Advertisement

Mammalian Heat Shock Protein Hsp105: The Hsp70 Inducer and a Potent Target for Cancer Therapy

  • Youhei Saito
  • Yuji Nakayama
Chapter
Part of the Heat Shock Proteins book series (HESP, volume 14)

Abstract

Major heat shock protein Hsp70 prevents protein aggregation and assists protein folding as molecular chaperone. Hsp70 also regulates apoptosis, senescence, and autophagy. Increased expression of Hsp70 causes the drug resistance of cancer cells. Hsp105, a mammalian heat shock protein, consists of Hsp105α and its splicing isoform Hsp105β. Hsp105α constitutively expresses in cytoplasm and functions as molecular chaperone and apoptotic regulator. Hsp105β is specifically expressed in nucleus under stressed condition and induces Hsp70 expression through the activation of Stat3. Recently, we identified that the novel regulators of Hsp105β-mediated Hsp70 induction including the transcriptional co-activator of Stat3. Additionally, we reveled that Hsp105α but not Hsp105β interacts with HIF-1α in nucleus and affects to the transcriptional activation of HIF-1. Since Hsp105 is overexpressed in several tumors including solid tumor, these evidences indicate that the nuclear expression of Hsp105α seems to function as a malignant factor of cancer through the induction of Hsp70 and the activation of the tumorigenic Stat3 and HIF-1 signaling pathways. In this chapter, we will introduce the recent our observations and discuss the possibility that the nuclear overexpression of Hsp105 is a useful marker for cancer prognosis and diagnosis.

Keywords

HIF-1 Hsp70 Hsp70 inducer Hsp105/110 Stat3 Tumor marker 

Abbreviations

5-FU

5-fluorouracil

ER

Endoplasmic reticulum

ESCC

Esophageal squamous cell carcinoma

JAK

Janus kinase

HIF

Hypoxia-inducible factor

Hsc

Heat shock cognate

HSF

Heat shock factor

Hsp

Heat shock protein

NES

Nuclear export signal

NLS

Nuclear localization signal

Nmi

N-myc interactor

PHD

Prolyl hydroxylase

snRNP

Small nuclear ribonucleoprotein

Stat

Signal transducer and activator of transcription

VHL

Von Hippel-Lindau

Notes

Acknowledgements

This work was supported, in part, by JSPS KAKENHI (Grant numbers: 26870701, YS and 16K08253, YN), the Kyoto Pharmaceutical University Fund for the Promotion of Scientific Research (YS), and the MEXT-Supported Program for the Strategic Research Foundation at Private Universities (Grant number: S1311035).

References

  1. Balchin, D., Hayer-Hartl, M., & Hartl, F. U. (2016). In vivo aspects of protein folding and quality control. Science, 353, aac4354.CrossRefPubMedGoogle Scholar
  2. Berthenet, K., Bokhari, A., Lagrange, A., Marcion, G., Boudesco, C., Causse, S., De Thonel, A., Svrcek, M., & Goloudina. A. R. (2016). HSP110 promotes colorectal cancer growth through STAT3 activation. Oncogene, 36, 2328–2336.CrossRefPubMedGoogle Scholar
  3. Bracher, A., & Verghese, J. (2015). The nucleotide exchange factors of Hsp70 molecular chaperones. Frontiers in Molecular Biosciences, 78, 1–33.Google Scholar
  4. Darnell, J. E. (1997). STATs and gene regulation. Science, 277, 1630–1635.CrossRefPubMedGoogle Scholar
  5. Gao, H., Zhaoxu, Z., Yousheng, M., Wei, W., Yuanyuan, Q., Lanping, Z., Fang, L., Hongzhi, H., & Xiaohang, Z. (2014). Identification of tumor antigens that elicit a humoral immune response in the sera of Chinese esophageal squamous cell carcinoma patients by modified serological proteome analysis. Cancer Letters, 344, 54–61.CrossRefPubMedGoogle Scholar
  6. Hatayama, T., Nishiyama, E., & Yasuda, K. (1994a). Cellular localization of high-molecular-mass heat shock proteins in murine cells. Biochemical and Biophysical Research Communications, 200, 1367–1373.CrossRefPubMedGoogle Scholar
  7. Hatayama, T., Yasuda, K., & Nishiyama, E. (1994b). Characterization of high-molecular-mass heat shock proteins and 42 degrees C-specific heat shock proteins of murine cells. Biochemical and Biophysical Research Communications, 204, 357–365.CrossRefPubMedGoogle Scholar
  8. He, N., Liu, M., Hsu, J., Xue, Y., Chou, S., Burlingame, A., Krogan, N. J., Alber, T., & Zhou, Q. (2010). HIV-1 Tat and host AFF4 recruit two transcription elongation factors into a bifunctional complex for coordinated activation of HIV-1 transcription. Molecular Cell, 38, 428–438.CrossRefPubMedPubMedCentralGoogle Scholar
  9. Hwang, T. S., Han, H. S., Choi, H. K., Lee, Y. J., Kim, Y. J., Han, M. Y., & Park, Y. M. (2003). Differential, stage-dependent expression of Hsp70, Hsp110 and Bcl-2 in colorectal cancer. Journal of Gastroenterology and Hepatology, 18, 690–700.CrossRefPubMedGoogle Scholar
  10. Ishihara, K., Yasuda, K., & Hatayama, T. (1999). Molecular cloning, expression and localization of human 105 kDa heat shock protein, hsp105. Biochimica et Biophysica Acta, 1444, 138–142.CrossRefPubMedGoogle Scholar
  11. Jurica, M. S., & Moore, M. J. (2003). Pre-mRNA splicing: Awash in a sea of proteins. Molecular Cell, 12, 5–14.CrossRefPubMedGoogle Scholar
  12. Kaddurah-Daouk, R., Greene, J. M., Baldwin, A. S., Jr., & Kingston, R. E. (1987). Activation and repression of mammalian gene expression by the c-myc protein. Genes & Development, 1, 347–357.CrossRefGoogle Scholar
  13. Kai, M., Nakatsura, T., Egami, H., Senju, S., Nishimura, Y., & Ogawa, M. (2003). Heat shock protein 105 is overexpressed in a variety of human tumors. Oncology Reports, 10, 1777–1782.PubMedGoogle Scholar
  14. Kampinga, H. H., Hageman, J., Vos, M. J., Kubota, H., Tanguay, R. M., Bruford, E. A., Cheethama, M. E., Chen, B., & Hightower, L. E. (2009). Guidelines for the nomenclature of the human heat shock proteins. Cell Stress & Chaperones, 14, 105–111.CrossRefGoogle Scholar
  15. Kawai, T., Enomoto, Y., Morikawa, T., Matsushita, H., Kume, H., Fukayama, M., Yamaguchi, H., Kakimi, K., & Homma, Y. (2014). High expression of heat shock protein 105 predicts a favorable prognosis for patients with urinary bladder cancer treated with radical cystectomy. Molecular and Clinical Oncology, 2, 38–42.CrossRefPubMedGoogle Scholar
  16. Kimura, A., Ogata, K., Altan, B., Yokobori, T., & Ide, M. (2016). Nuclear heat shock protein 110 expression is associated with poor prognosis and chemotherapy resistance in gastric cancer. Oncotarget, 7, 18415–18423.CrossRefPubMedPubMedCentralGoogle Scholar
  17. Kingston, R. E., Baldwin, A. S., Jr., & Sharp, P. A. (1984). Regulation of heat shock protein 70 gene expression by c-myc. Nature, 312, 280–282.CrossRefPubMedGoogle Scholar
  18. Lando, D., Peet, D. J., Gorman, J. J., Whelan, D. A., Whitelaw, M. L., & Bruick, R. K. (2002). FIH-1 is an asparaginyl hydroxylase enzyme that regulates the transcriptional activity of hypoxia-inducible factor service FIH-1 is an asparaginyl hydroxylase enzyme that regulates the transcriptional activity of hypoxia-inducible factor. Genes & Development, 214, 1466–1471.CrossRefGoogle Scholar
  19. Leung, A. K. W., Nagai, K., & Li, J. (2011). Structure of the spliceosomal U4 snRNP core domain and its implication for snRNP biogenesis. Nature, 473, 536–539.CrossRefPubMedPubMedCentralGoogle Scholar
  20. Li, Y., Wen, H., Xi, Y., Tanaka, K., Wang, H., Peng, D., Ren, Y., Jin, Q., Dent, S. Y. R., Li, W., Li, H., & Shi, X. (2014). AF9 YEATS domain links histone acetylation to DOT1L-mediated H3K79 methylation. Cell, 159, 558–571.CrossRefPubMedPubMedCentralGoogle Scholar
  21. Lin, C., Smith, E. R., Takahashi, H., Lai, K. C., Martin-Brown, S., Florens, L., Washburn, M. P., Conaway, J. W., Conaway, R. C., & Shilatifard, A. (2010). AFF4, a component of the ELL/P-TEFb elongation complex and a shared subunit of MLL chimeras, can link transcription elongation to leukemia. Molecular Cell, 37, 429–437.CrossRefPubMedPubMedCentralGoogle Scholar
  22. Mikami, H., Saito, Y., Okamoto, N., Kakihana, A., Kuga, T., & Nakayama, Y. (2017). Requirement of Hsp105 in CoCl2-induced HIF-1α accumulation and transcriptional activation. Experimental Cell Research, 352, 225–233.CrossRefPubMedGoogle Scholar
  23. Morimoto, R. I., Sarge, K. D., & Abravaya, K. (1992). Transcriptional regulation of heat shock genes. The Journal of Biological Chemistry, 267, 21987–21990.PubMedGoogle Scholar
  24. Muchemwa, F. C., Nakatsura, T., Ihn, H., & Kageshita, T. (2006). Heat shock protein 105 is overexpressed in squamous cell carcinoma and extramammary Paget disease but not in basal cell carcinoma. The British Journal of Dermatology, 155, 582–585.CrossRefPubMedGoogle Scholar
  25. Muchemwa, F. C., Nakatsura, T., Fukushima, S., Nishimura, Y., Kageshita, T., & Ihn, H. (2008). Differential expression of heat shock protein 105 in melanoma and melanocytic naevi. Melanoma Research, 18, 166–171.CrossRefPubMedGoogle Scholar
  26. Murphy, M. E. (2013). The HSP70 family and cancer. Carcinogenesis, 34, 1181–1188.CrossRefPubMedPubMedCentralGoogle Scholar
  27. Nakatsura, T., Senju, S., Yamada, K., Jotsuka, T., Ogawa, M., & Nishimura, Y. (2001). Gene cloning of immunogenic antigens overexpressed in pancreatic cancer. Biochemical and Biophysical Research Communications, 281, 936–944.CrossRefPubMedGoogle Scholar
  28. Nillegoda, N. B., & Bukau, B. (2015). Metazoan Hsp70-based protein disaggregases: Emergence and mechanisms. Frontiers in Molecular Biosciences, 2, 57.CrossRefPubMedPubMedCentralGoogle Scholar
  29. Oda, T., Morii, E., Inoue, M., Ikeda, J.-I., Aozasa, K., & Okumura, M. (2009). Prognostic significance of heat shock protein 105 in lung adenocarcinoma. Molecular Medicine Reports, 2, 603–607.PubMedGoogle Scholar
  30. Prabhakar, N. R., & Semenza, G. L. (2012). Adaptive and maladaptive cardiorespiratory responses to continuous and intermittent hypoxia mediated by hypoxia-inducible factors 1 and 2. Physiological Reviews, 92, 967–1003.CrossRefPubMedPubMedCentralGoogle Scholar
  31. Ray, S., Lu, Y., Kaufmann, S. H., Gustafson, W. C., Karp, J. E., Boldogh, I., Fields, A. P., & Brasier, A. R. (2004). Genomic mechanisms of p210BCR-ABL signaling: Induction of heat shock protein 70 through the GATA response element confers resistance to paclitaxel-induced apoptosis. The Journal of Biological Chemistry, 279, 35604–35615.CrossRefPubMedGoogle Scholar
  32. Safran, M., & Kaelin, W. G. (2003). HIF hydroxylation and the mammalian oxygen-sensing pathway. The Journal of Clinical Investigation, 111, 779–783.CrossRefPubMedPubMedCentralGoogle Scholar
  33. Saito, Y., Yamagishi, N., & Hatayama, T. (2007). Different localization of Hsp105 family proteins in mammalian cells. Experimental Cell Research, 313, 3707–3717.CrossRefPubMedGoogle Scholar
  34. Saito, Y., Yamagishi, N., & Hatayama, T. (2009). Nuclear localization mechanism of Hsp105β and its possible function in mammalian cells. Journal of Biochemistry, 145, 185–191.CrossRefPubMedGoogle Scholar
  35. Saito, Y., Yukawa, A., Matozaki, M., Mikami, H., Yamagami, T., Yamagishi, N., Kuga, T., & Nakayama, Y. (2014). Nmi interacts with Hsp105β and enhances the Hsp105β-mediated Hsp70 expression. Experimental Cell Research, 327, 163–170.CrossRefPubMedGoogle Scholar
  36. Saito, Y., Nakagawa, T., Kakihana, A., Nakamura, Y., Nabika, T., Kasai, M., Takamori, M., Yamagishi, N., Kuga, T., Hatayama, T., & Nakayama, Y. (2016). Yeast two-hybrid and one-hybrid screenings identify regulators of hsp70 gene expression. Journal of Cellular Biochemistry, 117, 2109–2117.CrossRefPubMedGoogle Scholar
  37. Semenza, G. L. (2009). Defining the role of hypoxia-inducible factor 1 in cancer biology and therapeutics. Oncogene, 29, 625–634.CrossRefPubMedPubMedCentralGoogle Scholar
  38. Shi, Y., Mosser, D. D., & Morimoto, R. I. (1998). Molecular chaperones as HSF1-specific transcriptional repressors. Genes & Development, 12, 654–666.CrossRefGoogle Scholar
  39. Silver, J. T., & Noble, E. G. (2012). Regulation of survival gene hsp70. Cell Stress & Chaperones, 17, 1–9.CrossRefGoogle Scholar
  40. Stephanou, A., Isenberg, D. A., Nakajima, K., & Latchman, D. S. (1999). Signal transducer and activator of transcription-1 and heat shock factor-1 interact and activate the transcription of the Hsp-70 and Hsp-90β gene promoters. The Journal of Biological Chemistry, 274, 1723–1728.CrossRefPubMedGoogle Scholar
  41. Taira, T., Sawai, M., Ikeda, M., Tamai, K., Iguchi-Ariga, S. M. M., & Ariga, H. (1999). Cell cycle-dependent switch of up- and down-regulation of human hsp70 gene expression by interaction between c-Myc and CBF/NF-Y. The Journal of Biological Chemistry, 274, 24270–24279.CrossRefPubMedGoogle Scholar
  42. Wang, G. L., & Semenza, G. L. (1995). Purification and characterization of Hypoxia-inducible Factor 1. The Journal of Biological Chemistry, 270, 1230–1237.CrossRefPubMedGoogle Scholar
  43. Wang, G. L., Jiang, B. H., Rue, E. A., & Semenza, G. L. (1995). Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O2 tension. Genetics, 92, 5510–5514.Google Scholar
  44. Westerheide, S. D., Anckar, J., Stevens, S. M. J., Sistonen, L., & Morimoto, R. I. (2009). Stress-inducible regulation of Heat shock factor 1 by the deacetylase SIRT1. Science, 323, 1063–1067.CrossRefPubMedPubMedCentralGoogle Scholar
  45. Yamagishi, N., Nishihori, H., Ishihara, K., Ohtsuka, K., & Hatayama, T. (2000). Modulation of the chaperone activities of Hsc70/Hsp40 by Hsp105α and Hsp105β. Biochemical and Biophysical Research Communications, 272, 850–855.CrossRefPubMedGoogle Scholar
  46. Yamagishi, N., Ishihara, K., & Hatayama, T. (2004). Hsp105α suppresses Hsc70 chaperone activity by inhibiting Hsc70 ATPase activity. The Journal of Biological Chemistry, 279, 41727–41733.CrossRefPubMedGoogle Scholar
  47. Yamagishi, N., Saito, Y., & Hatayama, T. (2008). Mammalian 105 kDa heat shock family proteins suppress hydrogen peroxide-induced apoptosis through a p38 MAPK-dependent mitochondrial pathway in HeLa cells. The FEBS Journal, 275, 4558–4570.CrossRefPubMedGoogle Scholar
  48. Yamagishi, N., Fujii, H., Saito, Y., & Hatayama, T. (2009). Hsp105β upregulates hsp70 gene expression through signal transducer and activator of transcription-3. The FEBS Journal, 276, 5870–5880.CrossRefPubMedGoogle Scholar
  49. Yamamoto, K., Furukawa, M. T., Fukumura, K., Kawamura, A., Yamada, T., Suzuki, H., Hirose, T., Sakamoto, H., & Inoue, K. (2016). Control of the heat stress-induced alternative splicing of a subset of genes by hnRNP K. Genes to Cells, 21, 1006–1014.CrossRefPubMedGoogle Scholar
  50. Yasuda, K., Nakai, A., Hatayama, T., & Nagata, K. (1995). Cloning and expression of murine high molecular mass heat shock proteins, HSP105. The Journal of Biological Chemistry, 270, 29718–29723.CrossRefPubMedGoogle Scholar
  51. Yasuda, K., Ishihara, K., Nakashima, K., & Hatayama, T. (1999). Genomic cloning and promoter analysis of the mouse 105-kDa heat shock protein (HSP105) gene. Biochemical and Biophysical Research Communications, 256, 75–80.CrossRefPubMedGoogle Scholar
  52. Yu, N., Kakunda, M., Pham, V., Lill, J. R., Du, P., Wongchenko, M., Matthew, Y., Yan, Y., Firestein, R., & Huang, X. (2015). HSP105 recruits protein phosphatase 2A to dephosphorylate β-catenin. Molecular and Cellular Biology, 35, 1390–1400.CrossRefPubMedPubMedCentralGoogle Scholar
  53. Yuan, Y., Hilliard, G., Ferguson, T., & Millhorn, D. E. (2013). Cobalt inhibits the interaction between hypoxia-inducible factor-α and von Hippel-Lindau protein by direct binding to hypoxia-inducible factor-α. The Journal of Biological Chemistry, 278, 15911–15916.CrossRefGoogle Scholar
  54. Zappasodi, R., Bongarzone, I., Ghedini, G. C., Castagnoli, L., Cabras, A. D., Messina, A., Tortoreto, M., Tripodo, C., Magni, M., Carlo-Stella, C., Gianni, A. M., Pupa, S. M., & Di Nicola, M. (2011). Serological identification of HSP105 as a novel non-Hodgkin lymphoma therapeutic target. Blood, 118, 4421–4430.CrossRefPubMedGoogle Scholar
  55. Zappasodi, R., Ruggiero, G., Guarnotta, C., Tortoreto, M., Tringali, C., Cavanè, A., Cabras, A., Cabras, A. D., Castagnoli, L., Venerando, B., Zaffaroni, N., Gianni, A. M., De Braud, F., Tripodo, C., Pupa, S. M., & Di Nicola, M. (2015). HSPH1 inhibition downregulates Bcl-6 and c-Myc and hampers the growth of human aggressive B-cell non-hodgkin lymphoma. Blood, 125, 1768–1771.CrossRefPubMedGoogle Scholar
  56. Zhu, M., John, S., Berg, M., & Leonard, W. J. (1999). Functional association of Nmi with Stat5 and Stat1 in IL-2- and IFNgamma-mediated signaling. Cell, 96, 121–130.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Biochemistry and Molecular BiologyKyoto Pharmaceutical UniversityKyotoJapan

Personalised recommendations