Advertisement

Biological Fixation: The Role of Screw Surface Design

  • Robert S. Liddell
  • John E. Davies
Chapter

Abstract

Screws are a type of “simple machine”. They have the ability to transform rotational torque into a linear force along the long axis of the screw body. When properly designed they can be easily placed yet resist large loads, proving useful for the fixation of bone fractures or as a stable base for dental prosthetics. However, bone is a living tissue that, if damaged, is resorbed and remodelled, which potentially diminishes the initial stability of the implant. Thus, the long-term placement of an implant in bone requires the re-establishment of homeostasis in the peri-implant region to support the implant—the process of osseointegration. The rate at which such bony homeostasis is achieved, and how strongly the formed interface can anchor the implant, is dependent on the implant geometry, micro-topography and nano-topography. We describe herein the process of osseointegration and how it is influenced by the various scale ranges of implant topography. In addition a curve fitting approach is described which has been able to quantify the rate and strength of osseointegration.

Keywords

Osseointegration Implant topography Nanotopography Microtopography Macrotopography Implant geometry Simple machines Screw implants Screw design Screw components Force vectors 

References

  1. 1.
    Sung IH, Lee HS, Kim DE. Effect of surface topography on the frictional behavior at the micro/nano-scale. Wear. 2003;254(10):1019–31.CrossRefGoogle Scholar
  2. 2.
    Gachot C, Rosenkranz A, Reinert L, Ramos-Moore E, Souza N, Müser MH, Mücklich F. Dry friction between laser-patterned surfaces: role of alignment, structural wavelength and surface chemistry. Tribol Lett. 2013;49(1):193–202.CrossRefGoogle Scholar
  3. 3.
    Kydd WL, Daly CH. Bone-titanium implant response to mechanical stress. J Prosthet Dent. 1976;35(5):567–71.CrossRefPubMedGoogle Scholar
  4. 4.
    Dalley S, Oleson JP. Sennacherib, archimedes, and the water screw: the context of invention in the ancient the context of invention in the ancient world. Source Technol Cult. 2003;44(1):1–26.CrossRefGoogle Scholar
  5. 5.
    Kravetz RE. Vaginal speculum. Am J Gastroenterol. 2006;101(11):2456.CrossRefPubMedGoogle Scholar
  6. 6.
    Medical and Surgical Reporter. Speculum from pompeii. Am Period. 1886;55(16):509.Google Scholar
  7. 7.
    Rolt LTC. A short history of machine tools. Cambridge: The MIT Press; 1965.Google Scholar
  8. 8.
    Rybczynski W. One good turn: a natural history of the screwdriver and the screw. New York: Scribner; 2000.Google Scholar
  9. 9.
    Cucel L, Rigaud R. Des vis métalliques enfoncées dans les tissues des os, pour le traitement de certaines fractures. Rev Med Chir Paris. 1850;8:113–4.Google Scholar
  10. 10.
    Hansmann C. Eine neue methode der fixirung der fragmente bei complicirten fracturen. Verhandlungen der Dtsch Gesellschaft fur Chir. 1886;15:134–7.Google Scholar
  11. 11.
    Gotman I. Characteristics of metals used in implants. J Endourol. 1997;11(6):383–9.CrossRefPubMedGoogle Scholar
  12. 12.
    Sherman WO. Vanadium steel bone plates and screws. Surg Gynocol Obstet. 1912;12:629–34.Google Scholar
  13. 13.
    Key JA. Stainless steel and vitallium in internal fixation of bone: a comparison. Arch Surg. 1941;43(4):615–26.CrossRefGoogle Scholar
  14. 14.
    Fisher AA, Shapiro A. Allergic eczematous contact dermatitis due to metallic nickel. J Am Med Assciation. 1956;161(8):717–21.CrossRefGoogle Scholar
  15. 15.
    Roberts TT, Prummer CM, Papaliodis DN, Uhl RL, Wagner TA. History of the orthopedic screw. Orthopedics. 2013;36(1):12–4.CrossRefPubMedGoogle Scholar
  16. 16.
    Venable CH, Struck WG. Electrolysis controlling factor in the use of metals in treating fractures. J Am Med Assoc. 1938;15:1349–52.CrossRefGoogle Scholar
  17. 17.
    Bothe R, Beaton L, Davenport H. Reaction of bone to multiple metallic implants. Surg Gynocol Obstet. 1940;71:598–602.Google Scholar
  18. 18.
    Beder OE, Stevenson JK, Jones TW. A further investigation of the surgical application of titanium metal in dogs. Surgery. 1957;41(6):1012–5.PubMedGoogle Scholar
  19. 19.
    Manam NS, Harun WSW, Shri DNA, Ghani SAC, Kurniawan T, Ismail MH, Ibrahim I. Study of corrosion in biocompatible metals for implants: a review. J Alloys Compd. 2017;701:698–715.CrossRefGoogle Scholar
  20. 20.
    Mavrogenis AF, Papagelopoulos PJ, Babis GC. Osseointegration of Cobalt-chrome alloy implants. J Long-Term Eff Med Implants. 2011;21(4):349–58.CrossRefPubMedGoogle Scholar
  21. 21.
    Geetha M, Singh AK, Asokamani R, Gogia AK. Ti based biomaterials, the ultimate choice for orthopaedic implants - a review. Prog Mater Sci. 2009;54(3):397–425.CrossRefGoogle Scholar
  22. 22.
    Simpkins JE, Mioduszewski P, Stratton LW. Studies of chromium gettering. J Nucl Mater. 1982;111:827–30.CrossRefGoogle Scholar
  23. 23.
    Salnikow K, Zhitkovich A. Genetic and epigenetic mechanisms in metal carcinogenesis and cocarcinogenesis: nickel, arsenic, and chromium. Chem Res Toxicol. 2008;21(1):28–44.CrossRefPubMedGoogle Scholar
  24. 24.
    Costa M, Zhuang Z, Huang X, Cosentino S, Klein CB, Salnikow K. Molecular mechanisms of nickel carcinogenesis. Sci Total Environ. 1994;148:191–9.CrossRefPubMedGoogle Scholar
  25. 25.
    Pearce AI, Pearce SG, Schwieger K, Milz S, Schneider E, Archer CW, Richards RG. Effect of surface topography on removal of cortical bone screws in a novel sheep model. J Orthop Res. 2008;26(10):1377–83.CrossRefPubMedGoogle Scholar
  26. 26.
    Hallab NJ, Jacobs JJ. Orthopedic implant fretting corrosion. Corros Rev. 2003;21(2–3):183–213.Google Scholar
  27. 27.
    Callen BW, Lowenberg BF, Lugowski S, Sodhi RNS, Davies JE. Nitric acid passivation of Ti6Al4V reduces thickness of surface oxide layer and increases trace element release. J Biomed Mater Res. 1995;29(3):279–90.CrossRefPubMedGoogle Scholar
  28. 28.
    Masmoudi M, Capek D, Abdelhedi R, El Halouani F, Wery M. Application of surface response analysis to the optimisation of nitric passivation of cp titanium and Ti6Al4V. Surf Coatings Technol. 2006;200(24):6651–8.CrossRefGoogle Scholar
  29. 29.
    Szmukler-Moncler S, Salama H, Reingewirtz Y, Dubruille JH. Timing of loading and effect of micromotion on bone – dental implant interface : review of experimental literature. J Biomed Res. 1998;43(2):192–203.CrossRefGoogle Scholar
  30. 30.
    Oryan A, Alidadi S, Moshiri A. Platelet-rich plasma for bone healing and regeneration. Expert Opin. Biol Ther. 2016;16(2):213-32.Google Scholar
  31. 31.
    Fiedler J, Etzel N, Brenner RE. To go or not to go: migration of human mesenchymal progenitor cells stimulated by isoforms of PDGF. J Cell Biochem. 2004;93(5):990–8.CrossRefPubMedGoogle Scholar
  32. 32.
    Fiedler J, Röderer G, Günther KP, Brenner RE. BMP-2, BMP-4, and PDGF-bb stimulate chemotactic migration of primary human mesenchymal progenitor cells. J Cell Biochem. 2002;87(3):305–12.CrossRefPubMedGoogle Scholar
  33. 33.
    Lind M. Growth factors: possible new clinical tools. A review. Acta Orthop Scand. 1996;67(4):407–17.CrossRefPubMedGoogle Scholar
  34. 34.
    Green D. Coagulation cascade. Hemodial Int. 2006;10:S2–4.CrossRefPubMedGoogle Scholar
  35. 35.
    Oprea WE, Karp JM, Hosseini MM, Davies JE. Effect of platelet releasate on bone cell migration and recruitment in vitro. J Craniofac Surg. 2003;14(3):292–300.CrossRefPubMedGoogle Scholar
  36. 36.
    Anil S, Anand PS, Alghamdi H, Jansen JA. Dental implant surface enhancement and osseointegration. In: Turkyilmaz I. Implant dentistry - a rapidly evolving practice; 2011. p. 83–108.Google Scholar
  37. 37.
    Davies JE. Understanding peri-implant endosseous healing. J Dent Educ. 2003;67(8):932–49.PubMedGoogle Scholar
  38. 38.
    Davies JE. Bone bonding at natural and biomaterial surfaces. Biomaterials. 2007;28(34):5058–67.CrossRefPubMedGoogle Scholar
  39. 39.
    Davies JE. Mechanisms of endosseous integration. Int J Prosthodont. 1998;11(5):391–401.PubMedGoogle Scholar
  40. 40.
    Baht GS, Hunter GK, Goldberg HA. Bone sialoprotein-collagen interaction promotes hydroxyapatite nucleation. Matrix Biol. 2008;27(7):600–8.CrossRefPubMedGoogle Scholar
  41. 41.
    Martin TJ. Bone remodelling : its local regulation and the emergence of bone fragility. Best Pract Res Clin Endocrinol Metab. 2008;22(5):701–22.CrossRefPubMedGoogle Scholar
  42. 42.
    Xie H, Cui Z, Wang L, Xia Z, Hu Y, Xian L, Li C, Xie L, Crane J, Wan M, Zhen G, Bian Q, Yu B, Chang W, Qiu T, Pickarski M, Duong LT, Windle JJ, Luo X, Liao E, Cao X. PDGF-BB secreted by preosteoclasts induces angiogenesis during coupling with osteogenesis. Nat Med. 2014;20(11):1270–8.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Tang Y, Wu X, Lei W, Pang L, Wan C, Shi Z, Zhao L, Nagy TR, Peng X, Hu J, Feng X, Van Hul W, Wan M, Cao X. TGF-β1–induced migration of bone mesenchymal stem cells couples bone resorption with formation. Nat Med. 2009;15(7):757–65.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Burr DB, Schaffler MB, Frederickson RG. Composition of the cement line and its possible mechanical role as a local interface in human compact bone. J Biomech. 1988;21(11):939–45.CrossRefPubMedGoogle Scholar
  45. 45.
    Roberts WE. Bone tissue interface. J Dent Educ. 1988;52(12):804–9.PubMedGoogle Scholar
  46. 46.
    Saghiri MA, Asatourian A, Garcia-Godoy F, Sheibani N. The role of angiogenesis in implant dentistry part I: review of titanium alloys, surface characteristics and treatments. Med Oral Patol Oral Cir Bucal. 2016;21(4):e514–25.PubMedPubMedCentralGoogle Scholar
  47. 47.
    Sibonga JD, Evans HJ, Sung HG, Spector ER, Lang TF, Oganov VS, Bakulin AV, Shackelford LC, LeBlanc AD. Recovery of spaceflight-induced bone loss: bone mineral density after long-duration missions as fitted with an exponential function. Bone. 2007;41(6):973–8.CrossRefPubMedGoogle Scholar
  48. 48.
    McClanahan TR, Graham NAJ, Calnan JM, MacNeil MA. Toward pristine biomass: reef fish recovery in coral reef marine protected areas in Kenya. Ecol Appl. 2007;17(4):1055–67.CrossRefPubMedGoogle Scholar
  49. 49.
    Savin WM, Davidson DM, Haskell WL. Autonomic contribution to heart rate recovery from exercise in humans. J Appl Physiol. 1982;53(6):1572–5.CrossRefPubMedGoogle Scholar
  50. 50.
    Liddell R, Ajami E, Davies JE. Tau (τ): a new parameter to assess the osseointegration potential of an implant surface. Int J Oral Maxillofac Implants. 2017;32(1):102–12.CrossRefPubMedGoogle Scholar
  51. 51.
    Mendonça G, Mendonça DBS, Simões LGP, Araújo AL, Leite ER, Duarte WR, Aragão FJL, Cooper LF. The effects of implant surface nanoscale features on osteoblast-specific gene expression. Biomaterials. 2009;30(25):4053–62.CrossRefPubMedGoogle Scholar
  52. 52.
    Vincent K, Durrant MC. A structural and functional model for human bone sialoprotein. J Mol Graph Model. 2013;39:108–17.CrossRefPubMedGoogle Scholar
  53. 53.
    Davies JE, Mendes VC, Ko JCH, Ajami E. Topographic scale-range synergy at the functional bone/implant interface. Biomaterials. 2014;35(1):25–35.CrossRefPubMedGoogle Scholar
  54. 54.
    Coelho PG, Zavanelli RA, Salles MB, Yeniyol S, Tovar N, Jimbo R. Enhanced bone bonding to nanotextured implant surfaces at a short healing period : a biomechanical tensile testing. Implant Dent. 2016;25(3):322–7.CrossRefPubMedGoogle Scholar
  55. 55.
    Yamada M, Ueno T, Minamikawa H, Ikeda T, Nakagawa K, Ogawa T. Early-stage osseointegration capability of a submicrofeatured titanium surface created by microroughening and anodic oxidation. Clin Oral Implants Res. 2013;24(9):991–1001.PubMedGoogle Scholar
  56. 56.
    Davies JE, Ajami E, Moineddin R, Mendes VC. The roles of different scale ranges of surface implant topography on the stability of the bone/implant interface. Biomaterials. 2013;34(14):3535–46.CrossRefPubMedGoogle Scholar
  57. 57.
    Bjursten LM, Rasmusson L, Oh S, Smith GC, Brammer KS, Jin S. Titanium dioxide nanotubes enhance bone bonding in vivo. J Biomed Mater Res A. 2010;92(3):1218–24.PubMedGoogle Scholar
  58. 58.
    Huang Q, Yang Y, Zheng D, Song R, Zhang Y, Jiang P, Vogler EA, Lin C. Effect of construction of TiO2 nanotubes on platelet behaviors: structure-property relationships. Acta Biomater. 2017;51:505–12.CrossRefPubMedGoogle Scholar
  59. 59.
    Park JY, Gemmell CH, Davies JE. Platelet interactions with titanium: modulation of platelet activity by surface topography. Biomaterials. 2001;22(19):2671–82.CrossRefPubMedGoogle Scholar
  60. 60.
    Kikuchi L, Park JY, Victor C, Davies JE. Platelet interactions with calcium-phosphate-coated surfaces. Biomaterials. 2005;26(26):5285–95.CrossRefPubMedGoogle Scholar
  61. 61.
    Refai AK, Textor M, Brunette DM, Waterfield JD. Effect of titanium surface topography on macrophage activation and secretion of proinflammatory cytokines and chemokines. J Biomed Mater Res A. 2004;70:194–205.CrossRefPubMedGoogle Scholar
  62. 62.
    Kalajzic Z, Li H, Wang LP, Jiang X, Lamothe K, Adams DJ, Aguila HL, Rowe DW, Kalajzic I. Use of an alpha-smooth muscle actin GFP reporter to identify an osteoprogenitor population. Bone. 2008;43(3):501–10.CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Brett PM, Harle J, Salih V, Mihoc R, Olsen I, Jones FH, Tonetti M. Roughness response genes in osteoblasts. Bone. 2004;35(1):124–33.CrossRefPubMedGoogle Scholar
  64. 64.
    Zhao L, Mei S, Chu PK, Zhang Y, Wu Z. The influence of hierarchical hybrid micro/nano-textured titanium surface with titania nanotubes on osteoblast functions. Biomaterials. 2010;31(19):5072–82.CrossRefPubMedGoogle Scholar
  65. 65.
    Halldin A, Jimbo R, Johansson CB, Gretzer C, Jacobsson M. Improved osseointegration and interlocking capacity with dual acid-treated implants: a rabbit study. Clin Oral Implants Res. 2016;27(1):22–30.CrossRefPubMedGoogle Scholar
  66. 66.
    Shah FA, Johansson ML, Omar O, Simonsson H, Palmquist A, Thomsen P. Laser-modified surface enhances osseointegration and biomechanical anchorage of commercially pure titanium implants for bone-anchored hearing systems. PLoS One. 2016;11(6):e0157504.CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Gotfredsen K, Berglundh T, Lindhe J. Anchorage of titanium implants with different surface characteristics: an experimental study in rabbits. Clin Implant Dent Relat Res. 2000;2(3):120–8.CrossRefPubMedGoogle Scholar
  68. 68.
    Vandamme K, Naert I, Vander Sloten J, Puers R, Duyck J. Effect of implant surface roughness and loading on peri-implant bone formation. J Periodontol. 2008;79(1):150–7.CrossRefPubMedGoogle Scholar
  69. 69.
    Kan JYK, Rungcharassaeng K, Kim J, Lozada JL, Goodacre CJ. Factors affecting the survival of implants placed in grafted maxillary sinuses: a clinical report. J Prosthet Dent. 2002;87(5):485–9.CrossRefPubMedGoogle Scholar
  70. 70.
    Chamay A, Tschantz P. Mechanical influences in bone remodeling. Experimental research on Wolff’s law. J Biomech. 1972;5(2):173–80.CrossRefPubMedGoogle Scholar
  71. 71.
    Walter A, Winsauer H, Marcé-Nogué J, Mojal S, Puigdollers A. Design characteristics, primary stability and risk of fracture of orthodontic mini-implants: pilot scan electron microscope and mechanical studies. Med Oral Patol Oral Cir Bucal. 2013;18(5):e804–10.CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Bianco R-J, Arnoux P-J, Wagnac E, Mac-Thiong J-M, Aubin C-E. Minimizing pedicle screw pullout risks: a detailed biomechanical analysis of screw design and placement. Clin Spine Surg. 2017;30(3):226–32.CrossRefGoogle Scholar
  73. 73.
    Migliorati M, Benedicenti S, Signori A, Drago S, Cirillo P, Barberis F, Silvestrini Biavati A. Thread shape factor: evaluation of three different orthodontic miniscrews stability. Eur J Orthod. 2013;35(3):401–5.CrossRefPubMedGoogle Scholar
  74. 74.
    Alkaly RN, Bader DL. The effect of transpedicular screw design on its performance in vertebral bone under tensile loads: a parametric study. Clin Spine Surg. 2016;29(10):433–40.CrossRefPubMedGoogle Scholar
  75. 75.
    Ma P, Liu H, Li D, Lin S, Shi Z, Peng Q. Influence of helix angle and denisty on primary stability of immediatelt loaded dental implants: three-dimensional finite element analysis. Chinese J Stomatol. 2007;42(10):618–21.Google Scholar
  76. 76.
    Geng JP, Ma QS, Xu W, Tan KBC, Liu GR. Finite element analysis of four thread-form configurations in a stepped screw implant. J Oral Rehabil. 2004;31(3):233–9.CrossRefPubMedGoogle Scholar
  77. 77.
    Chun H-J, Cheong S-Y, Han J-H, Heo S-J, Chung J-P, Rhyu I-C, Choi Y-C, Baik H-K, Ku Y, Kim M-H. Evaluation of design parameters of osseointegrated dental implants using finite element analysis. J Oral Rehabil. 2002;29(1998):565–74.CrossRefPubMedGoogle Scholar
  78. 78.
    Hall J, Miranda-Burgos P, Sennerby L. Stimulation of directed bone growth at oxidized titanium implants by macroscopic grooves: an in vivo study. Clin Implant Dent Relat Res. 2005;7(Suppl 1):S76–82.CrossRefPubMedGoogle Scholar
  79. 79.
    Scarano A, Degidi M, Perrotti V, Degidi D, Piattelli A, Iezzi G. Experimental evaluation in rabbits of the effects of thread concavities in bone formation with different titanium implant surfaces. Clin Implant Dent Relat Res. 2014;16(4):572–81.CrossRefPubMedGoogle Scholar
  80. 80.
    Moreo P, García-Aznar JM, Doblaré M. Bone ingrowth on the surface of endosseous implants. Part 2: theoretical and numerical analysis. J Theor Biol. 2009;260(1):13–26.CrossRefPubMedGoogle Scholar
  81. 81.
    Moreo P, García-Aznar JM, Doblaré M. Bone ingrowth on the surface of endosseous implants. Part 1: mathematical model. J Theor Biol. 2009;260(1):1–12.CrossRefPubMedGoogle Scholar
  82. 82.
    Kim JW, Baek SH, Kim TW, Il Chang Y. Comparison of stability between cylindrical and conical type mini-implants. Angle Orthod. 2008;78(4):692–8.CrossRefPubMedGoogle Scholar
  83. 83.
    Geng JP, Xu W, Tan KBC, Liu GR. Finite element analysis of an osseointegrated stepped screw dental implant. J Oral Implantol. 2004;30(4):223–33.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Faculty of DentistryUniversity of TorontoTorontoCanada
  2. 2.Institute of Biomaterials and Biomedical EngineeringUniversity of TorontoTorontoCanada

Personalised recommendations