Han, X., et al. (2013). Anti-cancer effects of dioscin on three kinds of human lung cancer cell lines through inducing DNA damage and activating mitochondrial signal pathway. Food and Chemical Toxicology, 59, 118–128.CrossRefPubMedGoogle Scholar
  171. Wendling, U., Paul, L., van der Zee, R., Prakken, B., Singh, M., & van Eden, W. (2000). A conserved mycobacterial heat shock protein (hsp) 70 sequence prevents adjuvant arthritis upon nasal administration and induces IL-10-producing T cells that cross-react with the mammalian self-hsp70 homologue. Journal of Immunology, 164, 2711–2717.CrossRefGoogle Scholar
  172. Wu, Y., Wan, T., Zhou, X., et al. (2005). Hsp70-like protein 1 fusion protein enhances induction of carcinoembryonic antigen-specific CD8+ CTL response by dendritic cell vaccine. Cancer Research, 65, 4947–4954.CrossRefPubMedGoogle Scholar
  173. Yamada, Y., Doi, T., Hamakubo, T., & Kodama, T. (1998). Scavenger receptor family proteins: Roles for atherosclerosis, host defence and disorders of the central nervous system. Cellular and Molecular Life Sciences, 54, 628–640.CrossRefPubMedGoogle Scholar
  174. Yang, X., Wang, J., Zhou, Y., Wang, Y., Wang, S., & Zhang, W. (2012). Hsp70 promotes chemoresistance by blocking Bax mitochondrial translocation in ovarian cancer cells. Cancer Letters, 321, 137–143.CrossRefPubMedGoogle Scholar
  175. Yang, Z., Zhuang, L., Szatmary, P., et al. (2015). Upregulation of heat shock proteins (HSPA12A, HSP90B1, HSPA4, HSPA5 and HSPA6) in tumour tissues is associated with poor outcomes from HBV-related early-stage hepatocellular carcinoma. International Journal of Medical Sciences, 12, 256–263.PubMedCentralCrossRefPubMedGoogle Scholar
  176. Yewdell, J. W., Norbury, C. C., & Bennink, J. R. (1999). Mechanisms of exogenous antigen presentation by MHC class I molecules in vitro and in vivo: Implications for generating CD8+ T cell responses to infectious agents, tumors, transplants, and vaccines. Advances in Immunology, 73, 1–77.CrossRefPubMedGoogle Scholar
  177. Yu, H., Kortylewski, M., & Pardoll, D. (2007). Crosstalk between cancer and immune cells: Role of STAT3 in the tumour microenvironment. Nature Reviews. Immunology, 7, 41–51.CrossRefPubMedGoogle Scholar
  178. Yu, X., Guo, C., Fisher, P. B., Subjeck, J. R., & Wang, X. Y. (2015). Scavenger receptors: Emerging roles in cancer biology and immunology. Advances in Cancer Research, 128, 309–364.PubMedCentralCrossRefPubMedGoogle Scholar
  179. Yuan, J., Kashiwagi, S., Reeves, P., et al. (2014). A novel mycobacterial Hsp70-containing fusion protein targeting mesothelin augments antitumor immunity and prolongs survival in murine models of ovarian cancer and mesothelioma. Journal of Hematology & Oncology, 7, 15.CrossRefGoogle Scholar
  180. Yurinskaya, M. M., Vinokurov, M. G., Zatsepina, O. G., et al. (2009). Exogenous heat shock proteins (HSP70) significantly inhibit endotoxin-induced activation of human neutrophils. Doklady Biological Sciences, 426, 298–301.CrossRefPubMedGoogle Scholar
  181. Zhang, H., & Huang, W. (2006). Fusion proteins of Hsp70 with tumor-associated antigen acting as a potent tumor vaccine and the C-terminal peptide-binding domain of Hsp70 being essential in inducing antigen-independent anti-tumor response in vivo. Cell Stress & Chaperones, 11, 216–226.CrossRefGoogle Scholar
  182. Zhang, X., Yu, C., Zhao, J., et al. (2007). Vaccination with a DNA vaccine based on human PSCA and HSP70 adjuvant enhances the antigen-specific CD8+ T-cell response and inhibits the PSCA+ tumors growth in mice. The Journal of Gene Medicine, 9, 715–726.CrossRefPubMedGoogle Scholar
  183. Zhang, H., Zhang, W., Sun, X., et al. (2016). Class A1 scavenger receptor modulates glioma progression by regulating M2-like tumor-associated macrophage polarization. Oncotarget, 7, 50099–50116.PubMedCentralPubMedGoogle Scholar
  184. Zong, J., Peng, Q., Wang, Q., Zhang, T., Fan, D., & Xu, X. (2009). Human HSP70 and modified HPV16 E7 fusion DNA vaccine induces enhanced specific CD8+ T cell responses and anti-tumor effects. Oncology Reports, 22, 953–961.PubMedGoogle Scholar
  185. Zong, J., Wang, C., Wang, Q., et al. (2013). HSP70 and modified HPV 16 E7 fusion gene without the addition of a signal peptide gene sequence as a candidate therapeutic tumor vaccine. Oncology Reports, 30, 3020–3026.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Yves Delneste
    • 2
    • 3
    • 1
  • Vincent Larochette
    • 2
    • 3
  • Pascale Jeannin
    • 2
    • 3
    • 1
  1. 1.Laboratory of Immunology and AllergologyUniversity Hospital of AngersAngersFrance
  2. 2.CRCINA, INSERMUniversité de Nantes, Université d’AngersAngersFrance
  3. 3.LabEx ImmunoGraftOncoAngersFrance

Personalised recommendations