Advertisement

Bioresorbable Materials for Orthopedic Applications (Lactide and Glycolide Based)

  • Balaji Prabhu
  • Andreas Karau
  • Andrew Wood
  • Mahrokh Dadsetan
  • Harald Liedtke
  • Todd DeWitt
Chapter

Abstract

A material capable of serving a purpose and then disappearing within the human body is no magic folklore but based on years of rigorous scientific evidence, proven clinical data, and wide commercial use. With over five decades of clinical use as materials for orthopedic applications, these types of materials, known as bioresorbable materials, continue to find use in novel applications such as sutures, screws, stents, scaffolds, and even synthetic skin. Their continued development can be attributed to advancements in novel synthesis techniques, processing technologies, implant design development, and innovative surgical techniques. This has resulted in growing interest for use of these materials in regenerative medicine and patient-specific treatments in the orthopaedic space. With increasing life expectancy, more active lifestyles, younger patient demographics, faster healing, advanced robotic surgical techniques, and reduced hospitalization costs, the need for ‘biologically smart materials’ is continually on the rise. Strategic selection and optimization of a bioresorbable material for a specific application meets this needs leading to the implant effectively serving its purpose in vivo and being able to smartly remove itself without incurring any extraneous effort from the native biological system. Among this class of materials, those that are based on lactide and glycolide have seen the most expansive development and subsequent clinical use.

Keywords

Bioresorbable Polymer Lactide Glycolide Poly(lactic-co-glycolic acid) Calcium phosphate Mechanical performance Bioactivity 

Notes

Acknowledgement

The authors wish to acknowledge the support provided by the medical device industry manufacturers, academic journals, Evonik Industries colleagues, and staff of the Evonik Project House Medical Devices for their help in the completion of this work.

References

  1. 1.
    Freed LE, et al. Biodegradable polymer scaffolds for tissue engineering. Bio/Technology. 1994;12:689–93.PubMedGoogle Scholar
  2. 2.
    Bischoff CA, Walden P. Ueber das Glycolid und seine Homologen. Chem Ber. 1893;26:262–5.CrossRefGoogle Scholar
  3. 3.
    Frazza EJ, Schmitt EE. A new absorbable suture. J Biomed Mater Res Symp. 1971;1:43–58.CrossRefGoogle Scholar
  4. 4.
    Buchanan FJ. Degradation rate of bioresorbable materials: prediction and evaluation. In: Buchanan FJ, editor. , vol. 1. Sawston: Woodhead Publishing; 2008.CrossRefGoogle Scholar
  5. 5.
    Ahsan T, Sah RL. Biomechanics of integrative cartilage repair. Osteoarthr Cartil. 1999;7:29–40.PubMedCrossRefGoogle Scholar
  6. 6.
    Yaszemski MJ, et al. In vitro degradation of poly(propylene fumarate)- based composite materials. Biomaterials. 1996;17:2127–30.PubMedCrossRefGoogle Scholar
  7. 7.
    Kellomäki M, Törmälä P. Processing of resorbable poly-α-hydroxy acids for use as tissue-engineering scaffolds. In: Hollander AP, Hatton PV, editors. Biopolymer methods in tissue engineering. Totowa, NJ: Humana Press; 2004. p. 1–10.Google Scholar
  8. 8.
    Yu NYC, et al. Biodegradable poly(α-hydroxy acid) polymer scaffolds for bone tissue engineering. J Biomed Mater Res B Appl Biomater. 2010;93B(1):285–95.Google Scholar
  9. 9.
    Albertsson AC, Varma IK. Recent developments in ring opening polymerization of lactones for biomedical applications. Biomacromolecules. 2003;4(6):1466–86.PubMedCrossRefGoogle Scholar
  10. 10.
    Gajria AM, et al. Miscibility and biodegradability of blends of poly(lactic acid) and poly(vinyl acetate). Polymer. 1996;37(3):437–44.CrossRefGoogle Scholar
  11. 11.
    Seal BL, Otero TC, Panitch A. Polymeric biomaterials for tissue and organ regeneration. Mater Sci Eng R Rep. 2001;34(4):147–230.CrossRefGoogle Scholar
  12. 12.
    Pitt CG. Poly-e-caprolactone and its copolymers. In: Chasin M, Langer R, editors. Biodegradable polymers as drug delivery systems. New York: Marcel Dekker; 1990. p. 71–120.Google Scholar
  13. 13.
    Woodruff MA, Hutmatcher DW. The return of a forgotten polymer polycaprolactone in the 21st century. Prog Polym Sci. 2010;35(10):1217–56.CrossRefGoogle Scholar
  14. 14.
    Dziadek M, Stodolak-Zych E, Cholewa-Kowalska K. Biodegradable ceramic-polymer composites for biomedical applications: a review. Mater Sci Eng C. 2017;71:1175–91.CrossRefGoogle Scholar
  15. 15.
    Miner MR, Berzins DW, Bahcall JK. A comparison of thermal properties between gutta-percha and a synthetic polymer based root canal filling material (resilon). J Endod. 2006;32(7):683–6.PubMedCrossRefGoogle Scholar
  16. 16.
    Lowry KJ, et al. Polycaprolactone/glass bioabsorbable implant in a rabbit humerus fracture model. J Biomed Mater Res A. 1997;36:536–41.CrossRefGoogle Scholar
  17. 17.
    Medlicott NJ, et al. Preliminary release studies of chlorhexidine (base and diacetate) from poly(ϵ-caprolactone) films prepared by solvent evaporation. Int J Pharm. 1992;84(1):85–9.CrossRefGoogle Scholar
  18. 18.
    Middleton JC, Tipton AJ. Synthetic biodegradable polymers as orthopedic devices. Biomaterials. 2000;21(23):2335–46.PubMedCrossRefGoogle Scholar
  19. 19.
    Hakkarainen M. Aliphatic polyesters: abiotic and biotic degradation and degradation products. In: Degradable aliphatic polyesters. Berlin: Springer; 2002. p. 113–38.CrossRefGoogle Scholar
  20. 20.
    Sanchez JG, Tsuchii A, Tokiwa Y. Degradation of polycaprolactone at 50 °C by a thermotolerant Aspergillus sp. Biotechnol Lett. 2000;22(10):849–53.CrossRefGoogle Scholar
  21. 21.
    Pitt CG, et al. Aliphatic polyesters. I. The degradation of poly(ϵ-caprolactone) in vivo. J Appl Polym Sci. 1981;26(11):3779–87.CrossRefGoogle Scholar
  22. 22.
    Darney PD, et al. Clinical evaluation of the Capronor contraceptive implant: preliminary report. Am J Obstet Gynecol. 1989;160(5):1292–5.PubMedCrossRefGoogle Scholar
  23. 23.
    Lee JW, et al. Bone regeneration using a microstereolithography-produced customized poly(propylene fumarate)/diethyl fumarate photopolymer 3D scaffold incorporating BMP-2 loaded PLGA microspheres. Biomaterials. 2011;32(3):744–52.PubMedCrossRefGoogle Scholar
  24. 24.
    Ng KW, et al. In vivo evaluation of an ultra-thin polycaprolactone film as a wound dressing. J Biomater Sci Polym Ed. 2007;18(7):925–38.PubMedCrossRefGoogle Scholar
  25. 25.
    Jones DS, et al. Poly(epsilon-caprolactone) and poly(epsilon-caprolactone)-polyvinylpyrrolidone-iodine blends as ureteral biomaterials: characterisation of mechanical and surface properties, degradation and resistance to encrustation in vitro. Biomaterials. 2002;23(23):4449–58.PubMedCrossRefGoogle Scholar
  26. 26.
    Rai B, et al. Combination of platelet-rich plasma with polycaprolactone-tricalcium phosphate scaffolds for segmental bone defect repair. J Biomed Mater Res A. 2007;81:888–99.PubMedCrossRefGoogle Scholar
  27. 27.
    Jin C, et al. Biodegradation behaviors of poly(p-dioxanone) in different environment media. J Polym Environ. 2013;21(4):1088–99.CrossRefGoogle Scholar
  28. 28.
    Sabino MA, et al. Study of the hydrolytic degradation of polydioxanone PPDX. Polym Degrad Stab. 2000;69(2):209–16.CrossRefGoogle Scholar
  29. 29.
    Goonoo N, et al. Polydioxanone-based bio-materials for tissue engineering and drug/gene delivery applications. Eur J Pharm Biopharm. 2015;97:371–91.PubMedCrossRefGoogle Scholar
  30. 30.
    Boland ED, et al. Electrospinning polydioxanone for biomedical applications. Acta Biomater. 2005;1(1):115–23.PubMedCrossRefGoogle Scholar
  31. 31.
    Barnes CP, et al. Nanofiber technology: designing the next generation of tissue engineering scaffolds. Adv Drug Deliv Rev. 2007;59(14):1413–33.PubMedCrossRefGoogle Scholar
  32. 32.
    Jong SJD, et al. New insights into the hydrolytic degradation of poly(lactic acid): participation of the alchol terminus. Polymer. 2001;42(7):2795–802.CrossRefGoogle Scholar
  33. 33.
    Zhang Y, et al. Effects of metal salts on poly(DL-lactide-co-glycolide) polymer hydrolysis. J Biomed Mater Res A. 1997;34(4):531–8.CrossRefGoogle Scholar
  34. 34.
    Gajjar CR, King MW. Degradation process. In: Resorbable fiber-forming polymers for biotextile applications, springerbriefs in materials. Berlin: Springer International Publishing; 2014. p. 7–10.Google Scholar
  35. 35.
    Alexis F. Factors affecting the degradation and drug-release mechanism of poly(lactic acid) and poly[(lactic acid)-co-(glycolic acid)]. Polym Int. 2005;54(1):36–46.CrossRefGoogle Scholar
  36. 36.
    Makadia HK, Siegel SJ. Poly lactic-co-glycolic acid (PLGA) as biodegradable controlled drug delivery carrier. Polymers. 2011;3(3):1377–97.PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Nuo W, et al. Synthesis, characterization, biodegradation, and drug delivery application of biodegradable lactic/ glycolic acid oligomers: I. Synthesis and characterization. J Biomater Sci Polym Ed. 1997;8(12):905–17.CrossRefGoogle Scholar
  38. 38.
    Tokiwa Y, Calabia BP. Biodegradability and biodegradation of poly(lactide). Appl Microbiol Biotechnol. 2006;72(2):244–51.PubMedCrossRefGoogle Scholar
  39. 39.
    Reeve MS, et al. Polylactide stereochemistry: effect on enzymic degradability. Macromolecules. 1994;27(3):825–31.CrossRefGoogle Scholar
  40. 40.
    Rezwan K, et al. Biodegradable and biaoctive porous polymer/inorganic composite scaffolds for bone tissue engineering. Biomaterials. 2006;27(18):3413–31.PubMedCrossRefGoogle Scholar
  41. 41.
    Li Y, et al. The effect of mechanical loads on the degradation of aliphatic biodegradable polyesters. Regen Biomater. 2017;4(3):179–90.PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Russias J, et al. Fabrication and mechanical properties of PLA-HA composites: a study of in vitro degradation. Mater Sci Eng C Biomim Supramol Syst. 2006;26(8):1289–95.PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Wang Z, et al. A comparative study on the in vivo degradation of poly(L-lactide) based composite implants for bone fracture fixation. Sci Rep. 2016;6:20770.PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Huttunen M, Kellomaki M. Strength retention behavior of oriented PLLA, 96L/4D PLA, and 80L/20D,L PLA. Biomatter. 2013;3(4):e26395.PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Suganuma J, Alexander H. Biological response of intramedullary bone to poly-L-lactic acid. J Appl Biomater. 1993;4(1):13–27.CrossRefGoogle Scholar
  46. 46.
    Ciccone WJ, et al. Bioabsorbable implants in orthopaedics: new developments and clinical applications. J Am Acad Orthop Surg. 2001;9(5):280–8.PubMedCrossRefGoogle Scholar
  47. 47.
    Bos RRM, et al. Bone-plates and screws of bioabsorbable poly (L-lactide) an animal pilot study. Br J Oral Maxillofac Surg. 1989;27(6):467–76.PubMedCrossRefGoogle Scholar
  48. 48.
    Athanasiou KA, et al. Orthopaedic applications for PLA-PGA biodegradable polymers. Arthroscopy. 1998;14(7):726–7.PubMedCrossRefGoogle Scholar
  49. 49.
    Roesler CRM, et al. Torsion test method for mechanical characterization of PLDLA 70/30 ACL interference screws. Polym Test. 2014;34:34–41.CrossRefGoogle Scholar
  50. 50.
    Spenciner DB, Jr JM. Effect of thread profile and geometry on mechanical properties of interference screws. Raynham, MA: Johnson & Johnson; 2016.Google Scholar
  51. 51.
    Lipchitz J, Colleran D. Failure torque of bioabsorbable ACL interference screws. In: Endoscopy. Andover, MA: Smith & Nephew; 2007.Google Scholar
  52. 52.
    Kousa P, et al. Initial fixation strength of bioabsorbable and titanium interference screws in anterior cruciate ligament reconstruction. Am J Sports Med. 2001;29(4):420–5.PubMedCrossRefGoogle Scholar
  53. 53.
    Martin K. SonicWeld Rx a new era in osteosynthesis. cited 2017.Google Scholar
  54. 54.
    Buijs GJ, et al. mechanical strength and stiffness of the biodegradable SonicWeld Rx osteofixation system. J Oral Maxillofac Surg. 2009;67(4):782–7.PubMedCrossRefGoogle Scholar
  55. 55.
    Babiker H. Bone graft materials in fixation of orthopaedic implants in sheep. Dan Med J. 2013;60(7):B4680.PubMedGoogle Scholar
  56. 56.
    Navarro M, et al. Biomaterials in orthopaedics. J R Soc Interface. 2008;5(27):1137–58.PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Currey JD. Bones: structure and mechanics. Princeton, NJ: Princeton University Press; 2002.Google Scholar
  58. 58.
    Webster TJ, Siegel RW, Bizios R. Osteoblast adhesion on nanophase ceramics. Biomaterials. 1999;20:1221–7.PubMedCrossRefGoogle Scholar
  59. 59.
    Bouler JM, et al. Biphasic calcium phosphate ceramics for bone reconstruction: a review of biological response. Acta Biomater. 2017;53:1–12.PubMedCrossRefGoogle Scholar
  60. 60.
    Wei G, Ma PX. Structure and properties of nano-hydroxyapatate/polymer composite scaffolds for bone tissue engineering. Biomaterials. 2004;25(19):4749–57.PubMedCrossRefGoogle Scholar
  61. 61.
    Mondal S, et al. Studies on processing and characterization of hydroxyapatite biomaterials from different bio wastes. J Miner Mater Charact Eng. 2012;11(1):55–67.Google Scholar
  62. 62.
    LeGeros RZ. Calcium phosphates in oral biology and medicine. Monogr Oral Sci. 1991;15:1–201.PubMedCrossRefGoogle Scholar
  63. 63.
    Daculsi G, et al. Formation of carbonate-apatite crystals after implantation of calcium phosphate ceramics. Calcif Tissue Int. 1990;46(1):20–7.PubMedCrossRefGoogle Scholar
  64. 64.
    Heughebaert M, et al. Physicochemical characterization of deposits associated with HA ceramics implanted in nonosseous sites. J Biomed Mater Res. 1988;22(Suppl 3):257–68.PubMedCrossRefGoogle Scholar
  65. 65.
    Daculsi G, et al. Transformation of biphasic calcium phosphate ceramics in vivo: ultrastructural and physicochemical characterization. J Biomed Mater Res. 1989;23(8):883–94.PubMedCrossRefGoogle Scholar
  66. 66.
    Sheikh Z, et al. Biodegradable materials for bone repair and tissue engineering applications. Materials. 2015;8(9):5273.Google Scholar
  67. 67.
    Khojasteh A, et al. Development of PLGA-coated β-TCP scaffolds containing VEGF for bone tissue engineering. Mater Sci Eng C. 2016;69:780–8.CrossRefGoogle Scholar
  68. 68.
    Roh H-S, et al. In vitro study of 3D PLGA/n-HAp/β-TCP composite scaffolds with etched oxygen plasma surface modification in bone tissue engineering. Appl Surf Sci. 2016;388:321–30.CrossRefGoogle Scholar
  69. 69.
    Ogose A, et al. Comparison of HA and b-TCP as bone substitutes after excision of bone tumors. J Biomed Mater Res B Appl Biomater. 2005;72(1):94–101.PubMedCrossRefGoogle Scholar
  70. 70.
    Ebrahimian-Hosseinabadi M, et al. Evaluating and modeling the mechanical properties of the prepared PLGA/nano-BCP composite scaffolds for bone tissue engineering. J Mater Sci Tech. 2011;27(12):1105–12.CrossRefGoogle Scholar
  71. 71.
    Niu C-C, et al. Benefits of biphasic calcium phosphate hybrid scaffold-driven osteogenic differentiation of mesenchymal stem cells through upregulated leptin receptor expression. J Orthop Surg Res. 2015;10(1):111–20.PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Peltier LF. The use of plaster of paris to fill large defects in bone. Am J Surg. 1959;97(3):311–5.PubMedCrossRefGoogle Scholar
  73. 73.
    Barnes G. REGENESORB Absorbable biocomposite material a unique formulation of materials with long histories of clinical use 2013, London: Smith & Nephew.Google Scholar
  74. 74.
    Luo Y, et al. Enhanced proliferation and osteogenic differentiation of mesenchymal stem cells on graphene oxide-incorporated electrospun poly(lactic-co-glycolic acid) nanofibrous mats. ACS Appl Mater Interfaces. 2015;7(11):6331–9.PubMedCrossRefGoogle Scholar
  75. 75.
    Jansen J, et al. Fumaric acid monoethyl ester-functionalized poly(D,L-lactide)/N-vinyl-2-pyrrolidone resins for the preparation of tissue engineering scaffolds by stereolithography. Biomacromolecules. 2009;10(2):214–20.PubMedCrossRefPubMedCentralGoogle Scholar
  76. 76.
    Mohan S, et al. Incorporation of 3D Coragraf® with poly(lactic-co-glycolic acid) microsphere loaded human platelet derived growth factor – BB enhance osteogenic differentiation of mesenchymal stromal cells in vitro. In: Orthopedic research society 2017 annual meeting. San Digeo, CA; 2017.Google Scholar
  77. 77.
    Yang X, et al. Poly(lactic-co-glycolic acid) scaffold coated with an antioxidative fullerene derivative for bone tissue engineering. In: Orthopedic research society 2017 annual meeting. San Digeo, CA; 2017.Google Scholar
  78. 78.
    Vergnol G, et al. In vitro and in vivo evaluation of a polylactic acid-bioactive glass composite for bone fixation devices. J Biomed Mater Res B Appl Biomater. 2016;104(1):180–91.PubMedCrossRefGoogle Scholar
  79. 79.
    Simpson RL, et al. A comparative study of the effects of different bioactive fillers in PLGA matrix composites and their suitability as bone substitute materials: a thermo-mechanical and in vitro investigation. J Mech Behav Biomed Mater. 2015;50:277–89.PubMedCrossRefGoogle Scholar
  80. 80.
    Rich J, et al. In vitro evaluation of poly(ε-caprolactone-co-DL-lactide)/bioactive glass composites. Biomaterials. 2002;23(10):2143–50.PubMedCrossRefGoogle Scholar
  81. 81.
    Adegani FJ, et al. Coating of electrospun poly (lactic-co-glycolic acid) nanofibers with willemite bioceramic: improvement of bone reconstruction in rat model. Cell Biol Int. 2014;38(11):1271–9.CrossRefGoogle Scholar
  82. 82.
    Wen Y, et al. 3D printed porous ceramic scaffolds for bone tissue engineering: a review. Biomat Sci. 2017;5(9):1690–8.CrossRefGoogle Scholar
  83. 83.
    Zeimaran E, et al. Bioactive glass reinforced elastomer composites for skeletal regeneration: a review. Mater Sci Eng C. 2015;53:175–88.CrossRefGoogle Scholar
  84. 84.
    Profeta AC, Prucher GM. Bioactive-glass in periodontal surgery and implant dentistry. Dent Mater J. 2015;34(5):559–71.PubMedCrossRefGoogle Scholar
  85. 85.
    Lusquiños F, et al. Bioceramic 3D implants produced by laser assisted additive manufacturing. Phys Procedia. 2014;56:309–16.CrossRefGoogle Scholar
  86. 86.
    Ignatius AA, Claes LE. In vitro biocompatibility of bioresorbable polymers: poly(L, DL-lactide) and poly(L-lactide-co-glycolide). Biomaterials. 1996;17(8):831–9.PubMedCrossRefGoogle Scholar
  87. 87.
    Böstman O, Pihlajamäki H. Clinical biocompatibility of biodegradable orthopaedic implants for internal fixation: a review. Biomaterials. 2000;21(24):2615–21.PubMedCrossRefGoogle Scholar
  88. 88.
    Majola A, et al. Absorption, biocompatibility, and fixation properties of polylactic acid in bone tissue: an experimental study in rats. Clin Orthop Relat Res. 1991;268:260–9.Google Scholar
  89. 89.
    Hollinger JO. Preliminary report on the osteogenic potential of a biodegradable copolymer of polyactide (PLA) and polyglycolide (PGA). J Biomed Mater Res. 1983;17(1):71–82.PubMedCrossRefGoogle Scholar
  90. 90.
    Bos RRM, et al. Resorbable poly(L-lactide) plates and screws for the fixation of zygomatic fractures. J Oral Maxillofac Surg. 1987;45(9):751–3.PubMedCrossRefGoogle Scholar
  91. 91.
    Bostman O, et al. Foreign-body reactions to fracture fixation implants of biodegradable synthetic polymers. J Bone Joint Surg Br. 1990;72-B(4):592–6.CrossRefGoogle Scholar
  92. 92.
    Barber FA, et al. Biocomposite implants composed of poly(Lactide-co-Glycolide)/β-tricalcium phosphate: systematic review of imaging, complication, and performance outcomes. Arthroscopy. 2017;33(3):683–9.PubMedCrossRefGoogle Scholar
  93. 93.
    Tracy MA, et al. Factors affecting the degradation rate of poly(lactide-co-glycolide) microspheres in vivo and in vitro. Biomaterials. 1999;20(11):1057–62.PubMedCrossRefGoogle Scholar
  94. 94.
    Danoux CB, et al. In vitro and in vivo bioactivity assessment of a polylactic acid/hydroxyapatite composite for bone regeneration. Biomatter. 2014;4:e27664.PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Mathieu LM, Bourban P-E, Manson J-AE. Processing of homogenous ceramic/polymer blends for bioresorbable composites. Compos Sci Technol. 2006;66(11–12):1606–14.CrossRefGoogle Scholar
  96. 96.
    Nourbakhsh A, et al. Effects of particle size and coupling agent concentration on mechanical properties of particulate-filled polymer composites. J Thermoplast Compos Mater. 2009;23(2):169–74.CrossRefGoogle Scholar
  97. 97.
    Widmer MS, et al. Manufacture of porous biodegradable polymer conduits by an extrusion process for guided tissue regeneration. Biomaterials. 1998;19(21):1945–55.PubMedCrossRefGoogle Scholar
  98. 98.
    Niemela T, et al. Self-reinforced composites of bioabsorbable polymer and bioactive glass with different bioactive glass contents. Part I: initial mechanical properties and bioactivity. Acta Biomater. 2005;1(2):235–42.PubMedCrossRefGoogle Scholar
  99. 99.
    Sadeghi-Avalshahr AR, et al. Physical and mechanical characterization of PLLA interference screws produced by two stage injection molding method. Prog Biomater. 2016;5(3–4):183–91.PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Narayanan G, et al. Poly (lactic acid)-based biomaterials for orthopaedic regenerative engineering. Adv Drug Deliv Rev. 2016;107:247–76.PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Butt MS, et al. Mechanical and degradation properties of biodegradable mg strengthened poly0lactid acid composite through plastic injection molding. Mater Sci Eng C Mater Biol Appl. 2017;1(70):141–7.CrossRefGoogle Scholar
  102. 102.
    Leenslag JW, et al. Resorbable materials of poly(L-lactide). VI. Plates and screws for internal fracture fixation. Biomaterials. 1987;8(1):70–3.PubMedCrossRefGoogle Scholar
  103. 103.
    Kau Y-C, et al. Compression molding of biodegradable drug-eluting implants for sustained release of metronidazole and doxycycline. J Appl Polym Sci. 2013;127(1):554–60.CrossRefGoogle Scholar
  104. 104.
    Zhang J, et al. High-pressure compression-molded porous resorbable polymer/hydroxyapatite composite scaffold for cranial bone regeneration. ACS Biomater Sci Eng. 2016;2(9):1471–82.CrossRefGoogle Scholar
  105. 105.
    Sherwood JK, et al. A three-dimensional osteochondral composite scaffold for articular cartilage repair. Biomaterials. 2002;23:4739–51.PubMedCrossRefGoogle Scholar
  106. 106.
    Henkel J, et al. Bone regeneration based on tissue engineering conceptions - a 21st century perspective. Bone Res. 2013;1(3):216–48.PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Yen H-J, et al. Evaluation of chondrocyte growth in the highly porous scaffolds made by fused deposition manufacturing (FDM) filled with type II collagen. Biomed Microdevices. 2009;11(3):615–24.PubMedCrossRefPubMedCentralGoogle Scholar
  108. 108.
    Hsu S-H, et al. Evaluation of the growth on chondrocytes and osteoblasts seeded into precision scaffolds fabricated by fused deposition manufacturing. Biomed Mater Res B. 2007;80B(2):519–27.CrossRefGoogle Scholar
  109. 109.
    Yang J, et al. Cell-laden hydrogels for osteochondral and cartilage tissue engineering. Acta Biomater. 2017;57:1–25.PubMedPubMedCentralCrossRefGoogle Scholar
  110. 110.
    Bandyopadhyay A, et al. Three-dimensional printing of biomaterials and soft materials. MRS Bull. 2015;40(12):1162–9.CrossRefGoogle Scholar
  111. 111.
    Youssef A, Hollister SJ, Dalton PD. Additive manufacturing of polymer melts for implantable medical devices and scaffolds. Biofabrication. 2017;9(1):012002.PubMedCrossRefGoogle Scholar
  112. 112.
    Hao L, Yan C, Shi Y. Investigation into the differences in the selective laser sintering between amorphous and semi-crystalline polymers. Int Polym Process. 2011;26(4):416–23.CrossRefGoogle Scholar
  113. 113.
    Mazzoli A. Selective laser sintering in biomedical engineering. Med Biol Eng Comput. 2013;51(3):245–56.PubMedCrossRefGoogle Scholar
  114. 114.
    Shirazi SF, et al. A review on powder-based additive manufacturing for tissue engineering: selective laser sintering and inkjet 3D printing. Sci Technol Adv Mater. 2015;16(3):033502.PubMedPubMedCentralCrossRefGoogle Scholar
  115. 115.
    Kolan KC, et al. Effect of material, process parameters, and simulated body fluids on mechanical properties of 13-93 bioactive glass porous constructs made by selective laser sintering. J Mech Behav Biomed Mater. 2012;13:14–24.PubMedCrossRefGoogle Scholar
  116. 116.
    Kundera C, Kozior T. Influence of printing parameters on the mechanical properties of polyamide in SLS technology. Tech Trans Mech. 2016;3:31–7.Google Scholar
  117. 117.
    Spierings AB, Herres N, Levy G. Influence of the particle size distribution on surface quality and mechanical properties in additive manufactured stainless steel parts. In: Proceedings of Solid Freeform Fabrication Symposium, Austin, TX; 2010.Google Scholar
  118. 118.
    Hapgood KP, et al. Drop penetration into porous powder beds. J Colloid Interface Sci. 2002;253(2):353–66.PubMedCrossRefGoogle Scholar
  119. 119.
    Salmorioa GV, et al. Structure and mechanical properties of cellulose based scaffolds by selective laser sintering. Polym Test. 2009;28(6):648–52.CrossRefGoogle Scholar
  120. 120.
    Mangano F, et al. Direct metal laser sintering titanium dental implants: a review of the current literature. Int J Biomater. 2014;2014:461534.PubMedPubMedCentralCrossRefGoogle Scholar
  121. 121.
    Savalani MM, et al. Fabrication of porous bioactive structures using the selective laser sintering technique. Proc Inst Mech Eng H. 2007;221(8):873–86.PubMedCrossRefGoogle Scholar
  122. 122.
    Singh JP, Pandey PM. Fitment study of porous polyamide scaffolds fabricated from selective laser sintering. Procedia Eng. 2013;59:59–71.CrossRefGoogle Scholar
  123. 123.
    Roskies M, et al. Improving PEEK bioactivity for craniofacial reconstruction using a 3D printed scaffold embedded with mesenchymal stem cells. Biomater Appl. 2016;31(1):132–9.CrossRefGoogle Scholar
  124. 124.
    Dabbas F, et al. Selective laser sintering of polyamide/hydroxyapatite scaffolds. In: The minerals, metals, and materials series. Berlin: Springer; 2017. p. 95–130.Google Scholar
  125. 125.
    Kanczler JM, et al. Biocompatibility and osteogenic potential of human fetal femur-derived cells on surface selective laser sintered scaffolds. Acta Biomater. 2009;5(6):2063–71.PubMedCrossRefGoogle Scholar
  126. 126.
    Bukharova TB, et al. Biocompatibility of tissue engineering constructions from porous polylactide carriers obtained by the method of selective laser sintering and bone marrow-derived multipotent stromal cells. Cell Tech Biol Med. 2010;1(1):148–53.Google Scholar
  127. 127.
    Leong KF, et al. Building porous biopolymeric microstructures for controlled drug delivery using selective laser sintering. Int J Adv Manuf Tech. 2006;31(5–6):483–9.CrossRefGoogle Scholar
  128. 128.
    Tan KH, et al. Selective laser sintering of biocompatible polymers for applications in tissue engineering. Biomed Mater Eng. 2005;15(1–2):113–24.PubMedGoogle Scholar
  129. 129.
    Zhou WY, et al. Selective laser sintering of porous tissue engineering scaffolds from poly(L: -lactide)/carbonated hydroxyapatite nanocomposite microspheres. J Mater Sci Mater Med. 2008;19(7):2535–40.PubMedCrossRefPubMedCentralGoogle Scholar
  130. 130.
    Duan B, et al. Three-dimensional nanocomposite scaffolds fabricated via selective laser sintering for bone tissue engineering. Acta Biomater. 2010;6(12):4495–505.PubMedCrossRefGoogle Scholar
  131. 131.
    Antonov EN, et al. Three-dimensional bioactive and biodegradable scaffolds fabricated by surface-selective laser sintering. Adv Mater. 2004;17(3):327–30.PubMedPubMedCentralCrossRefGoogle Scholar
  132. 132.
    Agrawal CM, Niederauer GG, Athanasiou KA. Fabrication and characterization of PLA-PGA orthopedic implants. Tissue Eng. 1995;1(3):241–52.PubMedCrossRefGoogle Scholar
  133. 133.
    Gupta A, Kumar V. New emerging trends in synthetic biodegradable polymers–Polylactide: a critique. Eur Polym J. 2007;43(10):4053–74.CrossRefGoogle Scholar
  134. 134.
    Zhou P, et al. Organic/inorganic composite membranes based on poly(L-lactic-co-glycolic acid) and mesoporous silica for effective bone tissue engineering. ACS Appl Mater Interfaces. 2014;6(23):20895–903.PubMedCrossRefGoogle Scholar
  135. 135.
    Samavedi S, et al. Electrospun meshes possessing region-wise differences in fiber orientation, diameter, chemistry and mechanical properties for engineering bone-ligament-bone tissues. Biotechnol Bioeng. 2014;111(12):2549–59.PubMedCrossRefGoogle Scholar
  136. 136.
    Whited BM, et al. Pre-osteoblast infiltration and differentiation in highly porous apatite-coated PLLA electrospun scaffolds. Biomaterials. 2011;32(9):2294–304.PubMedCrossRefGoogle Scholar
  137. 137.
    Komaki H, et al. Effects of rhBMP-2 on bone formation and material resorption after implantation of the composite material consisting beta-TCP and PLLA. In: Orthopedic research society 2017 annual meeting. San Digeo, CA; 2017.Google Scholar
  138. 138.
    Chye Joachim Loo S, et al. Effect of isothermal annealing on the hydrolytic degradation rate of poly(lactide-co-glycolide) (PLGA). Biomaterials. 2005;26(16):2827–33.CrossRefGoogle Scholar
  139. 139.
    Jiang L, et al. Study on the effect of annealing treatment on properties of nano-hydroxyapatite/poly-lactic-co-glycolic acid composites. Polym-Plast Technol Eng. 2014;53(10):1056–61.CrossRefGoogle Scholar
  140. 140.
    Loo JSC, et al. Isothermal annealing of poly(lactide-co-glycolide) (PLGA) and its effect on radiation degradation. Polym Int. 2005;54(4):636–43.CrossRefGoogle Scholar
  141. 141.
    Holy CE, et al. Optimizing the sterilization of PLGA scaffolds for use in tissue engineering. Biomaterials. 2000;22(1):25–31.CrossRefGoogle Scholar
  142. 142.
    Loo JSC, Ooi CP, Boey FYC. Degradation of poly(lactide-co-glycolide) (PLGA) and poly(l-lactide) (PLLA) by electron beam radiation. Biomaterials. 2005;26(12):1359–67.PubMedCrossRefGoogle Scholar
  143. 143.
    D.S. Companies. RAPIDSORB rapid resorbable fixation system. West Chester, PA: Synthes USA Products, LLC; 2015.Google Scholar
  144. 144.
    Delta system: resorbable implant technology. In: Stryker, editor. Caniomaxillofacial. Portage, MI: Stryker Craniomaxillofacial; 2015.Google Scholar
  145. 145.
    Martin K SonicWeld Rx Dental. 2018. cited 2018.Google Scholar
  146. 146.
    ACUTE Innovations. BioBridge Resorbable Chest Wall Stabilization Plate. Hillsboro, OR: ACUTE Innovations; 2017.Google Scholar
  147. 147.
    I. Smith and Nephew. HEALICOIL REGENESORB and HEALICOIL PK Suture Anchors. Andover, MA: Smith and Nephew; 2013.Google Scholar
  148. 148.
    The next generation in should & elbow repair and reconstruction technology, A. Inc.; 2017. https://www.arthrex.com/shoulder. Accessed on May 2017.
  149. 149.
    Inion S-2 graft containment system, I. Inc.; 2017. https://www.inion.com/Products/spine/Inion_S1_folder/en_GB/Inion_S-1_indications_USA/. Accessed on May 2017.
  150. 150.
    A. Vascular. Absorb GT1 bioresorbable vascular scaffold system. Santa Clara, CA: Abbott Vascular; 2016.Google Scholar
  151. 151.
    The next generation in hand and wrist repair and reconstruction technology, A. Inc.; 2017. https://www.arthrex.com/hand-wrist. Accessed on May 2017.
  152. 152.
    I. Smith and Nephew. OSTEORAPTOR 2.3mm & 2.9mm suture anchors. Andover, MA: Smith and Nephew, Inc.; 2016.Google Scholar
  153. 153.
    D.S. Companies. Angular stable locking system (ASLS). West Chester, OA: Synthes USA Products, LLC; 2009.Google Scholar
  154. 154.
    D.S. Companies. Anteromedial ACL reconstruction for bone-tendon-bone grafts. West Chester, OA: Synthes USA Products, LLC; 2015.Google Scholar
  155. 155.
    C. Corporation. SmartNail surgical technique. Largo, FL: ConMed Corporation; 2011.Google Scholar
  156. 156.
    The most advanced techniques in knee arthroscopy, A. Inc.; 2016. https://www.arthrex.com/knee. Accessed on May 2017.
  157. 157.
    W. Medical. RFS resorbable fixation system. Memphis, TN: Wright Medical; 2016.Google Scholar
  158. 158.
    Medtronic. Polysorb 2mm soft tissue anchor system. Waltham, MA: Covidien; 2009.Google Scholar
  159. 159.
    Achillies SpeedBridge, A. Inc.; 2016. https://www.arthrex.com/foot-ankle/achillesspeedbridge. Accessed on May 2017.
  160. 160.
    Development, A.R.a, Arthrex BioComposite interference screws for ACL and PCL reconstruction. In: A.R.a. Development, editor. Naples, Florida: Arthrex; 2010.Google Scholar
  161. 161.
    Arthrex, I. InternalBrace™ ligament augmentation repair; 2016. [cited 2018 January 25, 2018].Google Scholar
  162. 162.
    Cedars-Sinai. Cranio / Maxillofacial surgery; 2017. [cited 2017 August 6, 2017].Google Scholar
  163. 163.
    Tuncer S, et al. Reconstruction of traumatic orbital floor fractures with resorbable mesh plate. J Craniofac Surg. 2007;18(3):598–605.PubMedCrossRefGoogle Scholar
  164. 164.
    Baek WI, et al. Comparison of absorbable mesh plate versus titanium-dynamic mesh plate in reconstruction of blow-out fracture: an analysis of long-term outcomes. Arch Plast Surg. 2014;41(4):355–61.PubMedPubMedCentralCrossRefGoogle Scholar
  165. 165.
    Bali RK, et al. To evaluate the efficacy of biodegradable plating system for fixation of maxillofacial fractures: a prospective study. Natl J Maxillofac Surg. 2013;4(2):167–72.PubMedPubMedCentralCrossRefGoogle Scholar
  166. 166.
    Shim J-H, et al. Comparative efficacies of a 3D-printed PCL/PLGA/β-TCP membrane and a titanium membrane for guided bone regeneration in beagle dogs. Polymers. 2015;7(10):1500.CrossRefGoogle Scholar
  167. 167.
    ShoulderDoc. InSpace balloon for massive rotator cuff tears; 2017.Google Scholar
  168. 168.
    TWINFIX Ultra HA suture anchor enhancement of biocompatibility. Andover, MA: Smith & Nephew; 2010.Google Scholar
  169. 169.
    Rupp S, Krauss PW, Fritcsh EW. Fixation strength of a biodegradable interference screw an a press-fit technique in anterior cruciate ligament reconstruction with a BPTB graft. Arthroscopy. 1997;13(1):61–5.PubMedCrossRefGoogle Scholar
  170. 170.
    Disegi JA, Wyss H. Implant materials for fracture fixation: a clinical perspective. Orthopedics. 1989;12(1):75–9.PubMedGoogle Scholar
  171. 171.
    Claes LE, et al. New bioresorbable pin for the reduction of small bony fragments - design, mechanical properties an in vitro degradation. Biomaterials. 1996;17:1621–6.PubMedCrossRefGoogle Scholar
  172. 172.
    Papalia R, et al. Metallic or bioabsorbable interference screw for graft fixation in anterior cruciate ligament (ACL) reconstruction? Br Med Bull. 2014;109:19–29.PubMedCrossRefGoogle Scholar
  173. 173.
    Chao S, et al. Bioabsorbable versus metallic interference screw fixation in anterior cruciate ligament reconstruction: a meta-analysis of randomized controlled trials. Arthroscopy. 2010;26(5):705–13.CrossRefGoogle Scholar
  174. 174.
    Development, A.R.a, Arthrex 7mm x 23mm BioComposite Interference Screw vs. DePuy Mitek 7mm x 23mm Milagro Screw. In: A.R.a. Development, editor. Naples, Florida: Arthrex; 2009.Google Scholar
  175. 175.
    Nelson, D.L. Adult distal radius fractures (also known as a "Broken Wrist"); 2012. [cited 2017 August 8, 2017].Google Scholar
  176. 176.
    Chang IL, et al. Early clinical experience with resorbable poly-5D/95L-lactide (PLA95) plate system for treating distal radius fractures. J Dent Sci. 2013;8:44–52.CrossRefGoogle Scholar
  177. 177.
    Manen CJ, et al. Bio-resorbable versus metal implants in wrist fractures: a randomised trial. Arch Orthop Trauma Surg. 2008;128(12):1413–7.PubMedCrossRefGoogle Scholar
  178. 178.
    Waris E, et al. Use of bioabsorbable osteofixation devices in the hand. J Hand Surg Br Eur. 2004;29(6):590–8.CrossRefGoogle Scholar
  179. 179.
    Gomes ME, et al. Tissue engineering and regenerative medicine: new trends and directions—a year in review. Tissue Eng Part B Rev. 2017;23(3):211–24.PubMedCrossRefGoogle Scholar
  180. 180.
    Laurencin CT, Nair LS. Regenerative engineering: approaches to limb regeneration and other grand challenges. Regn Eng Tran Med. 2015;1(1):1–3.Google Scholar
  181. 181.
    Melchels FP, Feijen J, Grijpma DW. A poly(D,L-lactide) resin for the preparation of tissue engineering scaffolds by stereolithography. Biomaterials. 2009;30(23–24):3801–9.PubMedCrossRefGoogle Scholar
  182. 182.
    Ronca A, Ambrosio L, Grijpma DW. Preparation of designed poly(D,L-lactide)/nanosized hydroxyapatite composite structures by stereolithography. Acta Biomater. 2013;9(4):5989–96.PubMedCrossRefGoogle Scholar
  183. 183.
    Simpson RL, et al. Development of a 95/5 poly(L-lactide-co-glycolide)/hydroxylapatite and beta-tricalcium phosphate scaffold as bone replacement material via selective laser sintering. J Biomed Mater Res B Appl Biomater. 2008;84((1):17–25.CrossRefGoogle Scholar
  184. 184.
    Holmes B, et al. A synergistic approach to the design, fabrication and evaluation of 3D printed micro and nano featured scaffolds for vascularized bone tissue repair. Nanotechnology. 2016;27(6):064001.PubMedPubMedCentralCrossRefGoogle Scholar
  185. 185.
    Hutmacher DW. Scaffolds in tissue engineering bone and cartilage. Biomaterials. 2000;21(24):2529–43.PubMedPubMedCentralCrossRefGoogle Scholar
  186. 186.
    Laurencin CT, Aronson MT, Nair LS. Mechanically competent scaffold for ligament and tendon regeneration. 2013, Google Patents.Google Scholar
  187. 187.
    Sarukawa J, Takahashi M, Abe M, Suzuki D, Tokura S, Furuike T & Tamura H. Effects of chitosan-coated fibers as a scaffold for three-dimensional cultures of rabbit fibroblasts for ligament tissue engineering. J Biomater Sci Polym Ed. 2011;22(4-6):717–732. https://doi.org/10.1163/092050610X491067.
  188. 188.
    Freed LE, Vunjak-Novakovic G. Culture of organized cell communities. Adv Drug Deliv Rev. 1998;33(1):15–30.PubMedCrossRefGoogle Scholar
  189. 189.
    Freed LE, et al. Neocartilage formation in vitro and in vivo using cells cultured on synthetic biodegradable polymers. J Biomed Mater Res. 1993;27(1):11–23.PubMedCrossRefGoogle Scholar
  190. 190.
    Zhang Y, et al. The impact of PLGA scaffold orientation on in vitro cartilage regeneration. Biomaterials. 2012;33(10):2926–35.PubMedCrossRefGoogle Scholar
  191. 191.
    Gao M, et al. Tissue-engineered trachea from a 3D-printed scaffold enhances whole-segment tracheal repair. Sci Rep. 2017;7(1):5246.PubMedPubMedCentralCrossRefGoogle Scholar
  192. 192.
    Network, D.P.M. DePuy synthes acquires tissue regeneration systems’ 3D printing technology. 3D bioprinting; 2017. [cited 2017 August 15].Google Scholar
  193. 193.
    System, U.o.M.H. Baby’s life saved after 3D printed devices were implanted at U-M to restore his breathing; 2014. [cited 2017 August 15].Google Scholar
  194. 194.
    Implant: Depuy Synthes - Biocryl Rapide® Suture Anchors Publication: Biocryl Rapide has redefined our Suture Anchors as “Bio-Replaceable” Source: http://static1.1.sqspcdn.com/static/f/533579/8290811/1282822079543/lupine Publication Date: 2007, Access Date: May 2017

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Balaji Prabhu
    • 1
  • Andreas Karau
    • 2
  • Andrew Wood
    • 1
  • Mahrokh Dadsetan
    • 1
  • Harald Liedtke
    • 2
  • Todd DeWitt
    • 3
  1. 1.Evonik Industries AGBirminghamUSA
  2. 2.Evonik Industries AGDarmstadtGermany
  3. 3.Evonik Industries AGPiscatawayUSA

Personalised recommendations