HSP70 in Human Diseases and Disorders pp 57-69 | Cite as
Heat Shock Protein70 in Neurological Disease
Abstract
The HSP70 is a chaperon protein that is expressed during stress conditions that participates in many biological processes, including protein trafficking, nascent polypeptide folding and the refolding of the wrong proteins and cleaning of the misfolded ones. The expression is increased during various pathological conditions such as cerebral ischemia, neurodegenerative diseases, epilepsy, and trauma. They are found in both intracellular and extracellular compartments. HSP70 exhibits different functions in accordance with its location. Intracellular HSP70 exerts cytoprotective functions as a chaperone protein, whereas extracellular HSP70 exerts immunomodulatory functions that trigger immunological responses. They play an auxiliary role in antigen presentation in the appearance of immunological response in multiple sclerosis. Epilepsy is thought to have emerged as a stressor. HSP overexpression is proposed as a potential therapy for neurodegenerative diseases characterized by the accumulation or aggregation of abnormal proteins. In this chapter, we wanted to summarize the recent studies on the role of HSP70 in neurological disorders.
Keywords
Alzheimer disease Heat shock protein 70 Hsp70 Neurological disorders NeuroprotectionAbbreviations
- Aβ
Amiloid beta
- ALS
Amyotrophic Lateral Sclerosis
- CJD
Creutzfeldt-Jakob disease
- DA
Dopamine
- EAE
Experimental allegic encephalomyelitis
- FFI
Fatal familial insomnia
- GSS
Gerstmann-Sträussler-Scheinker syndrome
- HD
Huntington disease
- HSP
Heat shock protein
- LRRK2
Leucine-rich repeat kinase-2
- MG
Myasthenia gravis
- MS
Multiple sclerosis
- MTS
Mesial temporal sclerosis
- PD
Parkinson’s disease
- PINK1
PTEN-induced putative kinase 1
- polyQ
Poly-glutamine
- PrPC
Cellular prion associated proteins
- PrPSc
Disease associated prion proteins
- SNCA
Alpha-synuclein
- TDP-43
Tar DNA binding protein 43
- UPS
Ubiquitin-proteasome system
- vCJD
Variant Creutzfeldt-Jakob disease
Notes
Acknowledgements
We would like to thank the editorial staff for the opportunity of being able to be among the authors of the book.
References
- Ahmad, A. (2010). DnaK/DnaJ/GrpE of HSP70 system have differing effects on alpha-synuclein fibrillation involved in Parkinson’s disease. International Journal of Biological Macromolecules, 46(2), 275–279.CrossRefPubMedGoogle Scholar
- Ammon-Treiber, S., Grecksch, G., Angelidis, C., et al. (2007). Pentylenetetrazol kindling in mice overexpressing heat shock protein 70. Naunyn-Schmiedeberg’s Arch Pharmacol, 375, 115–112.CrossRefGoogle Scholar
- Auluck, P. K., Chan, H. Y., Trojanowski, J. Q., et al. (2002). Chaperone suppression of alpha-synuclein toxicity in a Drosophila model for Parkinson’s disease. Science, 295(5556), 865–868.CrossRefPubMedGoogle Scholar
- Bersuker, K., Hipp, M. S., Calamini, B., et al. (2013). Heat shock response activation exacerbates inclusion body formation in a cellular model of Huntington disease. The Journal of Biological Chemistry, 288, 23633–23638.CrossRefPubMedPubMedCentralGoogle Scholar
- Boiocchi, C., Monti, M. C., Osera, C., et al. (2016). Heat shock protein 70-hom gene polymorphism and protein expression in multiple sclerosis. Journal of Neuroimmunology, 298, 189–193.CrossRefPubMedGoogle Scholar
- Budka, H. (2003). Neuropathology of prion diseases. British Medical Bulletin, 66, 121–130.CrossRefPubMedGoogle Scholar
- Cassu, D., Masala, S., Frau, J., et al. (2013). Anti Mycobacterium avium subsp. Paratuberculosis heat shock protein 70 antibodies in sera of Sardinian patients with multiple sclerosis. Journal of the Neurological Sciences, 355(1–2), 131–133.CrossRefGoogle Scholar
- Chen, S., & Brown, I. R. (2007). Neuronal expression of constitutive heat shock proteins: Implications for neurodegenerative diseases. Cell Stress & Chaperones, 12(1), 51–58.CrossRefGoogle Scholar
- Chiba, S., Yokota, S., Yonekura, K., et al. (2006). Autoantibodies against HSP70 family proteins were detected in the cerebrospinal fluid from patients with multiple sclerosis. Journal of the Neurological Sciences, 241(1–2), 39–43.CrossRefPubMedGoogle Scholar
- Ciechanover, A., & Kwon, Y. T. (2015). Degradation of misfolded proteins in neurodegenerative diseases: Therapeutic targets and strategies. Experimental & Molecular Medicine, 47, 147.CrossRefGoogle Scholar
- Coban, P., Çe, P., Erkizan, O., & Gedizlioglu, M. (2011). Heat shock protein 27 in migraine patients. Journal of Neurological Sciences [Turkish], 28(1), 28–34.Google Scholar
- Davies, S. W., Turmaine, M., Cozens, B. A., et al. (1997). Formation of neuronal intranuclear inclusions underlies the neurological dysfunction in mice transgenic for the HD mutation. Cell, 90(3), 537–548.CrossRefPubMedGoogle Scholar
- Davies, S. W., Beardsall, K., Turmaine, M., et al. (1998). Are neuronal intranuclear inclusions the common neuropathology of triplet-repeat disorders with polyglutamine-repeat expansions? Lancet, 351, 131.CrossRefPubMedGoogle Scholar
- Desler, C., Lillenes, M. S., Tønjum, T., et al. (2017). The role of mitochondrial dysfunction in the progression of Alzheimer’s disease. Current Medicinal Chemistry. https://doi.org/10.2174/0929867324666170616110111. [Epub ahead of print].
- Diedrich, J. F., Carp, R. I., & Haase, A. T. (1993). Increased expression of heat shock protein, transferrin, and beta 2-microglobulin in astrocytes during scrapie. Microbial Pathogenesis, 15, 1–6.CrossRefPubMedGoogle Scholar
- Fiszer, U., Fredrikson, S., & Członkowska, A. (1996). Humoral response to HSP 65 and HSP 70 in cerebrospinal fluid in Parkinson’s disease. Journal of the Neurological Sciences, 139(1), 66–70.CrossRefPubMedGoogle Scholar
- Gómez-Chocoa, M., Doucerain, C., Urra, X., et al. (2014). Presence of heat shock protein 70 in secondary lymphoid tissue correlates with stroke prognosis. Journal of Neuroimmunology, 270(1–2), 67–74.CrossRefGoogle Scholar
- Halliday, G. M., Holton, J. L., Revesz, T., et al. (2011). Neuropathology underlying clinical variability in patients with synucleinopathies. Acta Neuropathologica, 122, 187–204.CrossRefPubMedGoogle Scholar
- Helgeland, G., Petzold, A., Hoff, J. M., et al. (2010). Anti-heat shock protein 70 antibody levels are increased in myasthenia gravis and Guillain-Barré syndrome. Journal of Neuroimmunology, 225(1–2), 180–183.CrossRefPubMedGoogle Scholar
- Hernández-Pedro, N. Y., Espinosa-Ramirez, G., de la Cruz, V. P., et al. (2013). Initial immunopathogenesis of multiple sclerosis: Innate immune response. Clinical and Developmental Immunology. Article ID 413465, 15 pages.Google Scholar
- Ho, A. K., & Hocaoglu, M. B. (2011). Impact of Huntington’s across the entire disease spectrum: The phases and stages of disease from the patient perspective. Clinical Genetics, 80(3), 235–239.CrossRefPubMedPubMedCentralGoogle Scholar
- Ho, S. L., Poon, C. Y., Lin, C., et al. (2015). Inhibition of β-amyloid aggregation By albiflorin, aloeemodin and neohesperidin and their neuroprotective effect on primary hippocampal cells against β-amyloid induced toxicity. Current Alzheimer Research, 12(5), 424–433.CrossRefPubMedGoogle Scholar
- Huang, C., Cheng, H., Hao, S., et al. (2006). Heat shock protein 70 inhibits alpha-synuclein fibril formation via interactions with diverseintermediates. Journal of Molecular Biology, 364(3), 323–336.CrossRefPubMedGoogle Scholar
- Hung, S. Y., & Fu, W. M. (2017). Drug candidates in clinical trials for Alzheimer’s disease. Biomedical Science, 24(1), 47.CrossRefGoogle Scholar
- Huntington, G. (1872). Med Surg Report 26, 320.Google Scholar
- Jones, G., Song, Y., Chung, S., et al. (2004). Propagation of Saccharomyces cerevisiae [PSI+] prion is impaired by factors that regulate HSP70 substrate binding. Molecular and Cellular Biology, 24(9), 3928–3937.CrossRefPubMedPubMedCentralGoogle Scholar
- Kacimi, R., & Yenari, M. A. (2015). Pharmacologic heat shock protein 70 induction confers cytoprotection against inflammation in gliovascular cells. Glia, 63(7), 1200–1212.CrossRefPubMedPubMedCentralGoogle Scholar
- Kalmar, B., & Greensmith, L. (2017). Cellular chaperones as therapeutic targets in ALS to restore protein homeostasis and improve cellular function. Frontiers in Molecular Neuroscience, 10, 251. https://doi.org/10.3389/fnmol.2017.00251.CrossRefPubMedPubMedCentralGoogle Scholar
- Kandratavicius, L., Hallak, J. E., Carlotti, C. G., et al. (2014). Hippocampal expression of heat shock proteins in mesial temporal lobe epilepsy with psychiatric comorbidities and their relation to seizure outcome. Epilepsia, 55, 1834–1843.CrossRefPubMedGoogle Scholar
- Kazemi-Esfarjani, P., & Benzer, S. (2002). Suppression of polyglutamine toxicity by a Drosophila homolog of myeloid leukemia factor 1. Human Molecular Genetics, 11(21), 2657–2672.CrossRefPubMedGoogle Scholar
- Kenward, N., Hope, J., Landon, M., et al. (1994). Expression of polyubiquitin and heat-shock protein 70 genes increases in the later stages of disease progression in scrapie-infected mouse brain. Journal of Neurochemistry, 62, 1870–1877.CrossRefPubMedGoogle Scholar
- Kim, J. Y., Kim, N., Zheng, Z., et al. (2016). 70kDa heat shock protein downregulates dynamin in experimental stroke: A new therapeutic target? Stroke, 47(8), 2003–2011.CrossRefGoogle Scholar
- King, C. Y., Tittmann, P., Gross, H., et al. (1997). Prion-inducing domain 2-114 of yeast Sup35 protein transforms in vitro into amyloid-like filaments. Proceedings of the National Academy of Sciences of the United States of America, 94(13), 6618–6622.CrossRefPubMedPubMedCentralGoogle Scholar
- Klucken, J., Shin, Y., Masliah, E., et al. (2004). HSP70 reduces alpha-synuclein aggregation and toxicity. The Journal of Biological Chemistry, 279(24), 25497–25502.CrossRefPubMedGoogle Scholar
- Krüger, R., Kuhn, W., Müller, T., et al. (1998). Ala30Pro mutation in the gene encoding alpha synuclein in Parkinson’s disease. Nature Genetics, 18(2), 106–108.CrossRefPubMedGoogle Scholar
- Lu, R. C., Tan, M. S., Wang, H., et al. (2014). Heat shock protein 70 in Alzheimer’s disease. BioMed Research International, 2014, 435203. https://doi.org/10.1155/2014.CrossRefPubMedPubMedCentralGoogle Scholar
- Lucchinetti, C., Brück, W., Parisi, J., et al. (2000). Heterogenity of multiple sclerosis lesions: Implications for the pathogenesis of demyelination. Annals of Neurology, 47(6), 707–717.CrossRefPubMedGoogle Scholar
- Mansilla, M. J., Costa, C., Eixarch, H., et al. (2014). HSP70 regulates immune response in experimental autoimmune encephalomyelitis. PLoS One, 9(8). https://doi.org/10.1371/journal.pone.0105737.CrossRefPubMedPubMedCentralGoogle Scholar
- Monsellier, E., Redeker, V., Ruiz-Arlandis, G., et al. (2015). Molecular interaction between the chaperone Hsc70 and the N-terminal flank of huntingtin exon 1 modulates aggregation. The Journal of Biological Chemistry, 290(5), 2560–2576.CrossRefPubMedGoogle Scholar
- Muchowski, P. J., & Wacker, J. L. (2005). Modulation of neurodegeneration by molecular chaperones. Nature Reviews. Neuroscience, 6(1), 11–22.CrossRefPubMedGoogle Scholar
- Munakata, S., Chen, M., Aosai, F., et al. (2008). The clinical significance of anti-heat shock cognate protein 71 antibody in myasthenia gravis. Journal of Clinical Neuroscience, 15(2), 158–165.CrossRefPubMedGoogle Scholar
- Namba, Y., Tomonaga, M., Ohtsuka, K., et al. (1991). HSP 70 is associated with abnormal cytoplasmic inclusions characteristic of neurodegenerative diseases. Nō to Shinkei, 43(1), 57–60.PubMedGoogle Scholar
- Patterson, K. R., Ward, S. M., Combs, B., et al. (2011). Heat shock protein 70 prevents both tau aggregation and the inhibitory effects of preexisting tau aggregates on fast axonal transport. Biochemistry, 50(47), 10300–10310.CrossRefPubMedPubMedCentralGoogle Scholar
- Pratt, W. B., Gestwicki, J. E., Osawa, Y., et al. (2015). Targeting proteostasis through the protein quality control function of the HSP90/HSP70-based chaperone machinery for treatment of adult onset neurodegenerative diseases. Annual Review of Pharmacology and Toxicology, 55, 353–371.CrossRefPubMedGoogle Scholar
- Prusiner, S. B. (2001). Shattucklecture – neurodegenerative diseases and prions. The New England Journal of Medicine, 344(20), 1516–1526.CrossRefPubMedGoogle Scholar
- Roodveldt, C., Bertoncini, C. W., Andersson, A., et al. (2009). Chaperone proteostasis in Parkinson’s disease: Stabilization of the HSP70/alpha-synuclein complex by Hip. The EMBO Journal, 28(23), 3758–3770.CrossRefPubMedPubMedCentralGoogle Scholar
- Sabirzhanov, B., Stoica, B. A., Hanscom, M., et al. (2012). Over-expression of HSP70 attenuates caspase-dependent and caspase-independent pathways and inhibits neuronal apoptosis. Journal of Neurochemistry, 123(4), 542–554.CrossRefPubMedPubMedCentralGoogle Scholar
- Selmaj, K., Brosnan, C. F., & Raine, C. S. (1991). Immunology. Proceedings of the National Academy of Sciences of the United States of America, 88, 6452–6456.CrossRefPubMedPubMedCentralGoogle Scholar
- Shevtsov, M. A., Nikolaev, B. P., Yakovleva, L. Y., et al. (2014). Neurotherapeutic activity of the recombinant heat shock protein HSP70 in a model of focal cerebral ischemia in rats. Drug Design Development and Therapy, 8, 639–650.CrossRefGoogle Scholar
- Suhr, S. T., Senut, M. C., Whitelegge, J. P., et al. (2001). Identities of sequestered proteins in aggregates from cells with induced polyglutamine expression. The Journal of Cell Biology, 153(2), 283–294.CrossRefPubMedPubMedCentralGoogle Scholar
- Tagawa, K., Marubuchi, S., Qi, M. L., et al. (2007). The induction levels of heat shock protein 70 differentiate the vulnerabilities to mutant huntingtin among neuronal subtypes. The Journal of Neuroscience, 27(4), 868–880.CrossRefPubMedGoogle Scholar
- Talla, V., Porciatti, V., Chiodo, V., et al. (2014). Gene therapy with mitochondrial heat shock protein 70 suppresses visual loss and optic atrophy in experimental autoimmune encephalomyelitis. Investigative Ophthalmology & Visual Science, 55(8), 5214–5226.CrossRefGoogle Scholar
- Tamguney, G., Giles, K., Glidden, D. V., et al. (2008). Genes contributing to prion pathogenesis. The Journal of General Virology, 89, 1777–1788.CrossRefPubMedPubMedCentralGoogle Scholar
- Vonsattel, J. P., & DiFiglia, M. (1998). Huntington disease. Journal of Neuropathology and Experimental Neurology, 57(5), 369–384.CrossRefPubMedGoogle Scholar
- Whyte, L. S., Lau, A. A., Hemsley, K. M., et al. (2017). Endo-lysosomal and autophagic dysfunction: A driving factor in Alzheimer’s disease? Neurochemistry, 140(5), 703–717.CrossRefGoogle Scholar
- Yon, M. I., Titiz, A. P., Bilen, S., et al. (2016). Elevated interictal serum HSP-70 levels as an indicator of neurodegeneration for chronic migraine. The Journal of the Pakistan Medical Association, 66(6), 677–681.PubMedGoogle Scholar
- Zhou, Y., Gu, G., Goodlett, D. R., et al. (2004). Analysis of alpha-synuclein-associated proteins by quantitative proteomics. The Journal of Biological Chemistry, 279(37), 39155–39164.CrossRefPubMedGoogle Scholar
- Zoghbi, H. Y., & Orr, H. T. (2000). Glutamine repeats and neurodegeneration. Annual Review of Neuroscience, 23, 217–247.CrossRefPubMedGoogle Scholar