Advertisement

HSP70 Is a Major Contributor to the MHCII Ligandome and Inducer of Regulatory T Cells

  • Willem van Eden
  • Femke Broere
  • Ruurd van der Zee
Chapter
Part of the Heat Shock Proteins book series (HESP, volume 14)

Abstract

Experimental models of autoimmunity have revealed anti-inflammatory effects of immunization with HSP70 or its derivative peptides. In depth cellular analysis of the effects of HSP70 immunization has shown the capacity of HSP70 to induce and expand self-tolerance promoting regulatory T cells (Tregs). In other words, in the models tolerance was re-established by the action of HSP70 specific Tregs. For the inflammation suppressive activity of antigen specific Tregs it is essential that the targeted antigen is ubiquitously expressed in the tissues. HSP70 family members, especially those that are stress-inducible, are widely expressed by stressed cells in the inflamed tissue due to the local presence of inflammatory mediators. In addition, cell stress is known to lead to autophagy, which in the case of chaperone mediated autophagy does lead to the preferential loading of HSP70 in MHC class II molecules. MHCII peptide elution profiles obtained from cells in a steady state have also revealed the dominating presence of HSP70 derived peptides in MHC class II molecules. For these reasons HSP70 is one of the most frequent cytosolic/nuclear MHCII natural ligand sources. HSP70, when presented by tolerizing antigen presenting cells in tissues, does induce Tregs, which seem to contribute to the tolerance promoting default setting of the healthy immune system.

Keywords

Autoimmunity Hsp70 MHC Peptide Tolerance Treg 

Abbreviations

BMDC

bone marrow derived dendritic cells

CMA

chaperone mediated autophagy

DC

dendritic cells

ER

endoplasmic reticulum

ERK

extracellular signal regulated kinase

GAPDH

glyceraldehyde-3-phosphate dehydrogenase

IL-10

interleukin 10

JNK

c-jun N-terminal kinase

LAG-3

lymphocyte activating gene-3

MAPK

mitogen activated protein kinase

MHC

major histocompatibility complex

MS

multiple sclerosis

NFkB

nuclear factor kappa beta

OVA

ovalbumin

PBMC

peripheral blood mononuclear cells

PBS

phosphate buffered saline

PGIA

proteoglycan induced arthritis

RA

rheumatoid arthritis

TcR

T cell receptor

TNF

tumor necrosis factor

tolDC

tolerized dendritic cells

Treg

regulatory T cells

Notes

Acknowledgements

We thank the Dutch Arthritis Foundation for its financial support.

References

  1. Adamopoulou, E., Tenzer, S., Hillen, N., Klug, P., Rota, I. A., Tietz, S., Gebhardt, M., Stevanovic, S., Schild, H., Tolosa, E., Melms, A., & Stoeckle, C. (2013). Exploring the MHC-peptide matrix of central tolerance in the human thymus. Nature Communications, 4, 2039.CrossRefPubMedCentralPubMedGoogle Scholar
  2. Anderton, S. M., van der Zee, R., Prakken, B., Noordzij, A., & van Eden, W. (1995). Activation of T cells recognizing self 60-kD heat shock protein can protect against experimental arthritis. The Journal of Experimental Medicine, 181, 943–952.CrossRefPubMedCentralPubMedGoogle Scholar
  3. Bell, G. M., Anderson, A. E., Diboll, J., Reece, R., Eltherington, O., Harry, R. A., Fouweather, T., MacDonald, C., Chadwick, T., McColl, E., Dunn, J., Dickinson, A. M., Hilkens, C. M., & Isaacs, J. D. (2017). Autologous tolerogenic dendritic cells for rheumatoid and inflammatory arthritis. Annals of the Rheumatic Diseases, 76, 227–234.CrossRefPubMedCentralPubMedGoogle Scholar
  4. Benham, H., Nel, H. J., Law, S. C., Mehdi, A. M., Street, S., Ramnoruth, N., Pahau, H., Lee, B. T., Ng, J., Brunck, M. E., Hyde, C., Trouw, L. A., Dudek, N. L., Purcell, A. W., O’Sullivan, B. J., Connolly, J. E., Paul, S. K., Le-Cao, K. A., & Thomas, R. (2015). Citrullinated peptide dendritic cell immunotherapy in HLA risk genotype-positive rheumatoid arthritis patients. Science Translational Medicine, 7, 290ra87.CrossRefPubMedCentralPubMedGoogle Scholar
  5. Corrigall, V. M., Bodman-Smith, M. D., Fife, M. S., Canas, B., Myers, L. K., Wooley, P., Soh, C., Staines, N. A., Pappin, D. J., Berlo, S. E., van Eden, W., van Der Zee, R., Lanchbury, J. S., & Panayi, G. S. (2001). The human endoplasmic reticulum molecular chaperone BiP is an autoantigen for rheumatoid arthritis and prevents the induction of experimental arthritis. Journal of Immunology, 166, 1492–1498.CrossRefGoogle Scholar
  6. De Graeff-Meeder, E. R., van der Zee, R., Rijkers, G. T., Schuurman, H. J., Kuis, W., Bijlsma, J. W., Zegers, B. J., & van Eden, W. (1991). Recognition of human 60 kD heat shock protein by mononuclear cells from patients with juvenile chronic arthritis. Lancet, 337, 1368–1372.CrossRefPubMedCentralPubMedGoogle Scholar
  7. de Graeff-Meeder, E. R., van Eden, W., Rijkers, G. T., Prakken, B. J., Kuis, W., Voorhorst-Ogink, M. M., van der Zee, R., Schuurman, H. J., Helders, P. J., & Zegers, B. J. (1995). Juvenile chronic arthritis: T cell reactivity to human HSP60 in patients with a favorable course of arthritis. The Journal of Clinical Investigation, 95, 934–940.CrossRefPubMedCentralPubMedGoogle Scholar
  8. de Wolf, C., van der Zee, R., den Braber, I., Glant, T., Maillere, B., Favry, E., van Lummel, M., Koning, F., Hoek, A., Ludwig, I., van Eden, W., & Broere, F. (2016). An arthritis-suppressive and treg cell-inducing CD4+ T cell epitope is functional in the context of HLA-restricted T cell responses. Arthritis & Rhematology, 68, 639–647.CrossRefGoogle Scholar
  9. Dengjel, J., Schoor, O., Fischer, R., Reich, M., Kraus, M., Muller, M., Kreymborg, K., Altenberend, F., Brandenburg, J., Kalbacher, H., Brock, R., Driessen, C., Rammensee, H. G., & Stevanovic, S. (2005). Autophagy promotes MHC class II presentation of peptides from intracellular source proteins. Proceedings of the National Academy of Sciences of the United States of America, 102, 7922–7927.CrossRefPubMedCentralPubMedGoogle Scholar
  10. Kirkham, B., Chaabo, K., Hall, C., Garrood, T., Mant, T., Allen, E., Vincent, A., Vasconcelos, J. C., Prevost, A. T., Panayi, G. S., & Corrigall, V. M. (2016). Safety and patient response as indicated by biomarker changes to binding immunoglobulin protein in the phase I/IIA RAGULA clinical trial in rheumatoid arthritis. Rheumatology (Oxford), 55, 1993–2000.CrossRefGoogle Scholar
  11. Luo, X., Zuo, X., Zhou, Y., Zhang, B., Shi, Y., Liu, M., Wang, K., McMillian, D. R., & Xiao, X. (2008). Extracellular heat shock protein 70 inhibits tumour necrosis factor-alpha induced proinflammatory mediator production in fibroblast-like synoviocytes. Arthritis Research & Therapy, 10, R41.CrossRefGoogle Scholar
  12. Paludan, C., Schmid, D., Landthaler, M., Vockerodt, M., Kube, D., Tuschl, T., & Munz, C. (2005). Endogenous MHC class II processing of a viral nuclear antigen after autophagy. Science, 307, 593–596.CrossRefPubMedCentralGoogle Scholar
  13. Prakken, A. B., van Eden, W., Rijkers, G. T., Kuis, W., Toebes, E. A., de Graeff-Meeder, E. R., van der Zee, R., & Zegers, B. J. (1996). Autoreactivity to human heat-shock protein 60 predicts disease remission in oligoarticular juvenile rheumatoid arthritis. Arthritis and Rheumatism, 39, 1826–1832.CrossRefPubMedCentralPubMedGoogle Scholar
  14. Prakken, B. J., Wendling, U., van der Zee, R., Rutten, V. P., Kuis, W., & van Eden, W. (2001). Induction of IL-10 and inhibition of experimental arthritis are specific features of microbial heat shock proteins that are absent for other evolutionarily conserved immunodominant proteins. Journal of Immunology, 167, 4147–4153.CrossRefGoogle Scholar
  15. Quintana, F. J., Basso, A. S., Iglesias, A. H., Korn, T., Farez, M. F., Bettelli, E., Caccamo, M., Oukka, M., & Weiner, H. L. (2008). Control of T(reg) and T(H)17 cell differentiation by the aryl hydrocarbon receptor. Nature, 453, 65–71.CrossRefPubMedCentralPubMedGoogle Scholar
  16. Shevach, E. M. (2009). Mechanisms of foxp3+ T regulatory cell-mediated suppression. Immunity, 30, 636–645.CrossRefPubMedCentralPubMedGoogle Scholar
  17. Shoda, H., Fujio, K., Sakurai, K., Ishigaki, K., Nagafuchi, Y., Shibuya, M., Sumitomo, S., Okamura, T., & Yamamoto, K. (2015). Autoantigen BiP-derived HLA-DR4 epitopes differentially recognized by effector and regulatory T cells in rheumatoid arthritis. Arthritis & Rhematology, 67, 1171–1181.CrossRefGoogle Scholar
  18. Spiering, R., van der Zee, R., Wagenaar, J., Kapetis, D., Zolezzi, F., van Eden, W., & Broere, F. (2012). Tolerogenic dendritic cells that inhibit autoimmune arthritis can be induced by a combination of carvacrol and thermal stress. PLoS One, 7, e46336.CrossRefPubMedCentralPubMedGoogle Scholar
  19. Stoop, J. N., Robinson, J. H., & Hilkens, C. M. (2011). Developing tolerogenic dendritic cell therapy for rheumatoid arthritis: What can we learn from mouse models? Annals of the Rheumatic Diseases, 70, 1526–1533.CrossRefPubMedCentralPubMedGoogle Scholar
  20. Tanaka, T., Shibazaki, A., Ono, R., & Kaisho, T. (2014). HSP70 mediates degradation of the p65 subunit of nuclear factor kappaB to inhibit inflammatory signaling. Science Signaling, 7, ra119.CrossRefPubMedCentralPubMedGoogle Scholar
  21. van Eden, W., Thole, J. E., van der Zee, R., Noordzij, A., van Embden, J. D., Hensen, E. J., & Cohen, I. R. (1988). Cloning of the mycobacterial epitope recognized by T lymphocytes in adjuvant arthritis. Nature, 331, 171–173.CrossRefPubMedCentralPubMedGoogle Scholar
  22. van Eden, W., van der Zee, R., & Prakken, B. (2005). Heat-shock proteins induce T-cell regulation of chronic inflammation. Nature Reviews. Immunology, 5, 318–330.CrossRefPubMedCentralPubMedGoogle Scholar
  23. van Herwijnen, M. J., Wieten, L., van der Zee, R., van Kooten, P. J., Wagenaar-Hilbers, J. P., Hoek, A., den Braber, I., Anderton, S. M., Singh, M., Meiring, H. D., van Els, C. A., van Eden, W., & Broere, F. (2012). Regulatory T cells that recognize a ubiquitous stress-inducible self-antigen are long-lived suppressors of autoimmune arthritis. Proceedings of the National Academy of Sciences of the United States of America, 109, 14134–14139.CrossRefPubMedCentralPubMedGoogle Scholar
  24. Wendling, U., Paul, L., van der Zee, R., Prakken, B., Singh, M., & van Eden, W. (2000). A conserved mycobacterial heat shock protein (hsp) 70 sequence prevents adjuvant arthritis upon nasal administration and induces IL-10-producing T cells that cross-react with the mammalian self-hsp70 homologue. Journal of Immunology, 164, 2711–2717.CrossRefGoogle Scholar
  25. Wieten, L., van der Zee, R., Spiering, R., Wagenaar-Hilbers, J., van Kooten, P., Broere, F., & van Eden, W. (2010). A novel HSP co-inducer boosts stress protein HSP70 to activate T cell regulation of inflammation in autoimmune arthritis. Arthritis and Rheumatism, 62, 1026–1035.CrossRefPubMedCentralPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Willem van Eden
    • 1
  • Femke Broere
    • 1
  • Ruurd van der Zee
    • 1
  1. 1.Division of Immunology, Faculty of Veterinary MedicineUtrecht UniversityUtrechtThe Netherlands

Personalised recommendations