Skip to main content

Heat Shock Protein 70 and Cancer

  • Chapter
  • First Online:
HSP70 in Human Diseases and Disorders

Part of the book series: Heat Shock Proteins ((HESP,volume 14))

Abstract

Heat shock proteins (HSP) constitute a large family of proteins involved in protein folding and maturation and the expressions of HSP are induced by heat shock or other stressors. The major groups, which are classified based on their molecular weight, include HSP27, HSP40, HSP60, HSP70, HSP90, and large HSP (HSP110 and glucose-regulated protein 170). The human HSP70 family is consists of 13 members and five of them have a strong association with cancer. HSP play a significant role in cellular proliferation, differentiation, survival, apoptosis, and carcinogenesis. In this chapter, we thoroughly discussed the roles of HSP70s in cancer biology and pharmacology. The HSP70 proteins have important functions in the molecular mechanisms leading to cancer development, progression, and metastasis. They may also have potential clinical use as biomarkers for cancer diagnosis or assessing disease progression, and as therapeutic targets for cancer therapy. Understanding of the functions and molecular mechanisms of HSP70 proteins is critical for enhancing the accuracy of cancer diagnosis as well as for developing more effective and less toxic chemotherapeutic agents.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

5-FU:

fluorouracil

ADP:

adenosine diphosphate

AIF:

apoptosis-inducing factor

AKT:

protein kinase B

ALL:

acute lymphoid leukemia

AML:

acute myelogenous leukemia

AMPK:

AMP-activated protein kinase

APAF-1:

apoptotic protease activating factor 1

ATF:

activating transcription factor

ATP:

adenosine triphosphate

ATPase:

adenosine triphosphatase

BAG-1:

Bcl-2 associated athanogene 1

BAX:

Bcl-2 associated X

Bcl-2:

B-cell lymphoma-2

Bcl-xL:

B-cell lymphoma-extra-large

BIK:

Bcl-2 interacting killer

BIP:

binding immunoglobulin protein

B-RAF:

v-raf murine sarcoma viral oncogene homolog B

CDK:

cyclin-dependent kinase

CHIP:

carboxyl-terminus of HSP70-interacting protein

CML:

chronic myeloid leukemia

C-RAF:

v-raf murine sarcoma viral oncogene homolog C

DMC:

demethoxycurcumin

EGFR:

epidermal growth factor receptor

EMT:

epithelial-mesenchymal transition

ER:

endoplasmic reticulum

ERK:

Ras/extracellular signal-regulated kinase

FDA:

Food and Drug Administration

GRP:

glucose-regulated protein

HBV:

hepatitis B virus

HDAC:

histone deacetylases

HER2:

human epidermal growth factor receptor 2

HIV:

human immunodeficiency virus

HSC:

heat-shock cognate protein

HSE:

heat shock element

HSF:

heat shock factor

HSP:

heat shock protein

HUGO:

Human Genome Organization

IL:

interleukin

JAK:

Janus kinase

MAPK:

mitogen-activated protein kinase

MCL-1:

myeloid cell leukemia 1

MEK:

mitogen-activated protein kinase kinase

mTOR:

mechanistic target of rapamycin

MTX:

methotrexate

NF-κB:

nuclear factor NF-κB

NSCLC:

non-small cell lung cancer;

oxLDL:

oxidative modified low density lipoprotein

PES:

phenylethynesulfonamide

PFT:

pifithrin

PI3K:

phosphatidylinositol-4, 5-bisphosphate 3-kinase

PSA:

prostate-specific antigen

SAHA:

suberanilohydroxamic acid

SK1:

sphingosine kinase 1

STAT:

signal transducer and activator of transcription

TGF:

transforming growth factor

TNF:

tumor necrosis factor;

TNIP1:

TNF-α-induced protein 3-interacting protein 1

UBXN2A:

UBX Domain Protein 2A

References

  • Akerfelt, M., Morimoto, R. I., & Sistonen, L. (2010). Heat shock factors: Integrators of cell stress, development and lifespan. Nature Reviews. Molecular Cell Biology, 11(8), 545–533.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ando, K., Oki, Z., Zhao, Y., et al. (2014). Mortalin is a prognostic factor of gastric cancer with normal p53 function. Gastric Cancer, 17(2), 255–262.

    Article  CAS  PubMed  Google Scholar 

  • Arafa, e.-S. A., Abdelazeem, A. H., Arab, H. H., et al. (2014). OSU-CG5, a novel energy restriction mimetic agent, targets human colorectal cancer cells in vitro. Acta Pharmacologica Sinica, 35(3), 394–400.

    Article  CAS  PubMed Central  Google Scholar 

  • Arispe, N., & De Maio, A. (2000). ATP and ADP modulate a cation channel formed by Hsc70 in acidic phospholipid membranes. The Journal of Biological Chemistry, 275(40), 30839–30843.

    Article  CAS  PubMed  Google Scholar 

  • Bakkenist, C. J., Koreth, J., Williams, C. S., et al. (1999). Heat shock cognate 70 mutations in sporadic breast carcinoma. Cancer Research, 59(17), 4219–4221.

    PubMed  CAS  Google Scholar 

  • Balaburski, G. M., Leu, J. J., Beeharry, N., et al. (2013). A modified HSP70 inhibitor shows broad activity as an anticancer agent. Molecular Cancer Research, 11(3), 219–229.

    Article  CAS  PubMed  Google Scholar 

  • Bayer, C., Liebhardt, M. E., Schmid, T. E., et al. (2014). Validation of heat shock protein 70 as a tumor-specific biomarker for monitoring the outcome of radiation therapy in tumor mouse models. International Journal of Radiation Oncology, Biology, Physics, 88(3), 694–700.

    Article  CAS  PubMed  Google Scholar 

  • Bepperling, A., Alte, F., Kriehuber, T., et al. (2012). Alternative bacterial two-component small heat shock protein systems. Proceedings of the National Academy of Sciences of the United States of America, 109(50), 20407–20412.

    Article  PubMed  PubMed Central  Google Scholar 

  • Boonjaraspinyo, S., Boonmars, T., Kaewkes, S., et al. (2012). Down-regulated expression of HSP70 in correlation with clinicopathology of cholangiocarcinoma. Pathology Oncology Research, 18(2), 227–237.

    Article  CAS  PubMed  Google Scholar 

  • Cai, M. B., Wang, X. P., Zhang, J. X., et al. (2012). Expression of heat shock protein 70 in nasopharyngeal carcinomas: Different expression patterns correlate with distinct clinical prognosis. Journal of Translational Medicine, 10, 96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chakravarty, G., Mathur, A., Mallade, P., et al. (2016). Nelfinavir targets multiple drug resistance mechanisms to increase the efficacy of doxorubicin in MCF-7/Dox breast cancer cells. Biochimie, 124, 53–64.

    Article  CAS  PubMed  Google Scholar 

  • Chen, T. H., Kambal, A., Krysiak, K., et al. (2011). Knockdown of Hspa9, a del(5q31.2) gene, results in a decrease in hematopoietic progenitors in mice. Blood, 117(5), 1530–1539.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen, J., Liu, W. B., Jia, W. D., et al. (2014). Overexpression of Mortalin in hepatocellular carcinoma and its relationship with angiogenesis and epithelial to mesenchymal transition. International Journal of Oncology, 44(1), 247–255.

    Article  CAS  PubMed  Google Scholar 

  • Chiou, J. F., Tai, C. J., Huang, M. T., et al. (2010). Glucose-regulated protein 78 is a novel contributor to acquisition of resistance to sorafenib in hepatocellular carcinoma. Annals of Surgical Oncology, 17(2), 603–612.

    Article  PubMed  Google Scholar 

  • Ciocca, D. R., & Calderwood, S. K. (2005). Heat shock proteins in cancer: Diagnostic, prognostic, predictive, and treatment implications. Cell Stress & Chaperones, 10(2), 86–103.

    Article  CAS  Google Scholar 

  • Fu, Y., Li, J., & Lee, A. S. (2007). GRP78/BiP inhibits endoplasmic reticulum BIK and protects human breast cancer cells against estrogen starvation-induced apoptosis. Cancer Research, 67(8), 3734–3740.

    Article  CAS  PubMed  Google Scholar 

  • Gabai, V. L., Yaglom, J. A., Waldman, T., & Sherman, M. Y. (2009). Heat shock protein Hsp72 controls oncogene-induced senescence pathways in cancer cells. Molecular and Cellular Biology, 29(2), 559–569.

    Article  CAS  PubMed  Google Scholar 

  • Gestl, E. E., & Anne Böttger, S. (2012). Cytoplasmic sequestration of the tumor suppressor p53 by a heat shock protein 70 family member, mortalin, in human colorectal adenocarcinoma cell lines. Biochemical and Biophysical Research Communications, 423(2), 411–416.

    Article  CAS  PubMed  Google Scholar 

  • Gray, P. C., & Vale, W. (2012). Cripto/GRP78 modulation of the TGF-β pathway in development and oncogenesis. FEBS Letters, 586(4), 1836–1845.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hanke, N. T., Garland, L. L., & Baker, A. F. (2016). Carfilzomib combined with suberanilohydroxamic acid (SAHA) synergistically promotes endoplasmic reticulum stress in non-small cell lung cancer cell lines. Journal of Cancer Research and Clinical Oncology, 142(3), 549–560.

    Article  CAS  PubMed  Google Scholar 

  • Helmbrecht, K., & Rensing, L. (1999). Different constitutive heat shock protein 70 expression during proliferation and differentiation of rat C6 glioma cells. Neurochemical Research, 24(10), 1293–1299.

    Article  CAS  PubMed  Google Scholar 

  • Howe, M. K., Bodoor, K., Carlson, D. A., et al. (2014). Identification of an allosteric small-molecule inhibitor selective for the inducible form of heat shock protein 70. Chemistry & Biology, 21(12), 1648–1659.

    Article  CAS  Google Scholar 

  • Hu, Y., Yang, L., Yang, Y., et al. (2016). Oncogenic role of mortalin contributes to ovarian tumorigenesis by activating the MAPK-ERK pathway. Journal of Cellular and Molecular Medicine, 20(11), 2111–2121.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hung, C. M., Su, Y. H., Lin, J. N., et al. (2012). Demethoxycurcumin modulates prostate cancer cell proliferation via AMPK-induced down-regulation of HSP70 and EGFR. Journal of Agricultural and Food Chemistry, 60(34), 8427–8434.

    Article  CAS  PubMed  Google Scholar 

  • Jäättelä, M., Wissing, D., Bauer, P. A., et al. (1992). Major heat shock protein hsp70 protects tumor cells from tumor necrosis factor cytotoxicity. The EMBO Journal, 11(10), 3507–3512.

    Article  PubMed  PubMed Central  Google Scholar 

  • Jakob, U., Scheibel, T., Bose, S., Reinstein, J., et al. (1996). Assessment of the ATP binding properties of Hsp90. The Journal of Biological Chemistry, 271(17), 10035–10041.

    Article  CAS  PubMed  Google Scholar 

  • Jiang, C. C., Mao, Z. G., Avery-Kiejda, K. A., et al. (2009). Glucose-regulated protein 78 antagonizes cisplatin and adriamycin in human melanoma cells. Carcinogenesis, 30(2), 197–204.

    Article  CAS  PubMed  Google Scholar 

  • Jin, H., Ji, M., Chen, L., et al. (2016). The clinicopathological significance of Mortalin overexpression in invasive ductal carcinoma of breast. Journal of Experimental & Clinical Cancer Research, 35, 42.

    Article  CAS  Google Scholar 

  • Jung, J. H., Lee, J. O., Kim, J. H., et al. (2010). Quercetin suppresses HeLa cell viability via AMPK-induced HSP70 and EGFR down-regulation. Journal of Cellular Physiology, 223(2), 408–414.

    CAS  PubMed  Google Scholar 

  • Kaiser, M., Lee, J. O., Kim, J. H., et al. (2011). Antileukemic activity of the HSP70 inhibitor pifithrin-μ in acute leukemia. Blood Cancer Journal, 1(7), e28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kampinga, H. H., Hageman, J., Vos, M. J., et al. (2009). Guidelines for the nomenclature of the human heat shock proteins. Cell Stress & Chaperones, 14(1), 105–111.

    Article  CAS  Google Scholar 

  • Khalouei, S., Chow, A. M., Brown, I. R. (2014). Localization of heat shock protein HSPA6 (HSP70B′) to sites of transcription in cultured differentiated human neuronal cells following thermal stress. Journal of Neurochemistry, 131(6), 743–754.

    Article  CAS  PubMed  Google Scholar 

  • Kim, J. A., Kim, Y., Kwon, B. M., et al. (2013). The natural compound cantharidin induces cancer cell death through inhibition of heat shock protein 70 (HSP70) and Bcl-2-associated athanogene domain 3 (BAG3) expression by blocking heat shock factor 1 (HSF1) binding to promoters. The Journal of Biological Chemistry, 288(40), 28713–28726.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim, J. A., Lee, S., Kim, D. E., et al. (2015). Fisetin, a dietary flavonoid, induces apoptosis of cancer cells by inhibiting HSF1 activity through blocking its binding to the hsp70 promoter. Carcinogenesis, 36(6), 696–706.

    Article  CAS  PubMed  Google Scholar 

  • Ko, S. K., Kim, J., Na, D. C., et al. (2015). A small molecule inhibitor of ATPase activity of HSP70 induces apoptosis and has antitumor activities. Chemistry & Biology, 22(3), 391–403.

    Article  CAS  Google Scholar 

  • Kocsis, J., Mészáros, T., Madaras, B., et al. (2011). High levels of acute phase proteins and soluble 70 kDa heat shock proteins are independent and additive risk factors for mortality in colorectal cancer. Cell Stress & Chaperones, 16(1), 49–55.

    Article  CAS  Google Scholar 

  • Kosakowska-Cholody, T., Lin, J., Srideshikan, S. M., et al. (2014). HKH40A downregulates GRP78/BiP expression in cancer cells. Cell Death & Disease, 5, e1240.

    Article  CAS  Google Scholar 

  • Kuballa, P., Baumann, A. L., Mayer, K., et al. (2015). Induction of heat shock protein HSPA6 (HSP70B′) upon HSP90 inhibition in cancer cell lines. FEBS Letters, 589(13):1450–1458.

    Article  CAS  PubMed  Google Scholar 

  • Kubota, H., Yamamoto, S., Itoh, E., et al. (2010). Increased expression of co-chaperone HOP with HSP90 and HSC70 and complex formation in human colonic carcinoma. Cell Stress & Chaperones, 15(6), 1003–1011.

    Article  CAS  Google Scholar 

  • Lee, A. S. (2007). GRP78 induction in cancer: therapeutic and prognostic implications. Cancer Research, 67(8), 3496–3499.

    Article  CAS  PubMed  Google Scholar 

  • Leung, T. K., Rajendran, M. Y., Monfries, C., et al. (1990). The human heat-shock protein family. Expression of a novel heat-inducible HSP70 (HSP70B′) and isolation of its cDNA and genomic DNA. The Biochemical Journal, 267: 125–132.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li, J., Ni, M., Lee, B., et al. (2008). The unfolded protein response regulator GRP78/BiP is required for endoplasmic reticulum integrity and stress-induced autophagy in mammalian cells. Cell Death & Disease, 15(9), 1460–1471.

    Article  CAS  Google Scholar 

  • Li, G., Xu, Y., Guan, D., et al. (2011). HSP70 protein promotes survival of C6 and U87 glioma cells by inhibition of ATF5 degradation. The Journal of Biological Chemistry, 286(23), 20251–20259.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li, X., Srinivasan, S. R., Connarn, J., et al. (2013). Analogs of the allosteric heat shock protein 70 (Hsp70) inhibitor, MKT-077, as anti-cancer agents. ACS Medicinal Chemistry Letters, 4(11), 1042–1047.

    Article  CAS  PubMed Central  Google Scholar 

  • Lin, Y., Wang, Z., Liu, L., & Chen, L. (2011). Akt is the downstream target of GRP78 in mediating cisplatin resistance in ER stress-tolerant human lung cancer cells. Lung Cancer, 71(3), 291–297.

    Article  PubMed  Google Scholar 

  • Liu, T., Daniels, C. K., & Cao, S. (2012). Comprehensive review on the HSC70 functions, interactions with related molecules and involvement in clinical diseases and therapeutic potential. Pharmacology & Therapeutics, 136(3), 354–374.

    Article  CAS  Google Scholar 

  • Liu, T., Singh, R., Rios, Z., et al. (2015). Tyrosine phosphorylation of HSC70 and its interaction with RFC mediates methotrexate resistance in murine L1210 leukemia cells. Cancer Letters, 357(1), 231–241.

    Article  CAS  PubMed  Google Scholar 

  • Liu, T., Krysiak, K., Shirai, C. L., et al. (2017). Knockdown of HSPA9 induces TP53-dependent apoptosis in human hematopoietic progenitor cells. PLoS One, 12(2), e0170470.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu, W. J., Lee, N. P., Kaul, S. C., et al. (2011). Induction of mutant p53-dependent apoptosis in human hepatocellular carcinoma by targeting stress protein mortalin. International Journal of Cancer, 129(8), 1806–1814.

    Article  CAS  PubMed  Google Scholar 

  • Ma, Y., & Hendershot, L. M. (2004). The role of the unfolded protein response in tumor development: Friend or foe? Nature Reviews. Cancer, 4(12), 966–967.

    Article  CAS  PubMed  Google Scholar 

  • Ma, X. H., Piao, S. F., Dey, S., et al. (2014). Targeting ER stress-induced autophagy overcomes BRAF inhibitor resistance in melanoma. The Journal of Clinical Investigation, 124(3), 1406–1417.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Macario, A. J., & Conway de Macario, E. (2007). Molecular chaperones: multiple functions, pathologies, and potential applications. Frontiers in Bioscience, 1(12), 2588–2600.

    Article  Google Scholar 

  • Misra, U. K., Mowery, Y., Kaczowka, S., et al. (2009). Ligation of cancer cell surface GRP78 with antibodies directed against its COOH-terminal domain up-regulates p53 activity and promotes apoptosis. Molecular Cancer Therapeutics, 8(5), 1350–1362.

    Article  CAS  PubMed  Google Scholar 

  • Misra, U. K., Payne, S., & Pizzo, S. (2011). Ligation of prostate cancer cell surface GRP78 activates a proproliferative and antiapoptotic feedback loop: A role for secreted prostate-specific antigen. The Journal of Biological Chemistry, 286(2), 1248–1259.

    Article  CAS  PubMed  Google Scholar 

  • Moghanibashi, M., Rastgar-Jazii, F., Soheili, Z. S., et al. (2013). Esophageal cancer alters the expression of nuclear pore complex binding protein Hsc70 and eIF5A-1. Functional & Integrative Genomics, 13(2), 253–260.

    Article  CAS  Google Scholar 

  • Moon, J. Y., & Cho, S. K. (2016). Nobiletin induces protective autophagy accompanied by ER-stress mediated apoptosis in human gastric cancer SNU-16 cells. Molecules, 21(7), 914.

    Article  CAS  Google Scholar 

  • Murphy, M. E. (2013). The HSP70 family and cancer. Carcinogenesis, 34(6), 1181–1188.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Na, Y., Kaul, S. C., Ryu, J., et al. (2016). Stress chaperone mortalin contributes to epithelial-mesenchymal transition and cancer metastasis. Cancer Research, 76(9), 2764–2765.

    Article  CAS  Google Scholar 

  • Nigam, N., Grover, A., Goyal, S., et al. (2015). Targeting mortalin by embelin causes activation of tumor suppressor p53 and deactivation of metastatic signaling in human breast cancer cells. PLoS One, 10(9), e0138192.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Noonan, E. J., Fournier, G., Hightower, L. E. (2008). Surface expression of Hsp70B′ in response to proteasome inhibition in human colon cells. Cell Stress & Chaperones, 13(1), 105–110.

    Article  CAS  PubMed  Google Scholar 

  • Nylandsted, J., Gyrd-Hansen, M., Danielewicz, A., et al. (2004). Heat shock protein 70 promotes cell survival by inhibiting lysosomal membrane permeabilization. The Journal of Experimental Medicine, 200(4), 425–435.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pilzer, D., Saar, M., Koya, K., et al. (2010). Mortalin inhibitors sensitize K562 leukemia cells to complement-dependent cytotoxicity. International Journal of Cancer, 126(6), 1428–1435.

    PubMed  CAS  Google Scholar 

  • Qi, W., White, M. C., Choi, W., et al. (2013). Inhibition of inducible heat shock protein-70 (hsp72) enhances bortezomib-induced cell death in human bladder cancer cells. PLoS One, 8(7), e69509.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ramired, V. P., Krueger, W., & Aneskievich, B. J. (2015). TNIP1 reduction of HSPA6 gene expression occurs in promoter regions lacking binding sites for known TNIP1-repressed transcription factors. Gene, 555(2), 430–437.

    Article  CAS  Google Scholar 

  • Ramp, U., Mahotka, C., Heikaus, S., et al. (2007). Expression of heat shock protein 70 in renal cell carcinoma and its relation to tumor progression and prognosis. Histology and Histopathology, 22(10), 1099–1107.

    PubMed  CAS  Google Scholar 

  • Reddy, R. K., Mao, C., Baumeister, P., et al. (2003). Endoplasmic reticulum chaperone protein GRP78 protects cells from apoptosis induced by topoisomerase inhibitors: Role of ATP binding site in suppression of caspase-7 activation. The Journal of Biological Chemistry, 278(23), 20915–20924.

    Article  CAS  PubMed  Google Scholar 

  • Regeling, A., Imhann, F., Volders, H. H., et al. (2016). HSPA6 is an ulcerative colitis susceptibility factor that is induced by cigarette smoke and protects intestinal epithelial cells by stabilizing anti-apoptotic Bcl-XL. Biochimica et Biophysica Acta, 1862, 788–796.

    Article  CAS  PubMed  Google Scholar 

  • Rérole, A. L., Jego, G., & Garrido, C. (2011). Hsp70: Anti-apoptotic and tumorigenic protein. Methods in Molecular Biology, 787, 205–230.

    Article  CAS  PubMed  Google Scholar 

  • Roberts, J. L., Tavallai, M., Nourbakhsh, A., et al. (2015). GRP78/Dna K is a target for nexavar/stivarga/votrient in the treatment of human malignancies, viral infections and bacterial diseases. Journal of Cellular Physiology, 230(10), 2552–2578.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roller, C., & Maddalo, D. (2013). The Molecular chaperone GRP78/BiP in the development of chemoresistance: Mechanism and possible treatment. Frontiers in Pharmacology, 4, 10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rozenberg, P., Kocsis, J., Saar, M., et al. (2013). Elevated levels of mitochondrial mortalin and cytosolic HSP70 in blood as risk factors in patients with colorectal cancer. International Journal of Cancer, 133(2), 514–518.

    Article  CAS  PubMed  Google Scholar 

  • Rusin, M., Zientek, H., KrzeÅ›niak, M., et al. (2004). Intronic polymorphism (1541-1542delGT) of the constitutive heat shock protein 70 gene has functional significance and shows evidence of association with lung cancer risk. Molecular Carcinogenesis, 39(3), 155–163.

    Article  CAS  PubMed  Google Scholar 

  • Sandoval, J. A., Hoelz, D. J., Woodruff, H. A., et al. (2006). Novel peptides secreted from human neuroblastoma: Useful clinical tools? Journal of Pediatric Surgery, 41(1), 245–251.

    Article  PubMed  Google Scholar 

  • Sane, S., Abdullah, A., Nelson, M. E., et al. (2016). Structural studies of UBXN2A and mortalin interaction and the putative role of silenced UBXN2A in preventing response to chemotherapy. Cell Stress & Chaperones, 21(2), 313–326.

    Article  CAS  Google Scholar 

  • Sekihara, K., Harashima, N., Tongu, M., et al. (2013). Pifithrin-μ, an inhibitor of heat-shock protein 70, can increase the antitumor effects of hyperthermia against human prostate cancer cells. PLoS One, 8(11), e78772.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith, K. J. (2010). Heat shock protein 70B′ (HSP70B′) expression and release in response to human oxidized low density lipoprotein immune complexes in macrophages. The Journal of Biological Chemistry, 285(21), 15985–15993.

    Article  CAS  PubMed  Google Scholar 

  • Sobolewski, C., Rhim, J., Legrand, N., et al. (2015). 2,5-Dimethyl-celecoxib inhibits cell cycle progression and induces apoptosis in human leukemia cells. The Journal of Pharmacology and Experimental Therapeutics, 355(2), 308–328.

    Article  CAS  PubMed  Google Scholar 

  • Song, L., Liu, H., Ma, L., et al. (2013). Inhibition of autophagy by 3-MA enhances endoplasmic reticulum stress-induced apoptosis in human nasopharyngeal carcinoma cells. Oncology Letters, 6(4), 1031–1038.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Starenki, D., Hong, S. K., Lloyd, R. V., et al. (2015). Mortalin (GRP75/HSPA9) upregulation promotes survival and proliferation of medullary thyroid carcinoma cells. Oncogene, 34(35), 4624–4634.

    Article  CAS  PubMed  Google Scholar 

  • Sugita, S., Ito, K., Yamashiro, Y., et al. (2015). EGFR-independent autophagy induction with gefitinib and enhancement of its cytotoxic effect by targeting autophagy with clarithromycin in non-small cell lung cancer cells. Biochemical and Biophysical Research Communications, 461(1), 28–34.

    Article  CAS  PubMed  Google Scholar 

  • Sullivan, C. S., & Pipas, J. M. (2002). T antigens of simian virus 40: Molecular chaperones for viral replication and tumorigenesis. Microbiology and Molecular Biology Reviews, 66(2), 179–202.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takahashi, K., Tanaka, M., Yashiro, M., et al. (2016). Protection of stromal cell-derived factor 2 by heat shock protein 72 prevents oxaliplatin-induced cell death in oxaliplatin-resistant human gastric cancer cells. Cancer Letters, 378(1), 8–15.

    Article  CAS  PubMed  Google Scholar 

  • Tanaka, M., Mun, S., Harada, A., et al. (2014). Hsc70 contributes to cancer cell survival by preventing Rab1A degradation under stress conditions. PLoS One, 9(5), e96785.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tavallai, M., Booth, L., Roberts, J. L., et al. (2016). Rationally repurposing Ruxolitinib (Jakafi (®)) as a solid tumor therapeutic. Frontiers in Oncology, 6, 142.

    Article  PubMed  PubMed Central  Google Scholar 

  • Trieb, K., Sulzbacher, I., & Kubista, B. (2016). Recurrence rate and progression of chondrosarcoma is correlated with heat shock protein expression. Oncology Letters, 11(1), 521–524.

    Article  CAS  PubMed  Google Scholar 

  • Ulianich, L., & Insabato, L. (2014). Endoplasmic reticulum stress in endometrial cancer. Frontiers of Medical (Lausanne), 1, 55.

    Google Scholar 

  • Wadhwa, R., Sugihara, T., Yoshida, A., et al. (2000). Selective toxicity of MKT-077 to cancer cells is mediated by its binding to the hsp70 family protein mot-2 and reactivation of p53 function. Cancer Research, 60(24), 6818–6821.

    PubMed  CAS  Google Scholar 

  • Wang, X., Wang, Q., & Lin, H. (2010). Correlation between clinicopathology and expression of heat shock protein 72 and glycoprotein 96 in human esophageal squamous cell carcinoma. Clinical & Developmental Immunology, 2010, 212537.

    Google Scholar 

  • Wang, N., Wang, Z., Peng, C., et al. (2014a). Dietary compound isoliquiritigenin targets GRP78 to chemosensitize breast cancer stem cells via β-catenin/ABCG2 signaling. Carcinogenesis, 35(11), 2544–2554.

    Article  CAS  PubMed  Google Scholar 

  • Wang, X., Chen, M., Zhou, J., et al. (2014b). HSP27, 70 and 90, anti-apoptotic proteins, in clinical cancer therapy (Review). International Journal of Oncology, 45(1), 18–30.

    Article  CAS  PubMed  Google Scholar 

  • Wu, J., Liu, T., Rios, Z., et al. (2017). Heat shock proteins and cancer. Trends in Pharmacological Sciences, 38(3), 226–256.

    Article  CAS  PubMed  Google Scholar 

  • Yang, L., Li, H., Jiang, Y., et al. (2013). Inhibition of mortalin expression reverses cisplatin resistance and attenuates growth of ovarian cancer cells. Cancer Letters, 336(1), 213–221.

    Article  CAS  PubMed  Google Scholar 

  • Yang, Z., Zhuang, L., Szatmary, P., et al. (2015). Upregulation of heat shock proteins (HSPA12A, HSP90B1, HSPA4, HSPA5 and HSPA6) in tumour tissues is associated with poor outcomes from HBV-related early-stage hepatocellular carcinoma. International Journal of Medical Sciences, 12(3), 256–263.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yerushalmi, R., Raiter, A., Nalbandvan, K., & Hardy, B. (2015). Cell surface GRP78: A potential marker of good prognosis and response to chemotherapy in breast cancer. Oncology Letters, 10(4), 2149–2155.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yi, X., Luk, J. M., Lee, N. P., et al. (2008). Association of mortalin (HSPA9) with liver cancer metastasis and prediction for early tumor recurrence. Molecular & Cellular Proteomics, 7(2), 315–325.

    Article  CAS  Google Scholar 

  • Yoshidomi, K., Murakami, A., Yakabe, K., et al. (2014). Heat shock protein 70 is involved in malignant behaviors and chemosensitivities to cisplatin in cervical squamous cell carcinoma cells. The Journal of Obstetrics and Gynaecology Research, 40(5), 1188–1196.

    Article  CAS  PubMed  Google Scholar 

  • Yuan, L., Zhang, L., Dong, X., et al. (2013). Apoptin selectively induces the apoptosis of tumor cells by suppressing the transcription of HSP70. Tumour Biology, 34(1), 577–585.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, H., Hu, H., Jiang, X., et al. (2005). Membrane HSP70: The molecule triggering gammadelta T cells in the early stage of tumorigenesis. Immunological Investigations, 34(4), 453–468.

    Article  CAS  PubMed  Google Scholar 

  • Zhao, L., Li, H., Shi, Y., et al. (2014). Nanoparticles inhibit cancer cell invasion and enhance antitumor efficiency by targeted drug delivery via cell surface-related GRP78. International Journal of Nanomedicine, 10, 245–256.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the West Virginia School of Osteopathic Medicine faculty startup funding (T. Liu); and the Distinguished Professor Research Startup Funding (S. Cao) from Southwest Medical University, Lanzhou, Sichuan, China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tuoen Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Liu, T., Cao, S. (2018). Heat Shock Protein 70 and Cancer. In: Asea, A., Kaur, P. (eds) HSP70 in Human Diseases and Disorders. Heat Shock Proteins, vol 14. Springer, Cham. https://doi.org/10.1007/978-3-319-89551-2_5

Download citation

Publish with us

Policies and ethics