Advertisement

Fracture Fixation Biomechanics and Biomaterials

  • Scott M. Tucker
  • J. Spence Reid
  • Gregory S. Lewis
Chapter

Abstract

Surgical fracture fixation is an important part of modern orthopedic care. Implants are designed by engineers, and selected and applied by surgeons, with careful consideration of clinical, biological, biomechanical, and biomaterials principles. Clinically, a large variety of screws, plates, intramedullary nails, and external fixation devices are used. Fracture healing is a biologically complex process that may proceed down one of multiple possible pathways. Successful fracture healing, as well as implant survival, is dependent on three-dimensional biomechanics as the patient resumes activity. These biomechanics are dependent on patient variables as well as the fracture fixation construct chosen by the surgeon. Implant biomaterials must satisfy stringent biomechanical and biocompatibility requirements. Experimental and computational models enable advances in implant design, as well as our understanding of how surgeons may best apply these implants for each patient.

Keywords

Fracture fixation Orthopedic biomechanics Implant mechanics Bone healing Fatigue Failure analysis Implant materials Screw fixation Biocompatibility Computational modeling Finite element method Intramedullary nail Internal plating External fixation Translational research 

Notes

Acknowledgments

The authors gratefully acknowledge support from the AO Foundation, Switzerland (Project S-15-196 L), and the National Science Foundation/Penn State Center for Health Organization Transformation. Hwabok Wee, PhD performed many of the finite element simulations shown in figures. We also acknowledge contribution from April D. Armstrong, MD.

References

  1. 1.
    Perren S, Buchanan J. Basic concepts relevant to the design and development of the point contact fixator (PC-fix). Injury. 1995;26:1–4.CrossRefGoogle Scholar
  2. 2.
    Runyan C, Gabrick K. Biology of bone formation, fracture healing, and distraction osteogenesis. J Craniofac Surg. 2017;28:1380–9.CrossRefPubMedGoogle Scholar
  3. 3.
    Maggiano I, et al. Three-dimensional reconstruction of haversian systems in human cortical bone using synchotron radiation-based micro-CT: morphology and quantification of branching and transverse connections across age. J Anat. 2016;228:719–32.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Cheal EJ, Mansmann KA, DiGioia AM, Hayes WC, Perren SM. Role of interfragmentary strain in fracture healing: ovine model of a healing osteotomy. J Orthop Res Off Publ Orthop Res Soc. 1991;9:131–42.CrossRefGoogle Scholar
  5. 5.
    Levy S, et al. Immature myeloid cells are critical for enhancing bone fracture healing through angiogenic cascade. Bone. 2016;93:113–24.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Duda GN, et al. Interfragmentary motion in tibial osteotomies stabilized with ring fixators. Clin Orthop. 2002;396:163–72.CrossRefGoogle Scholar
  7. 7.
    Garnavos C. Treatment of aseptic non-union after intramedullary nailing without removal of the nail. Injury. 2017;48:S76–81.CrossRefPubMedGoogle Scholar
  8. 8.
    Santiago H, Zamarioli A, Neto M, Volpon J. Exposure to secondhand smoke impairs fracture healing in rats. Clin Orthop. 2017;475:894–902.CrossRefPubMedGoogle Scholar
  9. 9.
    Sathyendra V, et al. Single nucleotide polymorphisms in osteogenic genes in atrophic delayed fracture-healing: a preliminary investigation. J Bone Joint Surg Am. 2014;96:1242–8.CrossRefPubMedGoogle Scholar
  10. 10.
    Damm P, Kutzner I, Bergmann G, Rohlmann A, Schmidt H. Comparison of in vivo measured loads in knee, hip and spinal implants during level walking. J Biomech. 2017;51:128–32.CrossRefPubMedGoogle Scholar
  11. 11.
    Kienast B, et al. An electronically instrumented internal fixator for the assessment of bone healing. Bone Jt Res. 2016;5:191–7.CrossRefGoogle Scholar
  12. 12.
    Schneider E, et al. Loads acting in an intramedullary nail during fracture healing in the human femur. J Biomech. 2001;34:849–57.CrossRefPubMedGoogle Scholar
  13. 13.
    Schlecht SH, Pinto DC, Agnew AM, Stout SD. Brief communication: the effects of disuse on the mechanical properties of bone: what unloading tells us about the adaptive nature of skeletal tissue. Am J Phys Anthropol. 2012;149:599–605.CrossRefPubMedGoogle Scholar
  14. 14.
    Akhter MP, Alvarez GK, Cullen DM, Recker RR. Disuse-related decline in trabecular bone structure. Biomech Model Mechanobiol. 2011;10:423–9.CrossRefPubMedGoogle Scholar
  15. 15.
    Miner MA. Cumulative damage in fatigue. J Appl Mech. 1945;12:A159–64.Google Scholar
  16. 16.
    Wee H, Reid JS, Chinchilli VM, Lewis GS. Finite element-derived surrogate models of locked plate fracture fixation biomechanics. Ann Biomed Eng. 2017;45:668–80.CrossRefPubMedGoogle Scholar
  17. 17.
    Lenz M, Perren SM, Gueorguiev B, Höntzsch D, Windolf M. Mechanical behavior of fixation components for periprosthetic fracture surgery. Clin Biomech Bristol Avon. 2013;28:988–93.CrossRefGoogle Scholar
  18. 18.
    Fratzl P, Weinkamer R. Nature’s hierarchical materials. Prog Mater Sci. 2007;52:1263–334.CrossRefGoogle Scholar
  19. 19.
    Cowin S. Pathology of functional adaptation of bone remodeling and repair in vivo. In Bone mechanics handbook. Taylor and Francis Group; 2001.Google Scholar
  20. 20.
    Comiskey DP, MacDonald BJ, McCartney WT, Synnott K, O' Byrne J. The role of interfragmentary strain on the rate of bone healing: a new interpretation and mathematical model. J Biomech. 2010;43:2830–4.CrossRefPubMedGoogle Scholar
  21. 21.
    Augat P, et al. Shear movement at the fracture site delays healing in a diaphyseal fracture model. J Orthop Res. 2003;21:1011–7.CrossRefPubMedGoogle Scholar
  22. 22.
    Elkins J, et al. Motion predicts clinical callus formation: construct-specific finite element analysis of supracondylar femoral fractures. J Bone Jt Surg. 2016;98:276–84.CrossRefGoogle Scholar
  23. 23.
    Bottlang M, et al. Far cortical locking can improve healing of fractures stabilized with locking plates. J Bone Joint Surg Am. 2010;92:1652–60.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Claes L, Recknagel S, Ignatius A. Fracture healing under healthy and inflammatory conditions. Nat Rev Rheumatol. 2012;8:133–43.CrossRefPubMedGoogle Scholar
  25. 25.
    Augat P, et al. Early, full weightbearing with flexible fixation delays fracture healing. Clin Orthop. 1996;328:194–202.CrossRefGoogle Scholar
  26. 26.
    Schell H, et al. Mechanical induction of critically delayed bone healing in sheep: radiological and biomechanical results. J Biomech. 2008;41:3066–72.CrossRefPubMedGoogle Scholar
  27. 27.
    Hente R, Füchtmeier B, Schlegel U, Ernstberger A, Perren SM. The influence of cyclic compression and distraction on the healing of experimental tibial fractures. J Orthop Res. 2004;22:709–15.CrossRefPubMedGoogle Scholar
  28. 28.
    Claes L, Eckert-Hübner K, Augat P. The effect of mechanical stability on local vascularization and tissue differentiation in callus healing. J Orthop Res. 2002;20:1099–105.CrossRefPubMedGoogle Scholar
  29. 29.
    Lujan TJ, et al. Locked plating of distal femur fractures leads to inconsistent and asymmetric callus formation. J Orthop Trauma. 2010;24:156–62.CrossRefPubMedGoogle Scholar
  30. 30.
    Nassiri M, Macdonald B, O’Byrne JM. Computational modelling of long bone fractures fixed with locking plates - how can the risk of implant failure be reduced? J Orthop. 2013;10:29–37.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Beltran MJ, Collinge CA, Gardner MJ. Stress modulation of fracture fixation implants: J. Am Acad Orthop Surg. 2016;24:711–9.CrossRefGoogle Scholar
  32. 32.
    Pruitt LA, Chakravartula AM. Mechanics of biomaterials: fundamental principles for implant design. Cambridge University Press, 2011.Google Scholar
  33. 33.
    Morehead J, Holt G. Soft-tissue response to synthetic biomaterials. Otolaryngol Clin N Am. 1994;27:195–201.Google Scholar
  34. 34.
    Nuss KM, von Rechenberg B. Biocompatibility issues with modern implants in bone—a review for clinical orthopedics. Open Orthop J. 2008;2:66–78.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Wright T, Maher S. Biomaterials. In: Orthopaedic basic science 65–85 American Academy of Orthopaedic Surgeons, 2007.Google Scholar
  36. 36.
    Ungersboeck A, Geret V, Pohler O, Schuetz M, Wuest W. Tissue reaction to bone plates made of pure titanium: a prospective, quantitative clinical study. J Mater Sci Mater Med. 1995;6:223–9.CrossRefGoogle Scholar
  37. 37.
    Arens S, et al. Influence of materials for fixation implants on local infection. J Bone Jt Surg Br. 1996;78:647–51.CrossRefGoogle Scholar
  38. 38.
    Uckan S, Veziroglu F, Soydan SS, Uckan E. Comparison of stability of resorbable and titanium fixation systems by finite element analysis after maxillary advancement surgery. J Craniofac Surg. 2009;20:775–9.CrossRefPubMedGoogle Scholar
  39. 39.
    Marasco SF, Liovic P, Šutalo ID. Structural integrity of intramedullary rib fixation using a single bioresorbable screw. J Trauma Acute Care Surg. 2012;73:668–73.CrossRefPubMedGoogle Scholar
  40. 40.
    Böstman O, Pihlajamäki H. Clinical biocompatibility of biodegradable orthopaedic implants for internal fixation: a review. Biomaterials. 2000;21:2615–21.CrossRefPubMedGoogle Scholar
  41. 41.
    Schliemann B, et al. PEEK versus titanium locking plates for proximal humerus fracture fixation: a comparative biomechanical study in two- and three-part fractures. Arch Orthop Trauma Surg. 2017;137:63–71.CrossRefPubMedGoogle Scholar
  42. 42.
    Bottlang M, Doornink J, Fitzpatrick DC, Madey SM. Far cortical locking can reduce stiffness of locked plating constructs while retaining construct strength. J Bone Jt Surg Am. 2009;91:1985–94.CrossRefGoogle Scholar
  43. 43.
    Bottlang M, et al. Dynamic stabilization of simple fractures with active plates delivers stronger healing than conventional compression plating. J Orthop Trauma. 2017;31:71–7.CrossRefPubMedGoogle Scholar
  44. 44.
    Piccinini M, Cugnoni J, Botsis J, Ammann P, Wiskott A. Influence of gait loads on implant integration in rat tibiae: experimental and numerical analysis. J Biomech. 2014;47:3255–63.CrossRefPubMedGoogle Scholar
  45. 45.
    Gardner MJ, Ricciardi BF, Wright TM, Bostrom MP, van der Meulen MCH. Pause insertions during cyclic in vivo loading affect bone healing. Clin Orthop. 2008;466:1232–8.CrossRefPubMedGoogle Scholar
  46. 46.
    Tsuji K, et al. BMP2 activity, although dispensable for bone formation, is required for the initiation of fracture healing. Nat Genet. 2006;38:1424–9.CrossRefPubMedGoogle Scholar
  47. 47.
    McBride-Gagyi SH, McKenzie JA, Buettmann EG, Gardner MJ, Silva MJ. BMP2 conditional knockout in osteoblasts and endothelial cells does not impair bone formation after injury or mechanical loading in adult mice. Bone. 2015;81:533–43.CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Helwig P, et al. Finite element analysis of four different implants inserted in different positions to stabilize an idealized trochanteric femoral fracture. Injury. 2009;40:288–95.CrossRefPubMedGoogle Scholar
  49. 49.
    Perez A, Mahar A, Negus C, Newton P, Impelluso T. A computational evaluation of the effect of intramedullary nail material properties on the stabilization of simulated femoral shaft fractures. Med Eng Phys. 2008;30:755–60.CrossRefPubMedGoogle Scholar
  50. 50.
    Fouad H. Assessment of function-graded materials as fracture fixation bone-plates under combined loading conditions using finite element modelling. Med Eng Phys. 2011;33:456–63.CrossRefPubMedGoogle Scholar
  51. 51.
    Feerick EM, Kennedy J, Mullett H, FitzPatrick D, McGarry P. Investigation of metallic and carbon fibre PEEK fracture fixation devices for three-part proximal humeral fractures. Med Eng Phys. 2013;35:712–22.CrossRefPubMedGoogle Scholar
  52. 52.
    Favre P, Kloen P, Helfet DL, Werner CML. Superior versus anteroinferior plating of the clavicle: a finite element study. J Orthop Trauma. 2011;25:661–5.CrossRefPubMedGoogle Scholar
  53. 53.
    Tupis TM, Altman GT, Altman DT, Cook HA, Miller MC. Femoral bone strains during antegrade nailing: a comparison of two entry points with identical nails using finite element analysis. Clin Biomech Bristol Avon. 2012;27:354–9.CrossRefGoogle Scholar
  54. 54.
    Shih K-S, Hsu C-C, Hsu T-P. A biomechanical investigation of the effects of static fixation and dynamization after interlocking femoral nailing: a finite element study. J Trauma Acute Care Surg. 2012;72:E46–53.CrossRefPubMedGoogle Scholar
  55. 55.
    Brown CJ, Sinclair RA, Day A, Hess B, Procter P. An approximate model for cancellous bone screw fixation. Comput Methods Biomech Biomed Engin. 2013;16:443–50.CrossRefPubMedGoogle Scholar
  56. 56.
    MacLeod AR, Pankaj P, Simpson AHRW. Does screw-bone interface modelling matter in finite element analyses? J Biomech. 2012;45:1712–6.CrossRefPubMedGoogle Scholar
  57. 57.
    Wang H, et al. Accuracy of individual trabecula segmentation based plate and rod finite element models in idealized trabecular bone microstructure. J Biomech Eng. 2013;135:044502.CrossRefPubMedGoogle Scholar
  58. 58.
    Zdero R, Olsen M, Bougherara H, Schemitsch EH. Cancellous bone screw purchase: a comparison of synthetic femurs, human femurs, and finite element analysis. Proc Inst Mech Eng H. 2008;222(1175–1183):1175–83.CrossRefPubMedGoogle Scholar
  59. 59.
    Leonidou A, et al. The biomechanical effect of bone quality and fracture topography on locking plate fixation in periprosthetic femoral fractures. Injury. 2015;46:213–7.CrossRefPubMedGoogle Scholar
  60. 60.
    Ruedi T, Buckley R, Moran C. AO principles of fracture management. 1. In: AO publishing; 2007.Google Scholar
  61. 61.
    Lewis G, et al. Tangential biocortical locked fixation improves stability in Vancouver B1 periprosthetic femur fractures: a biomechanical study. J Orthop Trauma. 2015;29:e364–e370.CrossRefPubMedCentralGoogle Scholar
  62. 62.
    Tidwell JE, et al. The biomechanical cost of variable angle locking screws. Injury. 2016;47:1624–30.CrossRefPubMedGoogle Scholar
  63. 63.
    Kandemir U, et al. Implant material, type of fixation at the shaft and position of plate modify biomechanics of distal femur plate Osteosynthesis. J Orthop Trauma. 2017;1:e241–6. https://doi.org/10.1097/BOT.0000000000000860.CrossRefGoogle Scholar
  64. 64.
    Wilson WK, Morris RP, Ward AJ, Carayannopoulos NL, Panchbhavi VK. Torsional failure of carbon Fiber composite plates versus stainless steel plates for comminuted distal fibula fractures. Foot Ankle Int. 2016;37:548–53.CrossRefPubMedGoogle Scholar
  65. 65.
    Manteghi S, Mahboob Z, Fawaz Z, Bougherara H. Investigation of the mechanical properties and failure modes of hybrid natural fiber composites for potential bone fracture fixation plates. J Mech Behav Biomed Mater. 2017;65:306–16.CrossRefPubMedGoogle Scholar
  66. 66.
    Smith WR, Ziran BH, Anglen JO, Stahel PF. Locking plates: tips and tricks. JBJS. 2007;89:2298–307.Google Scholar
  67. 67.
    Wee H, Reid J, Lewis G. Parametric and surrogate modeling of internal fixation of femur fractures demonstrate influence of surgical and patient variables. Ann Biomed Eng. 2016;44:3719–49.CrossRefGoogle Scholar
  68. 68.
    Horn J, Schlegel U, Krettek C, Ito K. Infection resistance of unreamed solid, hollow slotted and cannulated intramedullary nails: an in-vivo experimental comparison. J Orthop Res. 2005;23:810–5.CrossRefPubMedGoogle Scholar
  69. 69.
    Wehner T, Penzkofer R, Augat P, Claes L, Simon U. Improvement of the shear fixation stability of intramedullary nailing. Clin Biomech Bristol Avon. 2011;26:147–51.CrossRefGoogle Scholar
  70. 70.
    Mahar AT, Lee SS, Lalonde FD, Impelluso T, Newton PO. Biomechanical comparison of stainless steel and titanium nails for fixation of simulated femoral fractures. J Pediatr Orthop. 2004;24:638–41.CrossRefPubMedGoogle Scholar
  71. 71.
    Wang CJ, Brown CJ, Yettram AL, Procter P. Intramedullary nails: some design features of the distal end. Med Eng Phys. 2003;25:789–94.CrossRefPubMedGoogle Scholar
  72. 72.
    Gallagher D, et al. Is distal locking necessary? A biomechanical investigation of intramedullary nailing constructs for intertrochanteric fractures. J Orthop Trauma. 2013;27:373–8.CrossRefPubMedGoogle Scholar
  73. 73.
    Simpson DJ, Brown CJ, Yettram AL, Procter P, Andrew GJ. Finite element analysis of intramedullary devices: the effect of the gap between the implant and the bone. Proc Inst Mech Eng H. 2008;222(333–345):333–45.CrossRefPubMedGoogle Scholar
  74. 74.
    Penzkofer R, et al. Influence of intramedullary nail diameter and locking mode on the stability of tibial shaft fracture fixation. Arch Orthop Trauma Surg. 2009;129:525–31.CrossRefPubMedGoogle Scholar
  75. 75.
    Cheung G, Zalzal P, Bhandari M, Spelt J, Papini M. Finite element analysis of a femoral retrograde intramedullary nail subject to gait loading. Med Eng Phys. 2004;26:93–108.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Scott M. Tucker
    • 1
  • J. Spence Reid
    • 1
  • Gregory S. Lewis
    • 1
  1. 1.Department of Orthopedics & RehabilitationPenn State College of MedicineHersheyUSA

Personalised recommendations