Modeling the Notch Response

  • Udi Binshtok
  • David SprinzakEmail author
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1066)


NOTCH signaling regulates developmental processes in all tissues and all organisms across the animal kingdom. It is often involved in coordinating the differentiation of neighboring cells into different cell types. As our knowledge on the structural, molecular and cellular properties of the NOTCH pathway expands, there is a greater need for quantitative methodologies to get a better understanding of the processes controlled by NOTCH signaling. In recent years, theoretical and computational approaches to NOTCH signaling and NOTCH mediated patterning are gaining popularity. Mathematical models of NOTCH mediated patterning provide insight into complex and counterintuitive behaviors and can help generate predictions that can guide experiments. In this chapter, we review the recent advances in modeling NOTCH mediated patterning processes. We discuss new modeling approaches to lateral inhibition patterning that take into account cis-interactions between NOTCH receptors and ligands, signaling through long cellular protrusions, cell division processes, and coupling to external signals. We also describe models of somitogenesis, where NOTCH signaling is used for synchronizing cellular oscillations. We then discuss modeling approaches that consider the effect of cell morphology on NOTCH signaling and NOTCH mediated patterning. Finally, we consider models of boundary formation and how they are influenced by the combinatorial action of multiple ligands. Together, these topics cover the main advances in the field of modeling the NOTCH response.


NOTCH signaling Mathematical modeling Pattern formation Lateral inhibition Boundary formation Cis-inhibition Cell morphology Cell division Filopodia 



Sensory organ precursors


NOTCH intra-cellular domain






Epidermal growth factor


Vascular endothelial growth factor


Vascular endothelial growth factor receptor


Intestinal stem cells




Presomitic Mesoderm



This manuscript was supported by a grant from the European Research Council (grant no. 682161).


  1. Akanuma T, Chen C, Sato T, Merks RM, Sato TN (2016) Memory of cell shape biases stochastic fate decision-making despite mitotic rounding. Nat Commun 7:11963. ncomms11963 [pii]CrossRefPubMedPubMedCentralGoogle Scholar
  2. Artavanis-Tsakonas S, Muskavitch MA (2010) Notch: the past, the present, and the future. Curr Top Dev Biol 92:1–29. doi: S0070-2153(10)92001-2 [pii]. CrossRefPubMedGoogle Scholar
  3. Artavanis-Tsakonas S, Rand M, Lake R (1999) Notch signaling: cell fate control and signal integration in development. Science 284:770CrossRefPubMedPubMedCentralGoogle Scholar
  4. Ay A et al (2014) Spatial gradients of protein-level time delays set the pace of the traveling segmentation clock waves. Development 141:4158–4167. 141/21/4158 [p ii]CrossRefPubMedPubMedCentralGoogle Scholar
  5. Barad O, Rosin D, Hornstein E, Barkai N (2010) Error minimization in lateral inhibition circuits. Sci Signal 3:ra51. doi: 3/129/ra51 [pii]. CrossRefPubMedGoogle Scholar
  6. Bentley K, Gerhardt H, Bates PA (2008) Agent-based simulation of notch-mediated tip cell selection in angiogenic sprout initialisation. J Theor Biol 250:25–36. doi: S0022-5193(07)00443-2 [pii]. CrossRefPubMedGoogle Scholar
  7. Bentley K, Mariggi G, Gerhardt H, Bates PA (2009) Tipping the balance: robustness of tip cell selection, migration and fusion in angiogenesis. PLoS Comput Biol 5:e1000549. CrossRefPubMedPubMedCentralGoogle Scholar
  8. Blanco R, Gerhardt H (2013) VEGF and Notch in tip and stalk cell selection. Cold Spring Harb Perspect Med 3:a006569. a006569 [pii], cshperspect.a006569 [pii]CrossRefPubMedPubMedCentralGoogle Scholar
  9. Boareto M, Jolly MK, Lu M, Onuchic JN, Clementi C, Ben-Jacob E (2015) Jagged-Delta asymmetry in Notch signaling can give rise to a Sender/Receiver hybrid phenotype. Proc Natl Acad Sci U S A 112:E402–E409. 1416287112 [pii]CrossRefPubMedPubMedCentralGoogle Scholar
  10. Cohen M, Georgiou M, Stevenson NL, Miodownik M, Baum B (2010) Dynamic filopodia transmit intermittent Delta-Notch signaling to drive pattern refinement during lateral inhibition. Dev Cell 19:78–89. doi: S1534-5807(10)00296-0 [pii]. CrossRefPubMedGoogle Scholar
  11. Collier JR, Monk NA, Maini PK, Lewis JH (1996) Pattern formation by lateral inhibition with feedback: a mathematical model of delta-notch intercellular signalling. J Theor Biol 183:429–446. doi:S0022-5193(96)90233-7 [pii]. CrossRefPubMedGoogle Scholar
  12. Cooke J, Zeeman EC (1976) A clock and wavefront model for control of the number of repeated structures during animal morphogenesis. J Theor Biol 58:455–476CrossRefPubMedGoogle Scholar
  13. Corson F, Couturier L, Rouault H, Mazouni K, Schweisguth F (2017) Self-organized Notch dynamics generate stereotyped sensory organ patterns in Drosophila. Science 356. doi: eaai7407 [pii], science.aai7407 [pii].
  14. Daudet N, Lewis J (2005) Two contrasting roles for Notch activity in chick inner ear development: specification of prosensory patches and lateral inhibition of hair-cell differentiation. Development 132:541–551. doi: dev.01589 [pii]. CrossRefPubMedGoogle Scholar
  15. de Celis J (1997) Notch signalling regulates veinlet expression and establishes boundaries between veins and interveins in the Drosophila wing. Development 124:1919–1928PubMedGoogle Scholar
  16. de Celis J (2000) The Abruptex domain of Notch regulates negative interactions between Notch, its ligands and Fringe. Development 127:1291–1302PubMedGoogle Scholar
  17. de Celis JF, Bray S (1997) Feed-back mechanisms affecting Notch activation at the dorsoventral boundary in the Drosophila wing. Development 124:3241–3251PubMedGoogle Scholar
  18. de Celis J, Garcia-Bellido A (1994) Roles of the Notch gene in Drosophila wing morphogenesis. Mech Dev 46:109–122CrossRefPubMedGoogle Scholar
  19. Eom DS, Bain EJ, Patterson LB, Grout ME, Parichy DM (2015) Long-distance communication by specialized cellular projections during pigment pattern development and evolution. elife 4. e12401 [pii]
  20. Formosa-Jordan P, Ibanes M (2014) Competition in notch signaling with cis enriches cell fate decisions. PLoS One 9:e95744. PONE-D-13-50216 [pii]CrossRefPubMedPubMedCentralGoogle Scholar
  21. Formosa-Jordan P, Sprinzak D (2014) Modeling Notch signaling: a practical tutorial. Methods Mol Biol 1187:285–310. CrossRefPubMedGoogle Scholar
  22. Formosa-Jordan P, Ibanes M, Ares S, Frade JM (2012) Regulation of neuronal differentiation at the neurogenic wavefront. Development 139:2321–2329. 139/13/2321 [pii]CrossRefPubMedGoogle Scholar
  23. Glass DS, Jin X, Riedel-Kruse IH (2016) Signaling delays preclude defects in lateral inhibition patterning. Phys Rev Lett 116:128102. CrossRefPubMedGoogle Scholar
  24. Guisoni N, Martinez-Corral R, Garcia Ojalvo J, de Navascues J (2017) Diversity of fate outcomes in cell pairs under lateral inhibition. Development.
  25. Hadjivasiliou Z, Hunter GL, Baum B (2016) A new mechanism for spatial pattern formation via lateral and protrusion-mediated lateral signalling. J R Soc Interface 13. doi: 20160484 [pii], rsif.2016.0484 [pii].
  26. Hamada H et al (2014) Involvement of Delta/Notch signaling in zebrafish adult pigment stripe patterning. Development 141:318–324. dev.099804 [pii]CrossRefPubMedPubMedCentralGoogle Scholar
  27. Heitzler P, Simpson P (1991) The choice of cell fate in the epidermis of Drosophila. Cell 64:1083–1092CrossRefPubMedGoogle Scholar
  28. Hellstrom M et al (2007) Dll4 signalling through Notch1 regulates formation of tip cells during angiogenesis. Nature 445:776–780. doi: nature05571 [pii]. CrossRefPubMedGoogle Scholar
  29. Holley SA, Julich D, Rauch GJ, Geisler R, Nusslein-Volhard C (2002) her1 and the notch pathway function within the oscillator mechanism that regulates zebrafish somitogenesis. Development 129:1175–1183PubMedGoogle Scholar
  30. Hunter GL et al (2016) Coordinated control of Notch/Delta signalling and cell cycle progression drives lateral inhibition-mediated tissue patterning. Development 143:2305–2310. dev.134213 [pii]CrossRefPubMedPubMedCentralGoogle Scholar
  31. Jakobsson L et al (2010) Endothelial cells dynamically compete for the tip cell position during angiogenic sprouting. Nat Cell Biol 12:943–953. ncb2103 [pii]CrossRefPubMedGoogle Scholar
  32. Jiang YJ, Aerne BL, Smithers L, Haddon C, Ish-Horowicz D, Lewis J (2000) Notch signalling and the synchronization of the somite segmentation clock. Nature 408:475–479. CrossRefPubMedGoogle Scholar
  33. Khait I et al. (2015) Quantitative analysis of Delta-like-1 membrane dynamics elucidates the role of contact geometry on Notch signaling. Cell Rep 14(2):225–233.
  34. Kimmel CB, Ballard WW, Kimmel SR, Ullmann B, Schilling TF (1995) Stages of embryonic development of the zebrafish. Dev Dyn 203:253–310. CrossRefPubMedGoogle Scholar
  35. Klein T, Brennan K, Arias AM (1997) An intrinsic dominant negative activity of serrate that is modulated during wing development in Drosophila. Dev Biol 189:123–134. S0012-1606(97)98564-X [pii]. CrossRefPubMedGoogle Scholar
  36. Kondo S, Iwashita M, Yamaguchi M (2009) How animals get their skin patterns: fish pigment pattern as a live Turing wave. Int J Dev Biol 53:851–856. 072502sk [pii]CrossRefPubMedGoogle Scholar
  37. Kornberg TB, Roy S (2014) Cytonemes as specialized signaling filopodia. Development 141:729–736. 141/4/729 [pii]CrossRefPubMedPubMedCentralGoogle Scholar
  38. Kovall RA, Gebelein B, Sprinzak D, Kopan R (2017) The canonical notch signaling pathway: structural and biochemical insights into shape, sugar, and force. Dev Cell 41:228–241. S1534–5807(17)30294-0 [pii]. CrossRefPubMedPubMedCentralGoogle Scholar
  39. LeBon L, Lee TV, Sprinzak D, Jafar-Nejad H, Elowitz MB (2014) Fringe proteins modulate Notch-ligand cis and trans interactions to specify signaling states. Elife 3:e02950. CrossRefPubMedPubMedCentralGoogle Scholar
  40. Lewis J (2003) Autoinhibition with transcriptional delay: a simple mechanism for the zebrafish somitogenesis oscillator. Curr Biol 13:1398–1408. doi: S0960-9822(03)00534-7 [pii]CrossRefPubMedGoogle Scholar
  41. Meinhardt H (1996) Models of biological pattern formation: common mechanism in plant and animal development. Int J Dev Biol 40:123–134PubMedGoogle Scholar
  42. Meinhardt H (2008) Models of biological pattern formation: from elementary steps to the organization of embryonic axes. Curr Top Dev Biol 81:1–63. S0070-2153(07)81001-5 [pii]. CrossRefPubMedGoogle Scholar
  43. Micchelli CA, Rulifson EJ, Blair SS (1997) The function and regulation of cut expression on the wing margin of Drosophila: Notch, Wingless and a dominant negative role for Delta and Serrate. Development 124:1485–1495PubMedGoogle Scholar
  44. Petrovic J et al (2014) Ligand-dependent Notch signaling strength orchestrates lateral induction and lateral inhibition in the developing inner ear. Development 141:2313–2324. dev.108100 [pii] [pii]CrossRefPubMedGoogle Scholar
  45. Riedel-Kruse IH, Muller C, Oates AC (2007) Synchrony dynamics during initiation, failure, and rescue of the segmentation clock. Science 317:1911–1915. 1142538 [pii]. CrossRefPubMedGoogle Scholar
  46. Sancho R, Cremona CA, Behrens A (2015) Stem cell and progenitor fate in the mammalian intestine: Notch and lateral inhibition in homeostasis and disease. EMBO Rep 16:571–581. embr.201540188 [pii]CrossRefPubMedPubMedCentralGoogle Scholar
  47. Shaya O, Sprinzak D (2011) From Notch signaling to fine-grained patterning: Modeling meets experiments. Curr Opin Genet Dev 21:732–739. S0959-437X(11)00119-5 [pii]. CrossRefPubMedGoogle Scholar
  48. Shaya O et al (2017) Cell-cell contact area affects Notch signaling and Notch dependent patterning. Dev Cell 40:1–7. CrossRefGoogle Scholar
  49. Sprinzak D et al (2010) Cis-interactions between Notch and Delta generate mutually exclusive signalling states. Nature 465:86–90. nature08959 [pii]. CrossRefPubMedPubMedCentralGoogle Scholar
  50. Sprinzak D, Lakhanpal A, LeBon L, Garcia-Ojalvo J, Elowitz MB (2011) Mutual inactivation of Notch receptors and ligands facilitates developmental patterning. PLoS Comput Biol 7:e1002069. PCOMPBIOL-D-10-00231 [pii]CrossRefPubMedPubMedCentralGoogle Scholar
  51. Toth B, Ben-Moshe S, Gavish A, Barkai N, Itzkovitz S (2017) Early commitment and robust differentiation in colonic crypts. Mol Syst Biol 13:902. CrossRefPubMedPubMedCentralGoogle Scholar
  52. Turing AM (1952) The chemical basis of morphogenesis. Phil Trans R Soc London Ser B 237:37–72CrossRefGoogle Scholar
  53. Vasilopoulos G, Painter KJ (2016) Pattern formation in discrete cell tissues under long range filopodia-based direct cell to cell contact. Math Biosci 273:1–15. S0025-5564(15)00270-9 [pii]CrossRefPubMedGoogle Scholar
  54. Wigglesworth VB (1940) The determination of characters at metamorphosis in Rhodnius prolixus. J Exp Biol 17:201–223Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Biochemistry and Molecular Biology, George S. Wise Faculty of Life ScienceTel Aviv UniversityTel AvivIsrael

Personalised recommendations