Skip to main content

Wear Simulation Testing for Joint Implants

  • Chapter
  • First Online:
Orthopedic Biomaterials
  • 1208 Accesses

Abstract

Joint simulators have been used in evaluating the wear resistance of joint implants, reproducing a clinical scenario, or exploring extreme testing condition. This chapter will review the type of joint simulators available and how they have been used in various applications. The achievement and limitations of such simulation will be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mendenhall S. Hip and knee implant review. Orthop Netw News. 2017;28(3):1–24.

    Google Scholar 

  2. Affatato S, et al. Tribology and total hip joint replacement: current concepts in mechanical simulation. Med Eng Phys. 2008;30(10):1305–17.

    Article  CAS  PubMed  Google Scholar 

  3. Zietz C, et al. Wear testing of total hip replacements under severe conditions. Expert Rev Med Devices. 2015:1–18.

    Google Scholar 

  4. Fisher J, Dowson D. Tribology of total artificial joints. Proc Instn Mech Engrs. 1991;205:73–9.

    Article  CAS  Google Scholar 

  5. Liao Y-S, Benya P, McKellop H. Effect of protein lubrication on the wear properties of materials for prosthetic joints. J Biomed Mater Res. 1999;48(4):465–73.

    Article  CAS  PubMed  Google Scholar 

  6. McKellop HA, et al. Polyethylene wear in prosthetic joints. In: Dowson D, Wright V, editors. Evaluation of artificial joints. London: FS Moore Ltd; 1977. p. 109–34.

    Google Scholar 

  7. Herrera L, et al. Hip simulator evaluation of the effect of femoral head size on sequentially cross-linked acetabular liners. Wear. 2007;263(7–12):1034–7.

    Article  CAS  Google Scholar 

  8. Medley JB, et al. Kinematics of the MATCO hip simulator and issues related to wear testing of metal-metal implants. Proc Inst Mech Eng H. 1997;211(1):89–99.

    Article  CAS  PubMed  Google Scholar 

  9. Liao Y-S, McNulty D, Hanes M. Wear rate and surface morphology of UHMWPE cups are affected by the serum lubricant concentration in a hip simulation test. Wear. 2003;255(7–12):1051–6.

    Article  CAS  Google Scholar 

  10. Ali M, et al. Influence of hip joint simulator design and mechanics on the wear and creep of metal-on-polyethylene bearings. Proc Inst Mech Eng H. 2016;230(5):389–97.

    Article  PubMed  PubMed Central  Google Scholar 

  11. ISO 14242-1. Implants for surgery—wear of total hip joint prostheses—Part 1: loading and displacement parameters for wear-testing machines and corresponding environmental conditions for test; 2012.

    Google Scholar 

  12. ISO 14242-2. Implants for surgery—wear of total hip joint prostheses—Part 2: methods of measurement; 2016.

    Google Scholar 

  13. ISO 14242-3. Implants for surgery—wear of total hip joint prostheses—Part 3: loading and displacement parameters for orbital bearing type wear testing machines and corresponding environmental conditions for test; 2009.

    Google Scholar 

  14. ISO 14243-1. Implants for surgery—wear of total knee-joint prostheses—loading and displacement parameters for wear-testing machines with load control and corresponding environmental conditions for test; 2009.

    Google Scholar 

  15. ISO 14243-2. Implants for surgery—wear of total knee-joint prostheses—methods of measurement; 2009.

    Google Scholar 

  16. ISO 14243-3. Implants for surgery—wear of total knee-joint prostheses—loading and displacement parameters for wear-testing machines with displacement control and corresponding environmental conditions for test; 2004.

    Google Scholar 

  17. Schmalzried TP, et al. Quantitative assessment of walking activity after Total hip of knee replacement. J Bone Joint Surg. 1998;80-A(1):54–9.

    Article  Google Scholar 

  18. Raimondi MT, Sassi R, Pietrabissa R. A method for the evaluation of the change in volume of retrieved acetabular cups. Proc Inst Mech Eng H. 2000;214(6):577–87.

    Article  CAS  PubMed  Google Scholar 

  19. ISO/CD 14242-4. Implants for surgery—wear of total hip-joint prostheses—Part 4: testing hip prostheses under variations in component positioning which results in direct edge loading: variation in cup inclination and medial-lateral centres offset; 2017.

    Google Scholar 

  20. ASTM, F3047M-15. Standard guide for high demand hip simulator wear testing of hard-on-hard articulations.

    Google Scholar 

  21. ASTM F2582-14: Standard Test Method for impingement of acetabular prostheses.

    Google Scholar 

  22. ASTM F2003-02. Standard practice for accelerated aging of ultra-high molecular weight polyethylene after gamma irradiation in air; 2015.

    Google Scholar 

  23. McKellop H, et al. Friction and wear properties of polymer, metal, and ceramic prosthetic joint materials evaluated on a multichammel screening device. J Biomed Materials Res. 1981;15:619–53.

    Article  CAS  Google Scholar 

  24. Whitaker D, et al. Effect of gamma irradiation and head size on the wear of moderately crosslinked UHMWPE inserts with EtO sterilisation in a hip simulation study. Bone Joint J Orthop Proc. 2013;95B(Supp 34):586.

    Google Scholar 

  25. Wimmer MA, et al. Wear mechanisms in metal-on-metal bearings: the importance of tribochemical reaction layers. J Orthop Res. 2010;28(4):436–43.

    PubMed  Google Scholar 

  26. Williams S, et al. Ceramic-on-metal hip arthroplasties: a comparative in vitro and in vivo study. Clin Orthop Relat Res. 2007;465:23–32.

    PubMed  Google Scholar 

  27. Shen F-W, Lu Z, McKellop HA. Wear versus thickness and other features of 5-Mrad crosslinked UHMWPE acetabular liners. Clin Orthop Relat Res. 2011;469(2):395–404.

    Article  PubMed  Google Scholar 

  28. Wang A, Essner A, Klein R. Effect of contact stress on friction and wear of ultra-high molecular weight polyethylene in total hip replacement. Proc Inst Mech Eng H. 2001;215(2):133–9.

    Article  CAS  PubMed  Google Scholar 

  29. McEwen HMJ, et al. The influence of design, materials and kinematics on the in vitro wear of total knee replacements. J Biomech. 2005;38(2):357–65.

    Article  CAS  PubMed  Google Scholar 

  30. Wimmer MA, et al. Knee flexion and daily activities in patients following total knee replacement: a comparison with ISO standard 14243. Biomed Res Int. 2015;2015:7.

    Article  Google Scholar 

  31. Hadley M, et al. Development of a Stop-Dwell-Start (SDS) protocol for in vitro wear testing of metal-on-metal total hip replacements. Phoenix, AZ: ASTM; 2012.

    Google Scholar 

  32. Liu F, Williams S, Fisher J. Effect of microseparation on contact mechanics in metal-on-metal hip replacements—a finite element analysis. J Biomed Mater Res B Appl Biomater. 2015;103(6):1312–9.

    Article  CAS  PubMed  Google Scholar 

  33. Partridge S, et al. Evaluation of a new methodology to simulate damage and wear of polyethylene hip replacements subjected to edge loading in hip simulator testing. J Biomed Mater Res B Appl Biomater. 2017.

    Google Scholar 

  34. Liao Y-S, et al. The effect of frictional heating and forced cooling on the serum lubricant and wear of UHMW polyethylene cups against cobalt-chromium and zirconia balls. Biomaterials. 2003;24(18):3047–59.

    Article  CAS  PubMed  Google Scholar 

  35. Fitzpatrick CK, et al. Validation of a new computational 6-DOF knee simulator during dynamic activities. J Biomech. 2016;49(14):3177–84.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Liao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Liao, P. (2018). Wear Simulation Testing for Joint Implants. In: Li, B., Webster, T. (eds) Orthopedic Biomaterials . Springer, Cham. https://doi.org/10.1007/978-3-319-89542-0_6

Download citation

Publish with us

Policies and ethics