Advertisement

Hsp70 in Fungi: Evolution, Function and Vaccine Candidate

  • Shraddha Tiwari
  • Jata Shankar
Chapter
Part of the Heat Shock Proteins book series (HESP, volume 14)

Abstract

In fungal system, Hsp70 protein being highly conserved in nature has played a major role in various stress conditions. Genes encoding for Hsp70 proteins in fungi are highly conserved. Hsp70 protein performs chaperone dependent or independent function, essential for growth and morphogenesis of fungi. Functional distinction of Hsp70 protein conjointly depends on the prevalence of Hsp70 in numerous cellular compartments. Fungal Hsp70 protein is involved in protein aggregation, folding as well as in degradation of nascent polypeptide. Additionally, Hsp70 protein has a vital role in the formation of prions in case of yeasts. Fungi showed expression of hsp70 mRNA during interaction with plant. Also, fungal hsp70 showed expression in human during various infections, and may provide lead as a potential bio-marker for disease conditions. This chapter summarizes our present knowledge on fungal Hsp70 proteins and their role in morphogenesis, stress responses and a potential candidate for vaccine.

Keywords

Fungi HSP70 Morphogenesis Stress responses Vaccine candidate 

Abbreviations

AmB

Amphotericin B

CFTR

cystic fibrosis transmembrane conductance regulator

Hsp

heat shock protein

kDa

kilo Dalton

NEF

nucleotide exchange factor

Notes

Acknowledgements

We are thankful to the Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, for providing facilities.

References

  1. Adams, C. C., & Gross, D. S. (1991). The yeast heat shock response is induced by conversion of cells to spheroplasts and by potent transcriptional inhibitors. Journal of Bacteriology, 173, 7429–7435.PubMedPubMedCentralCrossRefGoogle Scholar
  2. Allen, K. D., Wegrzyn, R. D., Chernova, T. A., Müller, S., Newnam, G. P., Winslett, P. A., Wittich, K. B., Wilkinson, K. D., & Chernoff, Y. O. (2005). Hsp70 chaperones as modulators of prion life cycle. Genetics, 169, 1227–1242.PubMedPubMedCentralCrossRefGoogle Scholar
  3. Allendoerfer, R., Maresca, B., & Deepe, G. (1996). Cellular immune responses to recombinant heat shock protein 70 from Histoplasma capsulatum. Infection and Immunity, 64, 4123–4128.Google Scholar
  4. Andréasson, C., Rampelt, H., Fiaux, J., Druffel-Augustin, S., & Bukau, B. (2010). The endoplasmic reticulum Grp170 acts as a nucleotide exchange factor of Hsp70 via a mechanism similar to that of the cytosolic Hsp110. The Journal of Biological Chemistry, 285, 12445–12453.PubMedPubMedCentralCrossRefGoogle Scholar
  5. Antelo, J. M., Arce, F., Parajo, M., Rodriguez, P., & Varela, A. (1992). Disproportionation kinetics of NaCl isopropylamine and NaCl isopropylamine. International Journal of Chemical Kinetics, 24, 991–997.Google Scholar
  6. Azad, P., Zhou, D., Russo, E., & Haddad, G. G. (2009). Distinct mechanisms underlying tolerance to intermittent and constant hypoxia in Drosophila melanogaster. PLoS One, 4, e5371.Google Scholar
  7. Banerjee, D., Martin, N., Nandi, S., Shukla, S., Dominguez, A., Mukhopadhyay, G., & Prasad, R. (2007). A genome-wide steroid response study of the major human fungal pathogen Candida albicans. Mycopathologia, 164, 1–17.Google Scholar
  8. Blatzer, M., Blum, G., Jukic, E., Posch, W., Gruber, P., Nagl, M., Binder, U., Maurer, E., Sarg, B., & Lindner, H. (2015). Blocking Hsp70 enhances the efficiency of amphotericin B treatment against resistant Aspergillus terreus strains. Antimicrobial Agents and Chemotherapy, 59, 3778–3788.Google Scholar
  9. Boorstein, W. R., Ziegelhoffer, T., & Craig, E. A. (1994). Molecular evolution of the HSP70 multigene family. Journal of Molecular Evolution, 38, 1–17.PubMedCrossRefPubMedCentralGoogle Scholar
  10. Brand, A. (2011). Hyphal growth in human fungal pathogens and its role in virulence. International Journal of Microbiology, 2012, 1–11.CrossRefGoogle Scholar
  11. Brodsky, J. L., Lawrence, J. G., & Caplan, A. J. (1998). Mutations in the cytosolic DnaJ homologue, YDJ1, delay and compromise the efficient translation of heterologous proteins in yeast. Biochemistry, 37, 18045–18055.PubMedCrossRefPubMedCentralGoogle Scholar
  12. Bromuro, C., La Valle, R., Sandini, S., Urbani, F., Ausiello, C. M., Morelli, L., Féd’ostiani, C., Romani, L., & Cassone, A. (1998). A 70-kilodalton recombinant heat shock protein of Candida albicans is highly immunogenic and enhances systemic murine candidiasis. Infection and Immunity, 66, 2154–2162.Google Scholar
  13. Bukau, B., & Horwich, A. L. (1998). The Hsp70 and Hsp60 chaperone machines. Cell, 92, 351–366.PubMedCrossRefPubMedCentralGoogle Scholar
  14. Burnie, J. P., Carter, T. L., Hodgetts, S. J., & Matthews, R. C. (2006). Fungal heat shock proteins in human disease. FEMS Microbiology Reviews, 30, 53–88.PubMedCrossRefPubMedCentralGoogle Scholar
  15. Burt, E. T., Daly, R., Hoganson, D., Tsirulnikov, Y., Essmann, M., & Larsen, B. (2003). Isolation and partial characterization of Hsp90 from Candida albicans. Annals of Clinical and Laboratory Science, 33, 86–93.Google Scholar
  16. Caddick, M. X., Brownlee, A. G., & Arst, H. N. (1986). Regulation of gene expression by pH of the growth medium in Aspergillus nidulans. Molecular & General Genetics, 203, 346–353.Google Scholar
  17. Caruso, M., Sacco, M., Medoff, G., & Maresca, B. (1987). Heat shock 70 gene is differentially expressed in Histoplasma capsulatum strains with different levels of thermotolerance and pathogenicity. Molecular Microbiology, 1, 151–158.Google Scholar
  18. Černila, B., Črešnar, B., & Breskvar, K. (2003). Molecular characterization of genes encoding cytosolic Hsp70s in the zygomycete fungus Rhizopus nigricans. Cell Stress & Chaperones, 8, 317–328.Google Scholar
  19. Chakraborty, B., Ouimet, P., Sreenivasan, G., Curle, C., & Kapoor, M. (1995). Sequence repeat-induced disruption of the major heat-inducible HSP70 gene of Neurospora crassa. Current Genetics, 29, 18–26.Google Scholar
  20. Chauhan, N. M., Washe, A. P., & Minota, T. (2016). Fungal infection and aflatoxin contamination in maize collected from Gedeo zone, Ethiopia. SpringerPlus, 5, 753.PubMedPubMedCentralCrossRefGoogle Scholar
  21. Cheetham, M. E., & Caplan, A. J. (1998). Structure, function and evolution of DnaJ: Conservation and adaptation of chaperone function. Cell Stress & Chaperones, 3, 28.CrossRefGoogle Scholar
  22. Chen, Z., Ribeiro, A., Silva, M., Santos, P., Guerra-Guimarães, L., Gouveia, M., Fernandez, D., & Rodrigues, C. (2003). Heat shock-induced susceptibility of green coffee leaves and berries to Colletotrichum gloeosporioides and its association to PR and hsp70 gene expression. Physiological and Molecular Plant Pathology, 63, 181–190.Google Scholar
  23. Chun, C. D., Liu, O. W., & Madhani, H. D. (2007). A link between virulence and homeostatic responses to hypoxia during infection by the human fungal pathogen Cryptococcus neoformans. PLoS Pathogens, 3, e22.Google Scholar
  24. Cleare, L. G., Miranda, D. Z., & Nosanchuk, J. D. (2017). Heat shock proteins in Histoplasmaand Paracoccidioides. Clinical and Vaccine Immunology, 24, 00221–00217.Google Scholar
  25. Clemons, K. V., Shankar, J., & Stevens, D. A. (2010). Mycologic endocrinology. In M. Lyte & P. P. E. Freestone (Eds.), The microbial endocrinology (pp. 269–290). New York: Springer.CrossRefGoogle Scholar
  26. Craig, E. A., & Marszalek, J. (2011). Hsp70 chaperones. In The encyclopedia of life sciences (ELS) (pp. 1–8). Chichester: Wiley.Google Scholar
  27. Craig, E. A., Gambill, B. D., & Nelson, R. J. (1993). Heat shock proteins: molecular chaperones of protein biogenesis. Microbiological Reviews, 57, 402–414.PubMedPubMedCentralGoogle Scholar
  28. Craig, E., Ziegelhoffer, T., Nelson, J., Laloraya, S., & Halladay, J. (1995). Complex multigene family of functionally distinct Hsp70s of yeast. Cold Spring Harbor Symposia on Quantitative Biology, 60, 441–449.PubMedCrossRefPubMedCentralGoogle Scholar
  29. Craig, E. A., Eisenman, H. C., & Hundley, H. A. (2003). Ribosome-tethered molecular chaperones: The first line of defense against protein misfolding? Current Opinion in Microbiology, 6, 157–162.PubMedCrossRefPubMedCentralGoogle Scholar
  30. Craig, E., Huang, P., Aron, R., & Andrew, A. (2006). The diverse roles of J-proteins, the obligate Hsp70 co-chaperone. In N. Brend & G. Thomas (Eds.), The reviews of physiology, biochemistry and pharmacology (Vol. 156, pp. 1–21). Berlin/Heidelberg: Springer.Google Scholar
  31. Cutler, J. E., Deepe, G. S., Jr., & Klein, B. S. (2007). Advances in combating fungal diseases: Vaccines on the threshold. Nature Reviews. Microbiology, 5, 13.PubMedCrossRefPubMedCentralGoogle Scholar
  32. Da Silva, S. P., Borges-Walmsley, M. I., Pereira, I. S., Soares, C. M. A., Walmsley, A. R., & Felipe, M. S. S. (1999). Differential expression of an hsp70 gene during transition from the mycelial to the infective yeast form of the human pathogenic fungus Paracoccidioides brasiliensis. Molecular Microbiology, 31, 1039–1050.Google Scholar
  33. Damelin, L., Vokes, S., Whitcutt, J., Damelin, S., & Alexander, J. (2000). Hormesis: A stress response in cells exposed to low levels of heavy metals. Human & Experimental Toxicology, 19, 420–430.CrossRefGoogle Scholar
  34. Daugaard, M., Rohde, M., & Jäättelä, M. (2007). The heat shock protein 70 family: Highly homologous proteins with overlapping and distinct functions. FEBS Letters, 581, 3702–3710.CrossRefPubMedGoogle Scholar
  35. De Arruda Grossklaus, D., Bailão, A. M., Rezende, T. C. V., Borges, C. L., de Oliveira, M. A. P., Parente, J. A., & de Almeida, S. C. M. (2013). Response to oxidative stress in Paracoccidioides yeast cells as determined by proteomic analysis. Microbes and Infection, 15, 347–364.PubMedCrossRefPubMedCentralGoogle Scholar
  36. De Castro Georg, R., & Gomes, S. L. (2007). Comparative expression analysis of members of the Hsp70 family in the chytridiomycete Blastocladiella emersonii. Gene, 386, 24–34.Google Scholar
  37. Deepe, G. S., Jr., & Gibbons, R. S. (2002). Cellular and molecular regulation of vaccination with heat shock protein 60 from Histoplasma capsulatum. Infection and Immunity, 70, 3759–3767.Google Scholar
  38. Dix, N. J. (2012). The mycelium and substrates for growth. In Springer Science & Business Media & J. Dix Neville (Eds.), The fungal ecology (pp. 12–38). Dordrecht: Springer.Google Scholar
  39. Easton, D. P., Kaneko, Y., & Subjeck, J. R. (2000). The Hsp110 and Grp170 stress proteins: newly recognized relatives of the Hsp70s. Cell Stress & Chaperones, 5, 276–290.CrossRefGoogle Scholar
  40. Eroles, P., Sentandreu, M., Elorza, M. V., & Sentandreu, R. (1995). Cloning of a DNA fragment encoding part of a 70-kDa heat shock protein of Candida albicans. FEMS Microbiology Letters, 128, 95–100.Google Scholar
  41. Ferreira-Nozawa, M. S., Silveira, H. C., Ono, C. J., Fachin, A. L., Rossi, A., & Martinez-Rossi, N. M. (2006). The pH signaling transcription factor PacC mediates the growth of Trichophyton rubrum on human nail in vitro. Medical Mycology, 44, 641–645.Google Scholar
  42. Fracella, F., Scholle, C., Kallies, A., Häfker, T., Schröder, T., & Rensing, L. (1997). Differential HSC70 expression during asexual development of Neurospora crassa. Microbiology, 143, 3615–3624.Google Scholar
  43. Freitas, J. S., Silva, E. M., Leal, J., Gras, D. E., Martinez-Rossi, N. M., Dos Santos, L. D., Palma, M. S., & Rossi, A. (2011). Transcription of the Hsp30, Hsp70, and Hsp90 heat shock protein genes is modulated by the PalA protein in response to acid pH-sensing in the fungus Aspergillus nidulans. Cell Stress & Chaperones, 16, 565–572.Google Scholar
  44. Frydman, J. (2001). Folding of newly translated proteins in vivo: the role of molecular chaperones. Annual Review of Biochemistry, 70, 603–647.PubMedCrossRefPubMedCentralGoogle Scholar
  45. Galagan, J. E., Henn, M. R., Ma, L.-J., Cuomo, C. A., & Birren, B. (2005). Genomics of the fungal kingdom: insights into eukaryotic biology. Genome Research, 15, 1620–1631.PubMedCrossRefPubMedCentralGoogle Scholar
  46. Gautam, P., Shankar, J., Madan, T., Sirdeshmukh, R., Sundaram, C. S., Gade, W. N., Basir, S. F., & Sarma, P. U. (2008). Proteomic and transcriptomic analysis of Aspergillus fumigatus on exposure to amphotericin B. Antimicrobial Agents and Chemotherapy, 52, 4220–4227.Google Scholar
  47. Georg, R. C., & Gomes, S. L. (2007). Transcriptome analysis in response to heat shock and cadmium in the aquatic fungus Blastocladiella emersonii. Eukaryotic Cell, 6, 1053–1062.Google Scholar
  48. Girvitz, T., Ouimet, P., & Kapoor, M. (2000). Heat shock protein 80 of Neurospora crassa: Sequence analysis of the gene and expression during the asexual phase. Canadian Journal of Microbiology, 46, 981–991.PubMedCrossRefPubMedCentralGoogle Scholar
  49. Goldman, G. H., dos Reis Marques, E., Ribeiro, D. C. D., de Souza, B. L. A. N., Quiapin, A. C., Vitorelli, P. M., Savoldi, M., Semighini, C. P., de Oliveira, R. C., & Nunes, L. R. (2003). Expressed sequence tag analysis of the human pathogen Paracoccidioides brasiliensis yeast phase: identification of putative homologues of Candida albicans virulence and pathogenicity genes. Eukaryotic Cell, 2, 34–48.Google Scholar
  50. Grant, C. M., & Tuite, M. F. (1994). Mistranslation of human phosphoglycerate kinase in yeast in the presence of paromomycin. Current Genetics, 26, 95–99.PubMedCrossRefPubMedCentralGoogle Scholar
  51. Grant, C., Firoozan, M., & Tuite, M. (1989). Mistranslation induces the heat-shock response in the yeast Saccharomyces cerevisiae. Molecular Microbiology, 3, 215–220.PubMedCrossRefPubMedCentralGoogle Scholar
  52. Guarro, J., Gené, J., & Stchigel, A. M. (1999). Developments in fungal taxonomy. Clinical Microbiology Reviews, 12, 454–500.PubMedPubMedCentralGoogle Scholar
  53. Gupta, R. S., & Singh, B. (1994). Phylogenetic analysis of 70 kD heat shock protein sequences suggests a chimeric origin for the eukaryotic cell nucleus. Current Biology, 4, 1104–1114.PubMedPubMedCentralCrossRefGoogle Scholar
  54. Gwynne, D. I., & Brandhorst, B. (1982). Alterations in gene expression during heat shock of Achlya ambisexualis. Journal of Bacteriology, 149, 488–493.Google Scholar
  55. Häfker, T., Techel, D., Steier, G., & Rensing, L. (1998). Differential expression of glucose-regulated (grp78) and heat-shock-inducible (hsp70) genes during asexual development of Neurospora crassa. Microbiology, 144, 37–43.Google Scholar
  56. Hennessy, F., Cheetham, M. E., Dirr, H. W., & Blatch, G. L. (2000). Analysis of the levels of conservation of the J domain among the various types of DnaJ-like proteins. Cell Stress & Chaperones, 5, 347–358.CrossRefGoogle Scholar
  57. Hettema, E. H., Ruigrok, C. C., Koerkamp, M. G., Van, D., Berg, M., Tabak, H. F., Distel, B., & Braakman, I. (1998). The cytosolic DnaJ-like protein djp1p is involved specifically in peroxisomal protein import. The Journal of Cell Biology, 142, 421–434.PubMedPubMedCentralCrossRefGoogle Scholar
  58. Horton, L. E., James, P., Craig, E. A., & Hensold, J. O. (2001). The yeast hsp70 homologue Ssa is required for translation and interacts with Sis1 and Pab1 on translating ribosomes. The Journal of Biological Chemistry, 276, 14426–14433.PubMedCrossRefPubMedCentralGoogle Scholar
  59. Jin, C. (2011). Protein glycosylation in Aspergillus fumigatus is essential for cell wall synthesis and serves as a promising model of multicellular eukaryotic development. International Journal of Microbiology, 2012, 654251.Google Scholar
  60. Jones, G., Song, Y., Chung, S., & Masison, D. C. (2004). Propagation of Saccharomyces cerevisiae [PSI+] prion is impaired by factors that regulate Hsp70 substrate binding. Molecular and Cellular Biology, 24, 3928–3937.Google Scholar
  61. Jung, G., Jones, G., Wegrzyn, R. D., & Masison, D. C. (2000). A role for cytosolic Hsp70 in yeast [PSI+] prion propagation and [PSI+] as a cellular stress. Genetics, 156, 559–570.PubMedPubMedCentralGoogle Scholar
  62. Kabani, M., Beckerich, J.-M., & Gaillardin, C. (2000). Sls1p stimulates Sec63p-mediated activation of Kar2p in a conformation-dependent manner in the yeast endoplasmic reticulum. Molecular and Cellular Biology, 20, 6923–6934.PubMedPubMedCentralCrossRefGoogle Scholar
  63. Kabani, M., Beckerich, J.-M., & Brodsky, J. L. (2002). Nucleotide exchange factor for the yeast Hsp70 molecular chaperone Ssa1p. Molecular and Cellular Biology, 22, 4677–4689.PubMedPubMedCentralCrossRefGoogle Scholar
  64. Kakeya, H., Udono, H., Maesaki, S., Sasaki, E., Kawamura, S., Hossain, M., Yamamoto, Y., Sawai, T., Fukuda, M., & Mitsutake, K. (1999). Heat shock protein 70 (hsp70) as a major target of the antibody response in patients with pulmonary cryptococcosis. Clinical and Experimental Immunology, 115, 485.PubMedPubMedCentralCrossRefGoogle Scholar
  65. Kampinga, H. H., & Craig, E. A. (2010). The Hsp70 chaperone machinery: J-proteins as drivers of functional specificity. Nature Reviews. Molecular Cell Biology, 11, 579.PubMedPubMedCentralCrossRefGoogle Scholar
  66. Kapoor, M. (1983). A study of the heat-shock response in Neurospora crassa. The International Journal of Biochemistry, 15, 639–649.Google Scholar
  67. Kapoor, M., & Lewis, J. (1987). Heat shock induces peroxidase activity in Neurospora crassa and confers tolerance toward oxidative stress. Biochemical and Biophysical Research Communications, 147, 904–910.PubMedCrossRefGoogle Scholar
  68. Kapoor, M., Curle, C., & Runham, C. (1995). The hsp70 gene family of Neurospora crassa: Cloning, sequence analysis, expression, and genetic mapping of the major stress-inducible member. Journal of Bacteriology, 177, 212–221.Google Scholar
  69. Kominek, J., Marszalek, J., Neuvéglise, C., Craig, E. A., & Williams, B. L. (2013). The complex evolutionary dynamics of Hsp70s: A genomic and functional perspective. Genome Biology and Evolution, 5, 2460–2477.PubMedPubMedCentralCrossRefGoogle Scholar
  70. Kregel, K. C. (2002). Invited review: Heat shock proteins: Modifying factors in physiological stress responses and acquired thermotolerance. Journal of Applied Physiology, 92, 2177–2186.PubMedCrossRefPubMedCentralGoogle Scholar
  71. Kummasook, A., Kummasook, A., Pongpom, P., Kummasook, A., Pongpom, P., & Vanittanakom, N. (2007). Cloning, characterization and differential expression of an hsp70 gene from the pathogenic dimorphic fungus, Penicillium marneffei. DNA Sequence, 18, 385–394.Google Scholar
  72. Lakshman, D. K., Roberts, D. P., Garrett, W. M., Natarajan, S. S., Darwish, O., Alkharouf, N., Pain, A., Khan, F., Jambhulkar, P. P., & Mitra, A. (2016). Proteomic investigation of Rhizoctonia solani AG 4 identifies secretome and mycelial proteins with roles in plant cell wall degradation and virulence. Journal of Agricultural and Food Chemistry, 64, 3101–3110.Google Scholar
  73. Latouche, S., Totel, A., Lacube, P., Bolognini, J., Nevez, G., & Roux, A. (2001). Development of an RT-PCR on the heat shock protein 70 gene for viability detection of Pneumocystis carinii f. sp. hominis in patients with Pneumocystosis and in air sample. Journal of Eukaryotic Microbiology, 48, 176S–177S.Google Scholar
  74. Lewis, J., Learmonth, R., & Watson, K. (1995). Induction of heat, freezing and salt tolerance by heat and salt shock in Saccharomyces cerevisiae. Microbiology, 141, 687–694.Google Scholar
  75. Li, J., Qian, X., & Sha, B. (2003a). The crystal structure of the yeast Hsp40 Ydj1 complexed with its peptide substrate. Structure, 11, 1475–1483.PubMedCrossRefPubMedCentralGoogle Scholar
  76. Li, X. S., Reddy, M. S., Baev, D., & Edgerton, M. (2003b). Candida albicans Ssa1/2p is the cell envelope binding protein for human salivary histatin 5. The Journal of Biological Chemistry, 278, 28553–28561.Google Scholar
  77. Li, L., Li, Q., Liu, Z., & Wu, H. (2008). Immunological analysis and mass spectrometry identification of the major allergen from Cladosporium cladosporioides. Journal of Hygiene Research, 37, 50–52.Google Scholar
  78. Liebman, S. W., & Chernoff, Y. O. (2012). Prions in yeast. Genetics, 191, 1041–1072.PubMedPubMedCentralCrossRefGoogle Scholar
  79. Lindquist, S., & Craig, E. (1988). The heat-shock proteins. Annual Review of Genetics, 22, 631–677.PubMedPubMedCentralCrossRefGoogle Scholar
  80. Lopez-Ribot, J. L., Alloush, H. M., Masten, B. J., & Chaffin, W. L. (1996). Evidence for presence in the cell wall of Candida albicans of a protein related to the hsp70 family. Infection and Immunity, 64, 3333–3340.Google Scholar
  81. Lüders, J., Demand, J., & Höhfeld, J. (2000). The ubiquitin-related BAG-1 provides a link between the molecular chaperones Hsc70/Hsp70 and the proteasome. The Journal of Biological Chemistry, 275, 4613–4617.CrossRefPubMedGoogle Scholar
  82. Mayer, M., & Bukau, B. (2005). Hsp70 chaperones: Cellular functions and molecular mechanism. Cellular and Molecular Life Sciences, 62, 670.PubMedPubMedCentralCrossRefGoogle Scholar
  83. McEwen, J., Taylor, J., Carter, D., Xu, J., Felipe, M., Vilgalys, R., Mitchell, T., Kasuga, T., White, T., & Bui, T. (2000). Molecular typing of pathogenic fungi. Medical Mycology, 38, 189–197.PubMedCrossRefPubMedCentralGoogle Scholar
  84. Molinari, M., Galli, C., Piccaluga, V., Pieren, M., & Paganetti, P. (2002). Sequential assistance of molecular chaperones and transient formation of covalent complexes during protein degradation from the ER. The Journal of Cell Biology, 158, 247–257.PubMedPubMedCentralCrossRefGoogle Scholar
  85. Monteiro, J. P., Clemons, K. V., Mirels, L. F., Coller, J. A., Jr., Wu, T. D., Shankar, J., Lopes, C. R., & Stevens, D. A. (2009). Genomic DNA microarray comparison of gene expression patterns in Paracoccidioides brasiliensis mycelia and yeasts in vitro. Microbiology, 155, 2795–2808.Google Scholar
  86. Morano, K. A., Grant, C. M., & Moye-Rowley, W. S. (2012). The response to heat shock and oxidative stress in Saccharomyces cerevisiae. Genetics, 190, 1157–1195.Google Scholar
  87. Newbury, J., & Peberdy, J. F. (1996). Characterization of the heat shock response in protoplasts of Aspergillus nidulans. Mycological Research, 100, 1325–1332.Google Scholar
  88. Nikolaidis, N., & Nei, M. (2004). Concerted and nonconcerted evolution of the Hsp70 gene superfamily in two sibling species of nematodes. Molecular Biology and Evolution, 21, 498–505.PubMedCrossRefPubMedCentralGoogle Scholar
  89. Odds, F. C., Brown, A. J., & Gow, N. A. (2003). Antifungal agents: Mechanisms of action. Trends in Microbiology, 11, 272–279.PubMedCrossRefPubMedCentralGoogle Scholar
  90. Ouimet, P., & Kapoor, M. (1999). Nucleotide binding and hydrolysis properties of Neurospora crassa cytosolic molecular chaperones, Hsp70 and Hsp80, heat-inducible members of the eukaryotic stress-70 and stress-90 families. Biochemistry and Cell Biology, 77, 89–99.Google Scholar
  91. Peñalva, M. A., & Arst, H. N. (2002). Regulation of gene expression by ambient pH in filamentous fungi and yeasts. Microbiology and Molecular Biology Reviews, 66, 426–446.PubMedPubMedCentralCrossRefGoogle Scholar
  92. Perlman, J., & Feldman, J. F. (1982). Cycloheximide and heat shock induce new polypeptide synthesis in Neurospora crassa. Molecular and Cellular Biology, 2, 1167–1173.Google Scholar
  93. Pfund, C., Huang, P., Lopez-Hoyo, N., & Craig, E. A. (2001). Divergent functional properties of the ribosome-associated molecular chaperone Ssb compared with other Hsp70s. Molecular Biology of the Cell, 12, 3773–3782.PubMedPubMedCentralCrossRefGoogle Scholar
  94. Plesofsky-Vig, N., & Brambl, R. (1985a). The heat shock response of fungi. Experimental Mycology, 9, 7–94.CrossRefGoogle Scholar
  95. Plesofsky-Vig, N., & Brambl, R. (1985b). Heat shock response of Neurospora crassa: Protein synthesis and induced thermotolerance. Journal of Bacteriology, 162, 1083–1091.Google Scholar
  96. Plesset, J., Palm, C., & McLaughlin, C. (1982). Induction of heat shock proteins and thermotolerance by ethanol in Saccharomyces cerevisiae. Biochemical and Biophysical Research Communications, 108, 1340–1345.Google Scholar
  97. Qiu, X.-B., Shao, Y.-M., Miao, S., & Wang, L. (2006). The diversity of the DnaJ/Hsp40 family, the crucial partners for Hsp70 chaperones. Cellular and Molecular Life Sciences, 63, 2560–2570.PubMedCrossRefPubMedCentralGoogle Scholar
  98. Raitt, D. C., Johnson, A. L., Erkine, A. M., Makino, K., Morgan, B., Gross, D. S., & Johnston, L. H. (2000). The Skn7 response regulator of Saccharomyces cerevisiaeinteracts with Hsf1 in vivo and is required for the induction of heat shock genes by oxidative stress. Molecular Biology of the Cell, 11, 2335–2347.Google Scholar
  99. Röhl, A., Wengler, D., Madl, T., Lagleder, S., Tippel, F., Herrmann, M., Hendrix, J., Richter, K., Hack, G., & Schmid, A. B. (2015). Hsp90 regulates the dynamics of its cochaperone Sti1 and the transfer of Hsp70 between modules. Nature Communications, 6, 6655.PubMedPubMedCentralCrossRefGoogle Scholar
  100. Roychowdhury, H., & Kapoor, M. (1988). Ethanol and carbon-source starvation enhance the accumulation of HSP80 in Neurospora crassa. Canadian Journal of Microbiology, 34, 162–168.Google Scholar
  101. Salzer, H. J. F. (2008). Identification and characterization of heat shock protein 60 and 70 of common environmental fungi of medical interest. MedizinischeUniversität.Google Scholar
  102. Sanchez, Y., Parsell, D., Taulien, J., Vogel, J., Craig, E., & Lindquist, S. (1993). Genetic evidence for a functional relationship between Hsp104 and Hsp70. Journal of Bacteriology, 175, 6484–6491.PubMedPubMedCentralCrossRefGoogle Scholar
  103. Satyanarayana, C., Schröder-Köhne, S., Craig, E. A., Schu, P. V., & Horst, M. (2000). Cytosolic Hsp70s are involved in the transport of aminopeptidase 1 from the cytoplasm into the vacuole. FEBS Letters, 470, 232–238.PubMedCrossRefPubMedCentralGoogle Scholar
  104. Schmidt, P., Walker, J., Selway, L., Stead, D., Yin, Z., Enjalbert, B., Weig, M., & Brown, A. J. (2008). Proteomic analysis of the pH response in the fungal pathogen Candida glabrata. Proteomics, 8, 534–544.Google Scholar
  105. Setiadi, E. R., Doedt, T., Cottier, F., Noffz, C., & Ernst, J. F. (2006). Transcriptional response of Candida albicans to hypoxia: Linkage of oxygen sensing and Efg1p-regulatory networks. Journal of Molecular Biology, 361, 399–411.Google Scholar
  106. Shaner, L., Sousa, R., & Morano, K. A. (2006). Characterization of Hsp70 binding and nucleotide exchange by the yeast Hsp110 chaperone Sse1. Biochemistry, 45, 15075–15084.PubMedPubMedCentralCrossRefGoogle Scholar
  107. Shankar, J. (2013). An overview of toxins in Aspergillus associated with pathogenesis. International Journal of Life Sciences Biotechnology and Pharma Research, 2, 16–31.Google Scholar
  108. Shankar, J., Nigam, S., Saxena, S., Madan, T., & Sarma, P. (2004). Identification and assignment of function to the genes of Aspergillus fumigatus expressed at 37 C. The Journal of Eukaryotic Microbiology, 51, 428–432.Google Scholar
  109. Shankar, J., Restrepo, A., Clemons, K. V., & Stevens, D. A. (2011a). Hormones and the resistance of women to paracoccidioidomycosis. Clinical Microbiology Reviews, 24, 296–313.PubMedPubMedCentralCrossRefGoogle Scholar
  110. Shankar, J., Wu, T. D., Clemons, K. V., Monteiro, J. P., Mirels, L. F., & Stevens, D. A. (2011b). Influence of 17β-estradiol on gene expression of Paracoccidioides during mycelia-to-yeast transition. PLoS One, 6, e28402.PubMedPubMedCentralCrossRefGoogle Scholar
  111. Sharma, D., & Masison, D. C. (2009). Hsp70 structure, function, regulation and influence on yeast prions. Protein and Peptide Letters, 16, 571–581.PubMedPubMedCentralCrossRefGoogle Scholar
  112. Sharma, D., Martineau, C. N., Le Dall, M.-T., Reidy, M., Masison, D. C., & Kabani, M. (2009a). Function of SSA subfamily of Hsp70 within and across species varies widely in complementing Saccharomyces cerevisiae cell growth and prion propagation. PLoS One, 4, e6644.Google Scholar
  113. Sharma, S. K., Christen, P., & Goloubinoff, P. (2009b). Disaggregating chaperones: An unfolding story. Current Protein and Peptide Science, 10, 432–446.PubMedCrossRefPubMedCentralGoogle Scholar
  114. Shearer, G., Jr., Birge, C. H., Yuckenberg, P. D., Kobayashi, G. S., & Medoff, G. (1987). Heat-shock proteins induced during the mycelial-to-yeast transitions of strains of Histoplasma capsulatum. Microbiology, 133, 3375–3382.Google Scholar
  115. Shen, H. D., Au, L. C., Lin, W. L., Liaw, S. F., Tsai, J. J., & Han, S. H. (1997). Molecular cloning and expression of a Penicillium citrinum allergen with sequence homology and antigenic crossreactivity to a hsp 70 human heat shock protein. Clinical and Experimental Allergy, 27, 682–690.Google Scholar
  116. Shen, Y., Meunier, L., & Hendershot, L. M. (2002). Identification and characterization of a novel endoplasmic reticulum (ER) DnaJ homologue, which stimulates ATPase activity of BiP in vitro and is induced by ER stress. The Journal of Biological Chemistry, 277, 15947–15956.PubMedCrossRefPubMedCentralGoogle Scholar
  117. Shiber, A., & Ravid, T. (2014). Chaperoning proteins for destruction: Diverse roles of Hsp70 chaperones and their co-chaperones in targeting misfolded proteins to the proteasome. Biomolecules, 4, 704–724.PubMedPubMedCentralCrossRefGoogle Scholar
  118. Shiber, A., Breuer, W., Brandeis, M., & Ravid, T. (2013). Ubiquitin conjugation triggers misfolded protein sequestration into quality control foci when Hsp70 chaperone levels are limiting. Molecular Biology of the Cell, 24, 2076–2087.PubMedPubMedCentralCrossRefGoogle Scholar
  119. Silva, E. M., Freitas, J. S., Gras, D. E., Squina, F. M., Leal, J., Silveira, H. C., Martinez-Rossi, N. M., & Rossi, A. (2008). Identification of genes differentially expressed in a strain of the mold Aspergillus nidulans carrying a loss-of-function mutation in the palA gene. Canadian Journal of Microbiology, 54, 803–811.PubMedCrossRefPubMedCentralGoogle Scholar
  120. Singh, K., Nizam, S., Sinha, M., & Verma, P. K. (2012). Comparative transcriptome analysis of the necrotrophic fungus Ascochyta rabiei during oxidative stress: Insight for fungal survival in the host plant. PLoS One, 7, e33128.Google Scholar
  121. Sondermann, H., Ho, A. K., Listenberger, L. L., Siegers, K., Moarefi, I., Wente, S. R., Hartl, F.-U., & Young, J. C. (2002). Prediction of novel Bag-1 homologs based on structure/function analysis identifies Snl1p as an Hsp70 co-chaperone in Saccharomyces cerevisiae. The Journal of Biological Chemistry, 277, 33220–33227.Google Scholar
  122. Song, Y., & Masison, D. C. (2005). Independent regulation of Hsp70 and Hsp90 chaperones by Hsp70/Hsp90-organizing protein Sti1 (Hop1). The Journal of Biological Chemistry, 280, 34178–34185.Google Scholar
  123. Song, Y., Wu, Y.-x., Jung, G., Tutar, Y., Eisenberg, E., Greene, L. E., & Masison, D. C. (2005). Role for Hsp70 chaperone in Saccharomyces cerevisiae prion seed replication. Eukaryotic Cell, 4, 289–297.Google Scholar
  124. Squina, F. M., Leal, J., Cipriano, V. T., Martinez-Rossi, N. M., & Rossi, A. (2010). Transcription of the Neurospora crassa 70-kDa class heat shock protein genes is modulated in response to extracellular pH changes. Cell Stress & Chaperones, 15, 225–231.Google Scholar
  125. Stedman, T. T., Butler, D. R., & Buck, G. A. (1998). The HSP70 gene family in Pneumocystis carinii: Molecular and phylogenetic characterization of cytoplasmic members. The Journal of Eukaryotic Microbiology, 45, 589–599.Google Scholar
  126. Steel, G. J., Fullerton, D. M., Tyson, J. R., & Stirling, C. J. (2004). Coordinated activation of Hsp70 chaperones. Science, 303, 98–101.PubMedCrossRefPubMedCentralGoogle Scholar
  127. Stefani, R. M. P., & Gomes, S. L. (1995). A unique intron-containing hsp70 gene induced by heat shock and during sporulation in the aquatic fungus Blastocladiella emersonii. Gene, 152, 19–26.Google Scholar
  128. Tereshina, V. (2005). Thermotolerance in fungi: The role of heat shock proteins and trehalose. Microbiology, 74, 247–257.CrossRefGoogle Scholar
  129. Thakur, R., Anand, R., Tiwari, S., Singh, A. P., Tiwary, B. N., & Shankar, J. (2015). Cytokines induce effector T-helper cells during invasive aspergillosis; what we have learned about T-helper cells? Frontiers in Microbiology, 6, 429.PubMedPubMedCentralCrossRefGoogle Scholar
  130. Thakur, R., Tiwari, S., & Shankar, J. (2016). Differential expression pattern of heat shock protein genes in toxigenic and atoxigenic isolate of Aspergillus flavus. British Microbiology Research Journal, 14, 1–9.Google Scholar
  131. Tibor Roberts, B., Moriyama, H., & Wickner, R. B. (2004). [URE3] prion propagation is abolished by a mutation of the primary cytosolic Hsp70 of budding yeast. Yeast, 21, 107–117.PubMedCrossRefPubMedCentralGoogle Scholar
  132. Tilburn, J., Sarkar, S., Widdick, D., Espeso, E., Orejas, M., Mungroo, J., Penalva, M., & Arst, H., Jr. (1995). The Aspergillus PacC zinc finger transcription factor mediates regulation of both acid-and alkaline-expressed genes by ambient pH. The EMBO Journal, 14, 779.PubMedPubMedCentralCrossRefGoogle Scholar
  133. Tiwari, S., Thakur, R., & Shankar, J. (2015). Role of heat-shock proteins in cellular function and in the biology of fungi. Biotechnology Research International, 2015, 1–11.CrossRefGoogle Scholar
  134. Tiwari, S., Thakur, R., Goel, G., & Shankar, J. (2016). Nano-LC-Q-TOF analysis of proteome revealed germination of Aspergillus flavus Conidia is accompanied by MAPK signalling and cell wall modulation. Mycopathologia, 181, 769–786.Google Scholar
  135. Tiwari, S., & Shankar, J. (2018) Integrated proteome and HPLC analysis revealed quercetin-mediated inhibition of aflatoxin B1 biosynthesis in Aspergillus flavus. 3 Biotech 8 (1)Google Scholar
  136. Tyson, J. R., & Stirling, C. J. (2000). LHS1 and SIL1 provide a lumenal function that is essential for protein translocation into the endoplasmic reticulum. The EMBO Journal, 19, 6440–6452.Google Scholar
  137. Verghese, J., Abrams, J., Wang, Y., & Morano, K. A. (2012). Biology of the heat shock response and protein chaperones: Budding yeast (Saccharomyces cerevisiae) as a model system. Microbiology and Molecular Biology Reviews, 76, 115–158.Google Scholar
  138. Wang, L., & Lin, X. (2012). Morphogenesis in fungal pathogenicity: Shape, size, and surface. PLoS Pathogens, 8, e1003027.PubMedPubMedCentralCrossRefGoogle Scholar
  139. Wang, C., Duan, Z., & Leger, R. J. S. (2008). MOS1 osmosensor of Metarhizium anisopliae is required for adaptation to insect host hemolymph. Eukaryotic Cell, 7, 302–309.Google Scholar
  140. Weitzel, G., Pilatus, U., & Rensing, L. (1985). Similar dose response of heat shock protein synthesis and intracellular pH change in yeast. Experimental Cell Research, 159, 252–256.PubMedCrossRefPubMedCentralGoogle Scholar
  141. Werner-Washburne, M., & Craig, E. A. (1989). Expression of members of the Saccharomyces cerevisiae hsp70 multigene family. Genome, 31, 684–689.PubMedCrossRefPubMedCentralGoogle Scholar
  142. Werner-Washburne, M., Stone, D. E., & Craig, E. A. (1987). Complex interactions among members of an essential subfamily of hsp70 genes in Saccharomyces cerevisiae. Molecular and Cellular Biology, 7, 2568–2577.PubMedPubMedCentralCrossRefGoogle Scholar
  143. Wormley, F. L., Jr. (2011). Potential vaccine strategies for the management of cryptococcal disease. Journal of Invasive Fungal Infection, 5, 65.Google Scholar
  144. Xavier, I. J. (1998). Environmental stress response of the Hyphomycetous Entomopathogenic fungi. http://hdl.handle.net/10388/etd-10212004-001033
  145. Yi, M., Chi, M.-H., Khang, C. H., Park, S.-Y., Kang, S., Valent, B., & Lee, Y.-H. (2009). The ER chaperone LHS1 is involved in asexual development and rice infection by the blast fungus Magnaporthe oryzae. Plant Cell, 21, 681–695.Google Scholar
  146. Zhu, C., Ai, L., Wang, L., Yin, P., Liu, C., Li, S., & Zeng, H. (2016). De novo transcriptome analysis of Rhizoctonia solani AG1 IA strain early invasion in Zoysia japonica root. Frontiers in Microbiology, 7, 708.Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Genomic Laboratory, Department of Biotechnology and BioinformaticsJaypee University of Information TechnologySolanIndia

Personalised recommendations