Advertisement

Mechanical Stimulation Methods for Cartilage Tissue Engineering

  • Stefan Balko
  • Joanna F. Weber
  • Stephen D. Waldman
Chapter

Abstract

Articular cartilage plays a crucial role in providing a low friction surface to allow joints in the human body to articulate properly. Mature cartilage lacks the ability for self-repair, thus when the cartilage tissue becomes damaged and/or injured, it is unable to heal itself and generally requires intervention. Current interventions involve the replacement of joint components with artificial implants designed to mimic the anatomical shape and low friction surfaces of the joint. This is an irreversible solution that, while generally successful, has limitations such as the limited lifespan of the implant components and the potential for poor bone integration leading to the overall failure of the implants. Therefore, there is a need for a better solution which does not replace the joints, but repairs the surfaces and allows for them to regain full functionality. Tissue engineering is a relatively new field that aims to solve problems that arise in the human body through the application of a multidisciplinary approach of biology, chemistry and engineering techniques. Cartilage tissue engineering specifically aims to create cartilage constructs in vitro which have the chemical, biological, and mechanical properties of native healthy cartilage, which can be used to repair joint surface damage. There have been many approaches and hypotheses as to how to grow and create strong, healthier cartilage tissue in vitro. One widely investigated technique is the use of mechanical stimulation. Cartilage tissue, in an anatomical setting, undergoes many different loading scenarios on a daily basis to which it responds with growth and remodeling. It is because of this that mechanical stimulation has become a large area of focus in the field of cartilage tissue engineering, aiming to mimic the growth parameters found in nature. This article aims to review the different mechanical stimulation techniques that have been used on cartilage constructs in vitro. Focusing on dynamic loading scenarios, the benefits and drawbacks of each loading type will be discussed leading to a discussion of complex (combined) loading scenarios. Finally, a general overview of what the future holds for mechanical stimulation will be discussed, outlining key issues that need to be investigated in order for cartilage tissue engineered constructs to become a viable option for joint repair and resurfacing.

Keywords

Cartilage Chondrocytes Mechanical stimulation Mechanotransduction Mechanobiology Compression Indentation Shear Tension Multiaxial loading Vibrations Stochastic resonance 

References

  1. 1.
    Hall AC, Horwitz ER, Wilkins RJ. The cellular physiology of articular cartilage. Exp Physiol. 1996;81(3):535–45.PubMedCrossRefGoogle Scholar
  2. 2.
    Weber JF. The sensitivity of articular chondrocytes to dynamic mechanical stimulation. Ph.D. dissertation. Dept. Mech. and Mat. Eng., Queen’s University, 2015.Google Scholar
  3. 3.
    Sophia Fox AJ, Bedi A, Rodeo SA. The basic science of articular cartilage: structure, composition, and function. Sports Health. 2009;1(6):461–8.PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Brady MA, Waldman SD, Ethier CR. The application of multiple biophysical cues to engineer functional neo-cartilage for treatment of osteoarthritis (part I: cellular response). Tissue Eng Part B Rev. 2015;21(1):1–19.PubMedCrossRefGoogle Scholar
  5. 5.
    Lu XL, Mow VC. Biomechanics of articular cartilage and determination of material properties. Med Sci Sports Exerc. 2008;40(2):193–9.PubMedCrossRefGoogle Scholar
  6. 6.
    Mow VC, Holmes MH, Michael Lai W. Fluid transport and mechanical properties of articular cartilage: a review. J Biomech. 1984;17(5):377–94.PubMedCrossRefGoogle Scholar
  7. 7.
    Mow VC, Kuei SC, Lai WM, Armstrong CG. Biphasic creep and stress relaxation of articular cartilage in compression? Theory and experiments. J Biomech Eng. 1980;102(1):73–84.PubMedCrossRefGoogle Scholar
  8. 8.
    Lai WM, Hou JS, Mow VC. A triphasic theory for the swelling and deformation behaviors of articular cartilage. J Biomech Eng. 1991;113(3):245–58.PubMedCrossRefGoogle Scholar
  9. 9.
    Athanasiou KA, Rosenwasser MP, Buckwalter JA, Malinin TI, Mow VC. Interspecies comparisons of Insitu intrinsic mechanical-properties of distal femoral cartilage. J Orthop Res. 1991;9(3):330–40.PubMedCrossRefGoogle Scholar
  10. 10.
    Stockwell RA. Cartilage failure in osteoarthritis: relevance of normal structure and function. A review. Clin Anat. 1991;4(3):161–91.CrossRefGoogle Scholar
  11. 11.
    Guilak F, Jones WR, Ting-Beall HP, Lee GM. The deformation behavior and mechanical properties of chondrocytes in articular cartilage. Osteoarthr Cartil. 1999;7(1):59–70.PubMedCrossRefGoogle Scholar
  12. 12.
    Gray ML, Pizzanelli AM, Grodzinsky AJ, Lee RC. Mechanical and physicochemical determinants of the chondrocyte biosynthetic response. J Orthop Res. 1988;6(6):777–92.PubMedCrossRefGoogle Scholar
  13. 13.
    Shieh AC, Athanasiou KA. Principles of cell mechanics for cartilage tissue engineering. Ann Biomed Eng. 2003;31(1):1–11.PubMedCrossRefGoogle Scholar
  14. 14.
    Salter DM, Nuki G, Wright MO. Integrin—Interleukin-4 mechanotransduction pathways in human chondrocytes. Clin Orthop Relat Res. 2001;391:49–60.CrossRefGoogle Scholar
  15. 15.
    Buschmann MD, Hunziker EB, Kim YJ, Grodzinsky AJ. Altered aggrecan synthesis correlates with cell and nucleus structure in statically compressed cartilage. J. Cell Sci. 1996;109(Pt 2):499–508.PubMedGoogle Scholar
  16. 16.
    Guilak F. Pression-induced changes in Cyte Nucleu. J Biomech. 1995;28(12):1529–41.PubMedCrossRefGoogle Scholar
  17. 17.
    Zhang L, Hu J, Athanasiou KA. The role of tissue engineering in articular cartilage repair and regeneration. Crit Rev Biomed Eng. 2009;37(1–2):1–57.PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Darling EM, Athanasiou KA. Rapid phenotypic changes in passaged articular chondrocyte subpopulations. J Orthop Res. 2005;23(2):425–32.PubMedCrossRefGoogle Scholar
  19. 19.
    Wakitani S, et al. Mesenchymal cell-based repair of large, full-thickness defects of articular cartilage. J Bone Joint Surg Am. 1994;76(4):579–92.PubMedCrossRefGoogle Scholar
  20. 20.
    Yoo J, Barthel T, Nishimura K. The chondrogenic potential of human bone- marrow-derived mesenchymal progenitor cells. J Bone Jt Surg. 1998;80A(12):1745–59.CrossRefGoogle Scholar
  21. 21.
    Getgood A, Brooks R, Fortier L, Rushton N. Articular cartilage tissue engineering. J Bone Jt Surg. 2009;91-B(5):565–76.CrossRefGoogle Scholar
  22. 22.
    Takeichi M. The factor affecting the spreading of chondrocytes upon inorganic substrate. J Cell Sci. 1973;13(1):193–204.PubMedGoogle Scholar
  23. 23.
    Corvol MT, Malemud CJ, Sokoloff L. A pituitary growth-promoting factor for articular chondrocytes in monolayer culture. Endocrinology. 1972;90(1):262–71.PubMedCrossRefGoogle Scholar
  24. 24.
    Haddad JB, Obolensky AG, Shinnick P. The biologic effects and the therapeutic mechanism of action of electric and electromagnetic field stimulation on bone and cartilage: new findings and a review of earlier work. J Altern Complement Med. 2007;13(5):485–90.PubMedCrossRefGoogle Scholar
  25. 25.
    Snyder MJ, Wilensky JA, Fortin JD. Current applications of electrotherapeutics in collagen healing. Pain Physician. 2002;5(2):172–81.PubMedGoogle Scholar
  26. 26.
    Ryan JA, Eisner EA, DuRaine G, You Z, Reddi AH. Mechanical compression of articular cartilage induces chondrocyte proliferation and inhibits proteoglycan synthesis by activation of the ERK pathway: implications for tissue engineering and regenerative medicine. J Tissue Eng Regen Med. 2009;3(2):107–16.PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Natenstedt J, Kok AC, Dankelman J, Tuijthof GJ. What quantitative mechanical loading stimulates in vitro cultivation best? J Exp Orthop. 2015;2(1):15.PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Brown TD. Techniques for mechanical stimulation of cells in vitro: a review. J Biomech. 2000;33(1):3–14.PubMedCrossRefGoogle Scholar
  29. 29.
    Elder BD, Athanasiou KA. Hydrostatic pressure in articular cartilage tissue engineering: from chondrocytes to tissue regeneration. Tissue Eng Part B Rev. 2009;15(1):43–53.PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Jortikka MO, et al. The role of microtubules in the regulation of proteoglycan synthesis in chondrocytes under hydrostatic pressure. Arch Biochem Biophys. 2000;374(2):172–80.PubMedCrossRefGoogle Scholar
  31. 31.
    Smith RL, et al. In vitro stimulation of articular chondrocyte mRNA and extracellular matrix synthesis by hydrostatic pressure. J Orthop Res. 1996;14(1):53–60.PubMedCrossRefGoogle Scholar
  32. 32.
    Davisson T, Kunig S, Chen A, Sah R, Ratcliffe A. Static and dynamic compression modulate matric metabolism in tissue engineered cartilage. J Orthop Res. 2002;20:842–8.PubMedCrossRefGoogle Scholar
  33. 33.
    Sah RL, Grodzinsky AJ, Plaas AH, Sandy JD. Effects of tissue compression on the hyaluronate-binding properties of newly synthesized proteoglycans in cartilage explants. Biochem J. 1990;267(3):803–8.PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Buschmann MD, Gluzband YA, Grodzinsky AJ, Hunziker EB. Mechanical compression modulates matrix biosynthesis in chondrocyte/agarose culture. J Cell Sci. 1995;108(Pt 4):1497–508.PubMedGoogle Scholar
  35. 35.
    Fan JCY, Waldman SD. The effect of intermittent static biaxial tensile strains on tissue engineered cartilage. Ann Biomed Eng. 2010;38(4):1672–82.PubMedCrossRefGoogle Scholar
  36. 36.
    Grodzinsky AJ, Levenston ME, Jin M, Frank EH. Cartilage tissue remodeling in response to mechanical forces. Annu Rev Biomed Eng. 2000;2:691–713.PubMedCrossRefGoogle Scholar
  37. 37.
    Lin WY, et al. The study of the frequency effect of dynamic compressive loading on primary articular chondrocyte functions using a microcell culture system. Biomed Res Int. 2014;2014(1):1–11.Google Scholar
  38. 38.
    Soltz MA, Ateshian GA. Interstitial fluid pressurization during confined compression cyclical loading of articular cartilage. Ann Biomed Eng. 2000;28:150–9.PubMedCrossRefGoogle Scholar
  39. 39.
    Heiner AD, Martin JA. Cartilage responses to a novel triaxial mechanostimulatory culture system. J Biomech. 2004;37(5):689–95.PubMedCrossRefGoogle Scholar
  40. 40.
    Gu WY, Yao H, Huang CY, Cheung HS. New insight into deformation-dependent hydraulic permeability of gels and cartilage, and dynamic behavior of agarose gels in confined compression. J Biomech. 2003;36(4):593–8.PubMedCrossRefGoogle Scholar
  41. 41.
    Lee C, Grad S, Wimmer M, Alini M. The influence of mechanical stimuli on articular cartilage tissue engineering. Top Tiss Eng. 2006;2(2):1–32.Google Scholar
  42. 42.
    Wong M, Siegrist M, Cao X. Cyclic compression of articular cartilage explants is associated with progressive consolidation and altered expression pattern of extracellular matrix proteins. Matrix Biol. 1999;18(4):391–9.PubMedCrossRefGoogle Scholar
  43. 43.
    Wall A, Board T. Biosynthetic response of cartilage explants to dynamic compression. Class Pap Orthop. 2014:427–9.Google Scholar
  44. 44.
    Démarteau O, et al. Dynamic compression of cartilage constructs engineered from expanded human articular chondrocytes. Biochem Biophys Res Commun. 2003;310(2):580–8.PubMedCrossRefGoogle Scholar
  45. 45.
    Mauck RL, Wang CCB, Oswald ES, Ateshian GA, Hung CT. The role of cell seeding density and nutrient supply for articular cartilage tissue engineering with deformational loading. Osteoarthr Cartil. 2003;11(12):879–90.PubMedCrossRefGoogle Scholar
  46. 46.
    Mauck RL, et al. Functional tissue engineering of articular cartilage through dynamic loading of chondrocyte-seeded agarose gels. J Biomech Eng. 2000;122(3):252–60.PubMedCrossRefGoogle Scholar
  47. 47.
    Babalola OM, Bonassar LJ. Parametric finite element analysis of physical stimuli resulting from mechanical stimulation of tissue engineered cartilage. J Biomech Eng. 2009;131(6):61014.CrossRefGoogle Scholar
  48. 48.
    Suh JK. Dynamic unconfined compression of articular cartilage under a cyclic compression load. Biorheology. 1996;33(4–5):289–304.PubMedCrossRefGoogle Scholar
  49. 49.
    Kelly TAN, Ng KW, Wang CCB, Ateshian GA, Hung CT. Spatial and temporal development of chondrocyte-seeded agarose constructs in free-swelling and dynamically loaded cultures. J Biomech. 2006;39(8):1489–97.PubMedCrossRefGoogle Scholar
  50. 50.
    Parkkinen JJ, Lammi MJ, Helminen HJ, Tammi M. Local stimulation of proteoglycan synthesis in articular cartilage explants by dynamic compression in vitro. J Orthop Res. 1992;10(5):610–20.PubMedCrossRefGoogle Scholar
  51. 51.
    Hayes WCC, Keer LMM, Herrmann G, Mockros LFF. A mathematical analysis for indentation tests of articular cartilage. J Biomech. 1972;5(5):541–51.PubMedCrossRefGoogle Scholar
  52. 52.
    Hori RY, Mockros LF. Indentation tests of human articular cartilage. J Biomech. 1976;9(4):259–68.PubMedCrossRefGoogle Scholar
  53. 53.
    Vanderploeg EJ, Imler SM, Brodkin KR, García AJ, Levenston ME. Oscillatory tension differentially modulates matrix metabolism and cytoskeletal organization in chondrocytes and fibrochondrocytes. J Biomech. 2004;37(12):1941–52.PubMedCrossRefGoogle Scholar
  54. 54.
    Wong M, Siegrist M, Goodwin K. Cyclic tensile strain and cyclic hydrostatic pressure differentially regulate expression of hypertrophic markers in primary chondrocytes. Bone. 2003;33(4):685–93.PubMedCrossRefGoogle Scholar
  55. 55.
    Mawatari T, Lindsey DP, Harris AHS, Goodman SB, Maloney WJ, Smith RL. Effects of tensile strain and fluid flow on osteoarthritic human chondrocyte metabolism in vitro. J Orthop Res. 2010;28(7):907–13.PubMedGoogle Scholar
  56. 56.
    Vanderploeg EJ, Wilson CG, Levenston ME. Articular chondrocytes derived from distinct tissue zones differentially respond to in vitro oscillatory tensile loading. Osteoarthr Cartil. 2008;16(10):1228–36.PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Bleuel J, Zaucke F, Brüggemann GP, Niehoff A. Effects of cyclic tensile strain on chondrocyte metabolism: a systematic review. PLoS One. 2015;10(3):1–25.CrossRefGoogle Scholar
  58. 58.
    Thomas RS, Clarke AR, Duance VC, Blain EJ. Effects of Wnt3A and mechanical load on cartilage chondrocyte homeostasis. Arthritis Res Ther. 2011;13(R203):10.Google Scholar
  59. 59.
    Chen C, et al. Cyclic equibiaxial tensile strain alters gene expression of chondrocytes via histone deacetylase 4 shuttling. PLoS One. 2016;11(5):e0154951.PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Xu Z, Buckley MJ, Evans CH, Agarwal S. Cyclic tensile strain acts as an antagonist of IL-1 beta actions in chondrocytes. J Immunol. 2000;165(1):453–60.PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Raimondi MT, et al. Engineered cartilage constructs subject to very low regimens of interstitial perfusion. Biorheology. 2008;45(3–4):471–8.PubMedGoogle Scholar
  62. 62.
    Bueno EM, Bilgen B, Barabino GA. Hydrodynamic parameters modulate biochemical, histological, and mechanical properties of engineered cartilage. Tissue Eng Part A. 2009;15(4):773–85.PubMedCrossRefGoogle Scholar
  63. 63.
    Gemmiti CV, Guldberg RE. Shear stress magnitude and duration modulates matrix composition and tensile mechanical properties in engineered cartilaginous tissue. Biotechnol Bioeng. 2009;104(4):809–20.PubMedPubMedCentralGoogle Scholar
  64. 64.
    Fitzgerald JB, Jin M, Grodzinsky AJ. Shear and compression differentially regulate clusters of functionally related temporal transcription patterns in cartilage tissue. J Biol Chem. 2006;281(34):24095–103.PubMedCrossRefGoogle Scholar
  65. 65.
    Jin M, Frank EH, Quinn TM, Hunziker EB, Grodzinsky AJ. Tissue shear deformation stimulates proteoglycan and protein biosynthesis in bovine cartilage explants. Arch Biochem Biophys. 2001;395(1):41–8.PubMedCrossRefGoogle Scholar
  66. 66.
    Frank EH, Jin M, Loening AM, Levenston ME, Grodzinsky AJ. A versatile shear and compression apparatus for mechanical stimulation of tissue culture explants. J Biomech. 2000;33(11):1523–7.PubMedCrossRefGoogle Scholar
  67. 67.
    Nugent GE, Aneloski NM, Schmidt TA, Schumacher BL, Voegtline MS, Sah RL. Dynamic shear stimulation of bovine cartilage biosynthesis of proteoglycan 4. Arthritis Rheum. 2006;54(6):1888–96.PubMedCrossRefGoogle Scholar
  68. 68.
    Waldman SD, Spiteri CG, Grynpas MD, Pilliar RM, Kandel RA. Long-term intermittent shear deformation improves the quality of cartilaginous tissue formed in vitro. J Orthop Res. 2003;21(4):590–6.PubMedCrossRefGoogle Scholar
  69. 69.
    Fukuda K, et al. Relationship between dynamic stress field and ECM production in regenerated cartilage tissue. In: 2016 International Symposium on Micro-NanoMechatronics and Human Science (MHS), 2016, pp. 3–5.Google Scholar
  70. 70.
    Grad S, Gogolewski S, Alini M, a Wimmer M. Effects of simple and complex motion patterns on gene expression of chondrocytes seeded in 3D scaffolds. Tissue Eng. 2006;12(11):3171–9.PubMedCrossRefGoogle Scholar
  71. 71.
    Kaupp JA, Tse MY, Pang SC, Kenworthy G, Hetzler M, Waldman SD. The effect of moving point of contact stimulation on chondrocyte gene expression and localization in tissue engineered constructs. Ann Biomed Eng. 2013;41(6):1106–19.PubMedCrossRefGoogle Scholar
  72. 72.
    Guha Thakurta S, Kraft M, Viljoen HJ, Subramanian A. Enhanced depth-independent chondrocyte proliferation and phenotype maintenance in an ultrasound bioreactor and an assessment of ultrasound dampening in the scaffold. Acta Biomater. 2014;10(11):4798–810.PubMedCrossRefGoogle Scholar
  73. 73.
    Parvizi J, Wu CC, Lewallen DG, Greenleaf JF, Bolander ME. Low-intensity ultrasound stimulates proteoglycan synthesis in rat chondrocytes by increasing aggrecan gene expression. J Orthop Res. 1999;17(4):488–94.PubMedCrossRefGoogle Scholar
  74. 74.
    Noriega S, Mamedov T, Turner JA, Subramanian A. Intermittent applications of continuous ultrasound on the viability, proliferation, morphology, and matrix production of chondrocytes in 3D matrices. Tissue Eng. 2007;13(3):611–8.PubMedCrossRefGoogle Scholar
  75. 75.
    Noriega S, Hasanova G, Subramanian A. The effect of ultrasound stimulation on the cytoskeletal organization of chondrocytes seeded in three-dimensional matrices. Cells Tissues Organs. 2012;197(1):14–26.PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Gauthier BJ. The effects of mechanical vibration on human chondrocytes in vitro. MS thesis, Marquette University, 2016.Google Scholar
  77. 77.
    a Kaupp J, Waldman SD. Mechanical vibrations increase the proliferation of articular chondrocytes in high-density culture. Proc Inst Mech Eng H. 2008;222(5):695–703.PubMedCrossRefGoogle Scholar
  78. 78.
    Fanning PJ, Emkey G, Smith RJ, Grodzinsky AJ, Szasz N, Trippel SB. Mechanical regulation of mitogen-activated protein kinase signaling in articular cartilage. J Biol Chem. 2003;278(51):50940–8.PubMedCrossRefGoogle Scholar
  79. 79.
    Duda GN, et al. Mechanical quality of tissue engineered cartilage: results after 6 and 12 weeksin vivo. J Biomed Mater Res. 2000;53(6):673–7.PubMedCrossRefGoogle Scholar
  80. 80.
    Waldman SD, Grynpas MD, Pilliar RM, Kandel RA. The use of specific chondrocyte populations to modulate the properties of tissue-engineered cartilage. J Orthop Res. 2003;21(1):132–8.PubMedCrossRefGoogle Scholar
  81. 81.
    De Croos JNA, Dhaliwal SS, Grynpas MD, Pilliar RM, Kandel RA. Cyclic compressive mechanical stimulation induces sequential catabolic and anabolic gene changes in chondrocytes resulting in increased extracellular matrix accumulation. Matrix Biol. 2006;25(6):323–31.PubMedCrossRefGoogle Scholar
  82. 82.
    Waldman SD, Couto DC, Grynpas MD, Pilliar RM, Kandel RA. Multi-axial mechanical stimulation of tissue engineered cartilage : review. Eur Cell Mater. 2007;13(613):66–74.PubMedCrossRefGoogle Scholar
  83. 83.
    Grad S, Lee CR, Wimmer MA, Alini M. Chondrocyte gene expression under applied surface motion. Biorheology. 2006;43:259–69.PubMedGoogle Scholar
  84. 84.
    Stoddart MJ. Enhanced matrix synthesis in de novo, scaffold free cartilage-like tissue subjected to compression and shear. J Anat. 2006;189:503–5.Google Scholar
  85. 85.
    Weber JF, Waldman SD. Stochastic resonance is a method to improve the biosynthetic response of chondrocytes to mechanical stimulation. J Orthop Res. 2016;34(2):231–9.PubMedCrossRefGoogle Scholar
  86. 86.
    Cescon M, Gattazzo F, Chen P, Bonaldo P. Collagen VI at a glance. J Cell Sci. 2015;128(19):3525.PubMedCrossRefGoogle Scholar
  87. 87.
    Keene DR, Engvall E, Glanville RW. Ultrastructure of type VI collagen in human skin and cartilage suggests an anchoring function for this filamentous network. J Cell Biol. 1988;107(5):1995–2006.PubMedCrossRefGoogle Scholar
  88. 88.
    Söder S, Hambach L, Lissner R, Kirchner T, Aigner T. Ultrastructural localization of type VI collagen in normal adult and osteoarthritic human articular cartilage. Osteoarthr Cartil. 2002;10(6):464–70.PubMedCrossRefGoogle Scholar
  89. 89.
    Lotz MK, Otsuki S, Grogan SP, Sah R, Terkeltaub R, D’Lima D. Cartilage cell clusters. Arthritis Rheum. 2010;62(8):2206–18.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Stefan Balko
    • 1
    • 2
  • Joanna F. Weber
    • 1
    • 2
  • Stephen D. Waldman
    • 1
    • 2
  1. 1.Chemical Engineering, Faculty of Engineering and Architectural ScienceRyerson UniversityTorontoCanada
  2. 2.Li Ka Shing Knowledge Institute, St. Michael’s HospitalTorontoCanada

Personalised recommendations