Control of Blood Vessel Formation by Notch Signaling

  • Fabian Tetzlaff
  • Andreas FischerEmail author
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1066)


Blood vessels span throughout the body to nourish tissue cells and to provide gateways for immune surveillance. Endothelial cells that line capillaries have the remarkable capacity to be quiescent for years but to switch rapidly into the activated state once new blood vessels need to be formed. In addition, endothelial cells generate niches for progenitor and tumor cells and provide organ-specific paracrine (angiocrine) factors that control organ development and regeneration, maintenance of homeostasis and tumor progression. Recent data indicate a pivotal role for blood vessels in responding to metabolic changes and that endothelial cell metabolism is a novel regulator of angiogenesis. The Notch pathway is the central signaling mode that cooperates with VEGF, WNT, BMP, TGF-β, angiopoietin signaling and cell metabolism to orchestrate angiogenesis, tip/stalk cell selection and arteriovenous specification. Here, we summarize the current knowledge and implications regarding the complex roles of Notch signaling during physiological and tumor angiogenesis, the dynamic nature of tip/stalk cell selection in the nascent vessel sprout and arteriovenous differentiation. Furthermore, we shed light on recent work on endothelial cell metabolism, perfusion-independent angiocrine functions of endothelial cells in organ-specific vascular beds and how manipulation of Notch signaling may be used to target the tumor vasculature.


Angiogenesis Notch signaling Arteriovenous differentiation Tumor angiogenesis Angiocrine signaling Endothelial metabolism Endothelial cells 



We thank all members of the Fischer laboratory for critical discussion and apologize to all colleagues whose work could not be cited in this chapter. Work in our laboratory on these topics has been supported by the Deutsche Forschungsgemeinschaft (DFG-FI1568/3-1; FI1568/5-1; SFB-TR23), the Helmholtz Society and the German Cancer Research Center Heidelberg.


  1. Adam MG et al (2013) Synaptojanin-2 binding protein stabilizes the Notch ligands DLL1 and DLL4 and inhibits sprouting angiogenesis. Circ Res 113(11):1206–1218CrossRefPubMedGoogle Scholar
  2. Adams RH, Eichmann A (2010) Axon guidance molecules in vascular patterning. Cold Spring Harb Perspect Biol 2(5):a001875CrossRefPubMedPubMedCentralGoogle Scholar
  3. Aird WC (2007) Phenotypic heterogeneity of the endothelium: I. Structure, function, and mechanisms. Circ Res 100(2):158–173CrossRefPubMedGoogle Scholar
  4. Andersson ER, Lendahl U (2014) Therapeutic modulation of Notch signalling--are we there yet? Nat Rev Drug Discov 13(5):357–378CrossRefPubMedGoogle Scholar
  5. Arroyo AG, Iruela-Arispe ML (2010) Extracellular matrix, inflammation, and the angiogenic response. Cardiovasc Res 86(2):226–235CrossRefPubMedPubMedCentralGoogle Scholar
  6. Aspalter IM et al (2015) Alk1 and Alk5 inhibition by Nrp1 controls vascular sprouting downstream of Notch. Nat Commun 6:7264CrossRefPubMedPubMedCentralGoogle Scholar
  7. Augustin HG et al (2009) Control of vascular morphogenesis and homeostasis through the angiopoietin - Tie system. Nat Rev Mol Cell Biol 10(3):165–177CrossRefPubMedGoogle Scholar
  8. Benedito R et al (2009) The notch ligands Dll4 and Jagged1 have opposing effects on angiogenesis. Cell 137(6):1124–1135CrossRefPubMedGoogle Scholar
  9. Bentley K et al (2014) The role of differential VE-cadherin dynamics in cell rearrangement during angiogenesis. Nat Cell Biol 16(4):309–321CrossRefPubMedGoogle Scholar
  10. Bergers G, Hanahan D (2008) Modes of resistance to anti-angiogenic therapy. Nat Rev Cancer 8(8):592–603CrossRefPubMedPubMedCentralGoogle Scholar
  11. Betz C et al (2016) Cell behaviors and dynamics during angiogenesis. Development 143(13):2249–2260CrossRefPubMedGoogle Scholar
  12. Blanco R, Gerhardt H (2013) VEGF and Notch in tip and stalk cell selection. Cold Spring Harb Perspect Med 3(1):a006569CrossRefPubMedPubMedCentralGoogle Scholar
  13. Boareto M et al (2015) Jagged mediates differences in normal and tumor angiogenesis by affecting tip-stalk fate decision. PNAS 112(29):E3836–E3844CrossRefPubMedGoogle Scholar
  14. Briot A et al (2015) Endothelial NOTCH1 is suppressed by circulating lipids and antagonizes inflammation during atherosclerosis. J Exp Med 212(12):2147–2163CrossRefPubMedPubMedCentralGoogle Scholar
  15. Butler JM, Kobayashi H, Rafii S (2010) Instructive role of the vascular niche in promoting tumour growth and tissue repair by angiocrine factors. Nat Rev Cancer 10(2):138–146CrossRefPubMedPubMedCentralGoogle Scholar
  16. Cantelmo AR et al (2016) Inhibition of the glycolytic activator PFKFB3 in endothelium induces tumor vessel normalization, impairs metastasis, and improves chemotherapy. Cancer Cell 30(6):968–985CrossRefPubMedPubMedCentralGoogle Scholar
  17. Cao Y (2010) Adipose tissue angiogenesis as a therapeutic target for obesity and metabolic diseases. Nat Rev Drug Discov 9(2):107–115CrossRefPubMedGoogle Scholar
  18. Cao Z et al (2014) Angiocrine factors deployed by tumor vascular niche induce B cell lymphoma invasiveness and chemoresistance. Cancer Cell 25(3):350–365CrossRefPubMedPubMedCentralGoogle Scholar
  19. Cao Z et al (2016) Targeting of the pulmonary capillary vascular niche promotes lung alveolar repair and ameliorates fibrosis. Nat Med 22(2):154–162CrossRefPubMedPubMedCentralGoogle Scholar
  20. Carlson TR et al (2005) Endothelial expression of constitutively active Notch4 elicits reversible arteriovenous malformations in adult mice. PNAS 102(28):9884–9889CrossRefPubMedGoogle Scholar
  21. Carmeliet P, Jain RK (2011) Molecular mechanisms and clinical applications of angiogenesis. Nature 473(7347):298–307CrossRefPubMedPubMedCentralGoogle Scholar
  22. Carmeliet P et al (1996) Abnormal blood vessel development and lethality in embryos lacking a single VEGF allele. Nature 380(6573):435–439CrossRefPubMedPubMedCentralGoogle Scholar
  23. Chabriat H et al (2009) CADASIL. Lancet Neurol 8(7):643–653CrossRefPubMedGoogle Scholar
  24. Chiorean EG et al (2015) A phase I first-in-human study of Enoticumab (REGN421), a fully human delta-like ligand 4 (Dll4) monoclonal antibody in patients with advanced solid tumors. Clin Cancer Res 21(12):2695–2703CrossRefPubMedGoogle Scholar
  25. Claxton S, Fruttiger M (2004) Periodic Delta-like 4 expression in developing retinal arteries. Gene Expr Patterns 5(1):123–127CrossRefPubMedGoogle Scholar
  26. Corada M et al (2010) The Wnt/β-catenin pathway modulates vascular remodeling and specification by upregulating Dll4/notch signaling. Dev Cell 18(6):938–949CrossRefPubMedGoogle Scholar
  27. Corada M et al (2013) Sox17 is indispensable for acquisition and maintenance of arterial identity. Nat Commun 4:2609CrossRefPubMedPubMedCentralGoogle Scholar
  28. Corada M, Morini MF, Dejana E (2014) Signaling pathways in the specification of arteries and veins. Arterioscler Thromb Vasc Biol 34(11):2372–2377CrossRefPubMedGoogle Scholar
  29. Corvera S, Gealekman O (2014) Adipose tissue angiogenesis: impact on obesity and type-2 diabetes. Biochim Biophys Acta Mol basis Dis 1842(3):463–472CrossRefGoogle Scholar
  30. Cruys B et al (2016) Glycolytic regulation of cell rearrangement in angiogenesis. Nat Commun 7:12240CrossRefPubMedPubMedCentralGoogle Scholar
  31. De Bock K et al (2013) Role of PFKFB3-driven glycolysis in vessel sprouting. Cell 154(3):651–663CrossRefPubMedGoogle Scholar
  32. Del Toro R et al (2010) Identification and functional analysis of endothelial tip cell-enriched genes. Blood 116(19):4025–4033CrossRefPubMedPubMedCentralGoogle Scholar
  33. Deng Y et al (2013) Endothelial RAF1 / ERK activation regulates arterial morphogenesis Endothelial RAF1 / ERK activation regulates arterial morphogenesis. Blood 121(19):3988–3997CrossRefPubMedPubMedCentralGoogle Scholar
  34. Diez H et al (2007) Hypoxia-mediated activation of Dll4-Notch-Hey2 signaling in endothelial progenitor cells and adoption of arterial cell fate. Exp Cell Res 313(1):1–9CrossRefPubMedGoogle Scholar
  35. Dill MT et al (2012) Disruption of Notch1 induces vascular remodeling, intussusceptive angiogenesis, and angiosarcomas in livers of mice. Gastroenterology 142(4):967–977.e2CrossRefPubMedGoogle Scholar
  36. Dimova I et al (2013) Inhibition of Notch signaling induces extensive intussusceptive neo-angiogenesis by recruitment of mononuclear cells. Angiogenesis 16(4):921–937CrossRefPubMedGoogle Scholar
  37. Domigan CK et al (2015) Autocrine VEGF maintains endothelial survival through regulation of metabolism and autophagy. J Cell Sci 128(12):2236–2248CrossRefPubMedPubMedCentralGoogle Scholar
  38. Dou G-R et al (2008) RBP-J, the transcription factor downstream of Notch receptors, is essential for the maintenance of vascular homeostasis in adult mice. FASEB J 22(5):1606–1617CrossRefPubMedGoogle Scholar
  39. Duarte A et al (2004) Dosage-sensitive requirement for mouse Dll4 in artery development. Genes Dev 18(20):2474–2478CrossRefPubMedPubMedCentralGoogle Scholar
  40. Dumont DJ et al (1998) Cardiovascular failure in mouse embryos deficient in VEGF receptor-3. Science 282(5390):946–949CrossRefPubMedGoogle Scholar
  41. Eilken HM, Adams RH (2010) Dynamics of endothelial cell behavior in sprouting angiogenesis. Curr Opin Cell Biol 22(5):617–625CrossRefPubMedGoogle Scholar
  42. Falchook G et al (2015) Phase 1 study of MEDI0639 in patients with advanced solid tumors. J Clin Oncol 33(suppl):abstr 3024Google Scholar
  43. Fantin A et al (2010) Tissue macrophages act as cellular chaperones for vascular anastomosis downstream of VEGF-mediated endothelial tip cell induction. Blood 116(5):829–840CrossRefPubMedPubMedCentralGoogle Scholar
  44. Fantin A et al (2013) NRP1 acts cell autonomously in endothelium to promote tip cell function during sprouting angiogenesis. Blood 121(12):2352–2362CrossRefPubMedPubMedCentralGoogle Scholar
  45. Fantin A et al (2015) NRP1 regulates CDC42 activation to promote Filopodia formation in endothelial tip cells. Cell Rep 11(10):1577–1590CrossRefPubMedPubMedCentralGoogle Scholar
  46. Ferrara N et al (1996) Heterozygous embryonic lethality induced by targeted inactivation of the VEGF gene. Nature 380(6573):439–442CrossRefPubMedPubMedCentralGoogle Scholar
  47. Fischer A et al (2004) The Notch target genes Hey1 and Hey2 are required for embryonic vascular development. Genes Dev 18(8):901–911CrossRefPubMedPubMedCentralGoogle Scholar
  48. Folkman J (1995) Angiogenesis in cancer, vascular, rheumatoid and other disease. Nat Med 1(1):27–31CrossRefPubMedGoogle Scholar
  49. Folkman J (2007) Is angiogenesis an organizing principle in biology and medicine? J Pediatr Surg 42(1):1–11CrossRefPubMedGoogle Scholar
  50. Fong G-HH et al (1995) Role of the Flt-1 receptor tyrosine kinase in regulating the assembly of vascular endothelium. Nature 376(6535):66–70CrossRefPubMedGoogle Scholar
  51. Fouillade C et al (2012) Notch signalling in smooth muscle cells during development and disease. Cardiovasc Res 95(2):138–146CrossRefPubMedGoogle Scholar
  52. Funahashi Y et al (2008) A notch1 ectodomain construct inhibits endothelial notch signaling, tumor growth, and angiogenesis. Cancer Res 68(12):4727–4735CrossRefPubMedPubMedCentralGoogle Scholar
  53. Gale NW et al (2004) Haploinsufficiency of delta-like 4 ligand results in embryonic lethality due to major defects in arterial and vascular development. PNAS 101(45):15949–15954CrossRefPubMedGoogle Scholar
  54. Gerhardt H et al (2003) VEGF guides angiogenic sprouting utilizing endothelial tip cell filopodia. J Cell Biol 161(6):1163–1177CrossRefPubMedPubMedCentralGoogle Scholar
  55. Glomski K et al (2011) Deletion of Adam10 in endothelial cells leads to defects in organ-specific vascular structures. Blood 118(4):1163–1174CrossRefPubMedPubMedCentralGoogle Scholar
  56. Goel S et al (2011) Normalization of the vasculature for treatment of cancer and other diseases. Physiol Rev 91(3):1071–1121CrossRefPubMedPubMedCentralGoogle Scholar
  57. Gordon WR et al (2015) Mechanical Allostery: evidence for a force requirement in the proteolytic activation of notch. Dev Cell 33(6):729–736CrossRefPubMedPubMedCentralGoogle Scholar
  58. Gridley T (2010) Notch signaling in the vasculature. Curr Top Dev Biol 92:277–309CrossRefPubMedPubMedCentralGoogle Scholar
  59. Guarani V et al (2011) Acetylation-dependent regulation of endothelial Notch signalling by the SIRT1 deacetylase. Nature 473(7346):234–238CrossRefPubMedPubMedCentralGoogle Scholar
  60. Hagberg CE et al (2010) Vascular endothelial growth factor B controls endothelial fatty acid uptake. Nature 464(7290):917–921CrossRefPubMedGoogle Scholar
  61. Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144(5):646–674CrossRefPubMedGoogle Scholar
  62. Hayashi H, Kume T (2008) Foxc transcription factors directly regulate DLL4 and hey2 expression by interacting with the VEGF-notch signaling pathways in endothelial cells. PLoS One 3(6):1–9CrossRefGoogle Scholar
  63. Hellsten Y, Hoier B (2014) Capillary growth in human skeletal muscle: physiological factors and the balance between pro-angiogenic and angiostatic factors. Biochem Soc Trans 42(6):1616–1622CrossRefPubMedGoogle Scholar
  64. Hellström M et al (2007) Dll4 signalling through Notch1 regulates formation of tip cells during angiogenesis. Nature 1(3):133–136Google Scholar
  65. Herbert SP, Stainier DYR (2011) Molecular control of endothelial cell behaviour during blood vessel morphogenesis. Nat Rev Mol Cell Biol 12(9):551–564CrossRefPubMedPubMedCentralGoogle Scholar
  66. Herbert SP et al (2009) Arterial-venous segregation by selective cell sprouting: an alternative mode of blood vessel formation. Science 326(5950):294–298CrossRefPubMedPubMedCentralGoogle Scholar
  67. Herreman A et al (1999) Presenilin 2 deficiency causes a mild pulmonary phenotype and no changes in amyloid precursor protein processing but enhances the embryonic lethal phenotype of presenilin 1 deficiency. PNAS 96(21):11872–11877CrossRefPubMedGoogle Scholar
  68. Hofmann JJ, Luisa Iruela-Arispe M (2007) Notch expression patterns in the retina: an eye on receptor-ligand distribution during angiogenesis. Gene Expr Patterns 7(4):461–470CrossRefPubMedGoogle Scholar
  69. Hong CC, Kume T, Peterson RT (2008) Role of crosstalk between phosphatidylinositol 3-kinase and extracellular signal-regulated kinase/mitogen-activated protein kinase pathways in artery-vein specification. Circ Res 103(6):573–579CrossRefPubMedPubMedCentralGoogle Scholar
  70. Huppert SS et al (2000) Embryonic lethality in mice homozygous for a processing-deficient allele of Notch1. Nature 405(June):966–970CrossRefPubMedGoogle Scholar
  71. Iso T et al (2006) Dll4-selective Notch signaling induces ephrinB2 gene expression in endothelial cells. Biochem Biophys Res Commun 341(3):708–714CrossRefPubMedGoogle Scholar
  72. Isogai S et al (2003) Angiogenic network formation in the developing vertebrate trunk. Development 130(21):5281–5290CrossRefPubMedGoogle Scholar
  73. Jais A et al (2016) Myeloid-cell-derived VEGF maintains brain glucose uptake and limits cognitive impairment in obesity. Cell 166(5):1338–1340CrossRefPubMedGoogle Scholar
  74. Jakobsson L et al (2010) Endothelial cells dynamically compete for the tip cell position during angiogenic sprouting. Nat Cell Biol 12(10):943–953CrossRefPubMedGoogle Scholar
  75. Joutel A et al (2010) Cerebrovascular dysfunction and microcirculation rarefaction precede white matter lesions in a mouse genetic model of cerebral ischemic small vessel disease. J Clin Investig 120(2):433–445CrossRefPubMedGoogle Scholar
  76. Jubb AM et al (2012) Expression of vascular Notch ligands Delta-like 4 and Jagged-1 in glioblastoma. Histopathology 60(5):740–747CrossRefPubMedGoogle Scholar
  77. Kageyama R, Masamizu Y, Niwa Y (2007) Oscillator mechanism of Notch pathway in the segmentation clock. Dev Dyn 236(6):1403–1409CrossRefPubMedGoogle Scholar
  78. Kamba T et al (2006) VEGF-dependent plasticity of fenestrated capillaries in the normal adult microvasculature. Am J Physiol Heart Circ Physiol 290(2):H560–H576CrossRefPubMedGoogle Scholar
  79. Kangsamaksin T et al (2015) NOTCH decoys that selectively block DLL/NOTCH or JAG/NOTCH disrupt angiogenesis by unique mechanisms to inhibit tumor growth. Cancer Discov 5(2):182–197CrossRefPubMedGoogle Scholar
  80. Kim YH et al (2008) Artery and vein size is balanced by Notch and ephrin B2/EphB4 during angiogenesis. Development 135(22):3755–3764CrossRefPubMedPubMedCentralGoogle Scholar
  81. Klose R et al (2015) Soluble Notch ligand and receptor peptides act antagonistically during angiogenesis. Cardiovasc Res 107(1):153–163CrossRefPubMedGoogle Scholar
  82. Kohli V et al (2013) Arterial and venous progenitors of the major axial vessels originate at distinct locations. Dev Cell 25(2):196–206CrossRefPubMedPubMedCentralGoogle Scholar
  83. Kokubo H et al (2005) Mouse hesr1 and hesr2 genes are redundantly required to mediate Notch signaling in the developing cardiovascular system. Dev Biol 278(2):301–309CrossRefPubMedGoogle Scholar
  84. Kopan R, Ilagan MXG (2009) The canonical notch signaling pathway: unfolding the activation mechanism. Cell 137(2):216–233CrossRefPubMedPubMedCentralGoogle Scholar
  85. Krebs LT et al (2000) Notch signaling is essential for vascular morphogenesis in mice. Genes Dev 14(11):1343–1352PubMedPubMedCentralGoogle Scholar
  86. Krebs LT et al (2001) The Nrarp gene encodes an ankyrin-repeat protein that is transcriptionally regulated by the notch signaling pathway. Dev Biol 238(1):110–119CrossRefPubMedGoogle Scholar
  87. Krebs LT et al (2004) Haploinsufficient lethality and formation of arteriovenous malformations in Notch pathway mutants. Genes Dev 18(20):2469–2473CrossRefPubMedPubMedCentralGoogle Scholar
  88. Krebs LT et al (2010) Notch1 activation in mice causes arteriovenous malformations phenocopied by EphrinB2 and EphB4 mutants. Genesis 48(3):146–150PubMedPubMedCentralGoogle Scholar
  89. Krueger J et al (2011) Flt1 acts as a negative regulator of tip cell formation and branching morphogenesis in the zebrafish embryo. Development 138(10):2111–2120CrossRefPubMedPubMedCentralGoogle Scholar
  90. Kusumbe AP, Ramasamy SK, Adams RH (2014) Coupling of angiogenesis and osteogenesis by a specific vessel subtype in bone. Nature 507(7492):323–328CrossRefPubMedPubMedCentralGoogle Scholar
  91. Kusumbe AP et al (2016) Age-dependent modulation of vascular niches for haematopoietic stem cells. Nature 532(7599):380–384CrossRefPubMedPubMedCentralGoogle Scholar
  92. Lammert E et al (2003) Role of VEGF-A in vascularization of pancreatic islets. Curr Biol 13(12):1070–1074CrossRefPubMedGoogle Scholar
  93. Lanahan A et al (2013) The Neuropilin 1 cytoplasmic domain is required for VEGF-A-dependent Arteriogenesis. Dev Cell 25(2):156–168CrossRefPubMedPubMedCentralGoogle Scholar
  94. Lanner F et al (2013) Hypoxia-induced arterial differentiation requires adrenomedullin and notch signaling. Stem Cells Dev 22(9):1360–1369Google Scholar
  95. Larrivée B et al (2012) ALK1 signaling inhibits angiogenesis by cooperating with the notch pathway. Dev Cell 22(3):489–500CrossRefPubMedPubMedCentralGoogle Scholar
  96. Lawson ND et al (2001) Notch signaling is required for arterial-venous differentiation during embryonic vascular development. Development 128(19):3675–3683PubMedPubMedCentralGoogle Scholar
  97. Lawson ND, Vogel AM, Weinstein BM (2002) Sonic hedgehog and vascular endothelial growth factor act upstream of the Notch pathway during arterial endothelial differentiation. Dev Cell 3(1):127–136CrossRefPubMedGoogle Scholar
  98. Lawton MT et al (2015) Brain arteriovenous malformations. Nat Rev Dis Prim 1(Table 1):15008CrossRefPubMedGoogle Scholar
  99. Le Noble F et al (2005) Control of arterial branching morphogenesis in embryogenesis: go with the flow. Cardiovasc Res 65(3):619–628CrossRefPubMedGoogle Scholar
  100. Lee SH et al (2014) Notch pathway targets proangiogenic regulator Sox17 to restrict angiogenesis. Circ Res 115(2):215–226CrossRefPubMedGoogle Scholar
  101. Lehoux S, Jones EA (2016) Shear stress, arterial identity and atherosclerosis. Thromb Haemost 115(3):467–473CrossRefPubMedGoogle Scholar
  102. Leslie JD et al (2007) Endothelial signalling by the Notch ligand Delta-like 4 restricts angiogenesis. Development 134(5):839–844CrossRefPubMedGoogle Scholar
  103. Li T et al (2003) Nicastrin is required for assembly of Presenilin/γ-Secretase complexes to mediate notch signaling and for processing and trafficking of β-amyloid precursor protein in mammals. J Neurosci 23(8):3272–3277CrossRefPubMedGoogle Scholar
  104. Li JL et al (2007) Delta-like 4 Notch ligand regulates tumor angiogenesis, improves tumor vascular function, and promotes tumor growth in vivo. Cancer Res 67(23):11244–11253CrossRefPubMedGoogle Scholar
  105. Liebler SS et al (2012) No evidence for a functional role of bi-directional notch signaling during angiogenesis. PLoS One 7(12):1–10CrossRefGoogle Scholar
  106. Limbourg FP et al (2005) Essential role of endothelial Notch1 in angiogenesis. Circulation 111(14):1826–1832CrossRefPubMedPubMedCentralGoogle Scholar
  107. Limbourg A et al (2007) Notch ligand Delta-like 1 is essential for postnatal arteriogenesis. Circ Res 100:363–371CrossRefPubMedGoogle Scholar
  108. Lindskog H et al (2014) Molecular identification of venous progenitors in the dorsal aorta reveals an aortic origin for the cardinal vein in mammals. Development 141(5):1120–1128CrossRefPubMedPubMedCentralGoogle Scholar
  109. Liu ZJ et al (2006) Inhibition of endothelial cell proliferation by Notch1 signaling is mediated by repressing MAPK and PI3K/Akt pathways and requires MAML1. FASEB J 20(7):1009–1011CrossRefPubMedGoogle Scholar
  110. Liu Z et al (2011) Notch1 loss of heterozygosity causes vascular tumors and lethal hemorrhage in mice. J Clin Investig 121(2):800–808CrossRefPubMedPubMedCentralGoogle Scholar
  111. Liu Z-J et al (2012) Notch activation induces endothelial cell senescence and pro-inflammatory response: implication of Notch signaling in atherosclerosis. Atherosclerosis 225(2):296–303CrossRefPubMedPubMedCentralGoogle Scholar
  112. Lobov IB et al (2007) Delta-like ligand 4 (Dll4) is induced by VEGF as a negative regulator of angiogenic sprouting. PNAS 104(9):3219–3224CrossRefPubMedPubMedCentralGoogle Scholar
  113. Lu C et al (2007) Gene alterations identified by expression profiling in tumor-associated endothelial cells from invasive ovarian carcinoma. Cancer Res 67(4):1757–1768CrossRefPubMedPubMedCentralGoogle Scholar
  114. Lu J et al (2013) Endothelial cells promote the colorectal Cancer stem cell phenotype through a soluble form of Jagged-1. Cancer Cell 23(2):171–185CrossRefPubMedPubMedCentralGoogle Scholar
  115. Mackenzie F, Ruhrberg C (2012) Diverse roles for VEGF-A in the nervous system. Development 139(8):1371–1380CrossRefPubMedPubMedCentralGoogle Scholar
  116. Mailhos C et al (2001) Delta4, an endothelial specific notch ligand expressed at sites of physiological and tumor angiogenesis. Differ Res Biol Divers 69(2–3):135–144CrossRefGoogle Scholar
  117. Makanya AN, Hlushchuk R, Djonov VG (2009) Intussusceptive angiogenesis and its role in vascular morphogenesis, patterning, and remodeling. Angiogenesis 12(2):113–123CrossRefPubMedPubMedCentralGoogle Scholar
  118. Mazzone M et al (2009) Heterozygous deficiency of PHD2 restores tumor oxygenation and inhibits metastasis via endothelial normalization. Cell 136(5):839–851CrossRefPubMedPubMedCentralGoogle Scholar
  119. Miniati D et al (2010) Constitutively active endothelial Notch4 causes lung arteriovenous shunts in mice. Am J Physiol Lung Cell Mol Physiol 298(2):L169–L177CrossRefPubMedPubMedCentralGoogle Scholar
  120. Mouillesseaux KP et al (2016) Notch regulates BMP responsiveness and lateral branching in vessel networks via SMAD6. Nat Commun 7:13247CrossRefPubMedPubMedCentralGoogle Scholar
  121. Moya IM et al (2012) Stalk cell phenotype depends on integration of notch and Smad1/5 signaling cascades. Dev Cell 22(3):501–514CrossRefPubMedPubMedCentralGoogle Scholar
  122. Murphy DA, Courtneidge SA (2011) The “ins” and “outs” of podosomes and invadopodia: characteristics, formation and function. Nat Rev Mol Cell Biol 12(7):413–426CrossRefPubMedPubMedCentralGoogle Scholar
  123. Murphy P a et al (2008) Endothelial Notch4 signaling induces hallmarks of brain arteriovenous malformations in mice. PNAS 105(31):10901–10906CrossRefPubMedPubMedCentralGoogle Scholar
  124. Murphy P a et al (2009) Endothelial notch signaling is upregulated in human brain arteriovenous malformations and a mouse model of the disease. Lab Investig 89(9):971–982CrossRefPubMedPubMedCentralGoogle Scholar
  125. Murphy PA et al (2012) Notch4 normalization reduces blood vessel size in arteriovenous malformations. Sci Transl Med 4(117):117ra8CrossRefPubMedPubMedCentralGoogle Scholar
  126. Murphy PA et al (2014) Constitutively active Notch4 receptor elicits brain arteriovenous malformations through enlargement of capillary-like vessels. PNAS 111(50):18007–18012CrossRefPubMedPubMedCentralGoogle Scholar
  127. Nakazawa MS, Keith B, Simon MC (2016) Oxygen availability and metabolic adaptations. Nat Rev Cancer 16(10):663–673CrossRefPubMedPubMedCentralGoogle Scholar
  128. Noguera-Troise I et al (2006) Blockade of Dll4 inhibits tumour growth by promoting non-productive angiogenesis. Nature 444(7122):1032–1037CrossRefPubMedGoogle Scholar
  129. Noguera-Troise I et al (2007) Blockade of Dll4 inhibits tumour growth by promoting non-productive angiogenesis. Novartis Found Symp 283:106–120CrossRefPubMedGoogle Scholar
  130. Outtz HH et al (2011) Notch1 controls macrophage recruitment and Notch signaling is activated at sites of endothelial cell anastomosis during retinal angiogenesis in mice. Blood 118(12):3436–3439CrossRefPubMedPubMedCentralGoogle Scholar
  131. Patel NS et al (2005) Up-regulation of delta-like 4 ligand in human tumor vasculature and the role of basal expression in endothelial cell function. Cancer Res 65(19):8690–8697CrossRefPubMedGoogle Scholar
  132. Pedrosa A-R et al (2015) Endothelial Jagged1 promotes solid tumor growth through both pro-angiogenic and angiocrine functions. Oncotarget 6(27):24404–24423CrossRefPubMedPubMedCentralGoogle Scholar
  133. Pelton JC et al (2014) Multiple endothelial cells constitute the tip of developing blood vessels and polarize to promote lumen formation. Development 141(21):4121–4126CrossRefPubMedPubMedCentralGoogle Scholar
  134. Peters K et al (2009) Changes in human endothelial cell energy metabolic capacities during in vitro cultivation. The role of “aerobic glycolysis” and proliferation. Cell Physiol Biochem 24(5–6):483–492CrossRefPubMedGoogle Scholar
  135. Phng LK et al (2009) Nrarp coordinates endothelial notch and Wnt signaling to control vessel density in angiogenesis. Dev Cell 16(1):70–82CrossRefPubMedGoogle Scholar
  136. Phng L-K, Stanchi F, Gerhardt H (2013) Filopodia are dispensable for endothelial tip cell guidance. Development 140(19):4031–4040CrossRefPubMedGoogle Scholar
  137. Potente M, Carmeliet P (2017) The link between angiogenesis and endothelial metabolism. Annu Rev Physiol 79(1). p.annurev-physiol-021115-105134Google Scholar
  138. Potente M, Gerhardt H, Carmeliet P (2011) Basic and therapeutic aspects of angiogenesis. Cell 146(6):873–887CrossRefGoogle Scholar
  139. Poulos MG et al (2013) Endothelial Jagged-1 is necessary for homeostatic and regenerative hematopoiesis. Cell Rep 4(5):1022–1034CrossRefPubMedPubMedCentralGoogle Scholar
  140. Preuße K et al (2015) Context-dependent functional divergence of the notch ligands DLL1 and DLL4 in vivo. PLoS Genet 11(6):e1005328CrossRefPubMedPubMedCentralGoogle Scholar
  141. Quillien A et al (2014) Distinct Notch signaling outputs pattern the developing arterial system. Development 141(7):1544–1552CrossRefPubMedPubMedCentralGoogle Scholar
  142. Rafii S, Butler JM, Ding B-S (2016) Angiocrine functions of organ-specific endothelial cells. Nature 529(7586):316–325CrossRefPubMedPubMedCentralGoogle Scholar
  143. Ramasamy SK et al (2014) Endothelial Notch activity promotes angiogenesis and osteogenesis in bone. Nature 507(7492):376–380CrossRefPubMedPubMedCentralGoogle Scholar
  144. Ramasamy SK et al (2016) Blood flow controls bone vascular function and osteogenesis. Nat Commun 7:13601CrossRefPubMedPubMedCentralGoogle Scholar
  145. Redeker C et al (2013) Normal development in mice over-expressing the intracellular domain of DLL1 argues against reverse signaling by DLL1 in vivo. PLoS One 8(10):e79050CrossRefPubMedPubMedCentralGoogle Scholar
  146. Ren B et al (2010) ERK1/2-Akt1 crosstalk regulates arteriogenesis in mice and zebrafish. J Clin Investig 120(4):1217–1228CrossRefPubMedGoogle Scholar
  147. Ridgway J et al (2006) Inhibition of Dll4 signalling inhibits tumour growth by deregulating angiogenesis. Nature 444(7122):1083–1087CrossRefPubMedGoogle Scholar
  148. Risau W (1997) Mechanisms of angiogenesis. Nature 386(6626):671–674CrossRefPubMedGoogle Scholar
  149. Risau W, Flamme I (1995) Vasculogenesis. Annu Rev Cell Dev Biol 11:73–91CrossRefPubMedGoogle Scholar
  150. Robciuc MR et al (2016) VEGFB/VEGFR1-induced expansion of adipose vasculature counteracts obesity and related metabolic complications. Cell Metab 23(4):712–724CrossRefPubMedPubMedCentralGoogle Scholar
  151. Ruhrberg C et al (2002) Spatially restricted patterning cues provided by heparin-binding VEGF-A control blood vessel branching morphogenesis. Genes Dev 16(20):2684–2698CrossRefPubMedPubMedCentralGoogle Scholar
  152. Sacilotto N et al (2013) Analysis of Dll4 regulation reveals a combinatorial role for Sox and Notch in arterial development. PNAS 110(29):11893–11898CrossRefPubMedGoogle Scholar
  153. Sainson RC et al (2005) Cell-autonomous notch signaling regulates endothelial cell branching and proliferation during vascular tubulogenesis. FASEB J 19(8):1027–1029CrossRefPubMedGoogle Scholar
  154. Scehnet JS et al (2007) Inhibition of Dll4-mediated signaling induces proliferation of immature vessels and results in poor tissue perfusion. Blood 109(11):4753–4760CrossRefPubMedPubMedCentralGoogle Scholar
  155. Schoors S et al (2015) Fatty acid carbon is essential for dNTP synthesis in endothelial cells. Nature 520(7546):192–197CrossRefPubMedPubMedCentralGoogle Scholar
  156. Schulze A, Harris AL (2012) How cancer metabolism is tuned for proliferation and vulnerable to disruption. Nature 491(7424):364–373CrossRefPubMedGoogle Scholar
  157. Seano G et al (2014) Endothelial podosome rosettes regulate vascular branching in tumour angiogenesis. Nat Cell Biol 16(10):931–941CrossRefPubMedPubMedCentralGoogle Scholar
  158. Seo S et al (2006) The forkhead transcription factors, Foxc1 and Foxc2, are required for arterial specification and lymphatic sprouting during vascular development. Dev Biol 294(2):458–470CrossRefPubMedGoogle Scholar
  159. Serra H et al (2015) PTEN mediates Notch-dependent stalk cell arrest in angiogenesis. Nat Commun 6:7935CrossRefPubMedPubMedCentralGoogle Scholar
  160. Shalaby F et al (1995) Failure of blood-island formation and vasculogenesis in Flk-1-deficient mice. Nature 376:62–66CrossRefGoogle Scholar
  161. Sharghi-Namini S et al (2014) Dll4-containing exosomes induce capillary sprout retraction in a 3D microenvironment. Sci Rep 4:4031CrossRefPubMedPubMedCentralGoogle Scholar
  162. Sheldon H et al (2010) New mechanism for Notch signaling to endothelium at a distance by delta-like 4 incorporation into exosomes. Blood 116(13):2385–2394CrossRefPubMedGoogle Scholar
  163. Siekmann AF, Lawson ND (2007) Notch signalling limits angiogenic cell behaviour in developing zebrafish arteries. Nature 445(7129):781–784CrossRefPubMedGoogle Scholar
  164. Siekmann AF, Affolter M, Belting HG (2013) The tip cell concept 10 years after: new players tune in for a common theme. Exp Cell Res 319(9):1255–1263CrossRefPubMedGoogle Scholar
  165. Simons M, Gordon E, Claesson-Welsh L (2016) Mechanisms and regulation of endothelial VEGF receptor signalling. Nat Rev Mol Cell Biol 10(10):611–625CrossRefGoogle Scholar
  166. Smith DC et al (2014) A phase I dose escalation and expansion study of the anticancer stem cell agent Demcizumab (anti-DLL4) in patients with previously treated solid tumors. Clin Cancer Res 20(24):6295–6303CrossRefPubMedGoogle Scholar
  167. Sonoshita M et al (2011) Suppression of colon cancer metastasis by Aes through inhibition of Notch signaling. Cancer Cell 19(1):125–137CrossRefPubMedGoogle Scholar
  168. Sörensen I, Adams RH, Gossler A (2009) DLL1-mediated Notch activation regulates endothelial identity in mouse fetal arteries. Blood 113(22):5680–5688CrossRefPubMedGoogle Scholar
  169. Spuul P et al (2016) VEGF-A/notch-induced Podosomes Proteolyse basement membrane collagen-IV during retinal sprouting angiogenesis. Cell Rep 17(2):484–500CrossRefPubMedGoogle Scholar
  170. Stenzel D et al (2011) Endothelial basement membrane limits tip cell formation by inducing Dll4/Notch signalling in vivo. EMBO Rep 12(11):1135–1143CrossRefPubMedPubMedCentralGoogle Scholar
  171. Suchting S et al (2007) The Notch ligand Delta-like 4 negatively regulates endothelial tip cell formation and vessel branching. PNAS 104(9):3225–3230CrossRefPubMedGoogle Scholar
  172. Swift MR, Weinstein BM (2009) Arterial-venous specification during development. Circ Res 104(5):576–588CrossRefPubMedGoogle Scholar
  173. Swift MR et al (2014) SoxF factors and Notch regulate nr2f2 gene expression during venous differentiation in zebrafish. Dev Biol 390(2):116–125CrossRefPubMedPubMedCentralGoogle Scholar
  174. Takeshita K et al (2007) Critical role of endothelial Notch1 signaling in postnatal angiogenesis. Circ Res 100(1):70–78CrossRefPubMedGoogle Scholar
  175. Tammela T et al (2008) Blocking VEGFR-3 suppresses angiogenic sprouting and vascular network formation. Nature 454(7204):656–660CrossRefPubMedGoogle Scholar
  176. Tammela T et al (2011) VEGFR-3 controls tip to stalk conversion at vessel fusion sites by reinforcing Notch signalling. Nat Cell Biol 13(10):1202–1213CrossRefPubMedPubMedCentralGoogle Scholar
  177. Taylor KL, Henderson AM, Hughes CCW (2002) Notch activation during endothelial cell network formation in vitro targets the basic HLH transcription factor HESR-1 and Downregulates VEGFR-2/KDR expression. Microvasc Res 64(3):372–383CrossRefPubMedGoogle Scholar
  178. Trindade A et al (2008) Overexpression of delta-like 4 induces arterialization and attenuates vessel formation in developing mouse embryos. Blood 112(5):1720–1729CrossRefPubMedPubMedCentralGoogle Scholar
  179. Ubezio B et al (2016) Synchronization of endothelial Dll4-Notch dynamics switch blood vessels from branching to expansion. eLife 5:e12167CrossRefPubMedPubMedCentralGoogle Scholar
  180. Uyttendaele H et al (2001) Vascular patterning defects associated with expression of activated Notch4 in embryonic endothelium. PNAS 98(10):5643–5648CrossRefPubMedGoogle Scholar
  181. Verginelli F et al (2014) Activation of an endothelial Notch1-Jagged1 circuit induces VCAM1 expression, an effect amplified by interleukin-1β. Oncotarget 6(41):43216–43229Google Scholar
  182. Villa N et al (2001) Vascular expression of Notch pathway receptors and ligands is restricted to arterial vessels. Mech Dev 108(1–2):161–164CrossRefPubMedGoogle Scholar
  183. Wang HU, Chen ZF, Anderson DJ (1998) Molecular distinction and angiogenic interaction between embryonic arteries and veins revealed by ephrin-B2 and its receptor Eph-B4. Cell 93(5):741–753CrossRefPubMedGoogle Scholar
  184. Wieland E et al (2017) Endothelial Notch1 activity facilitates metastasis. Cancer Cell 31(3):355–367CrossRefPubMedGoogle Scholar
  185. Wild R et al (2017) Neuronal sFlt1 and Vegfaa determine venous sprouting and spinal cord vascularization. Nat Commun 10(8)Google Scholar
  186. Wilhelm K et al (2016) FOXO1 couples metabolic activity and growth state in the vascular endothelium. Nature 529(7585):216–220CrossRefPubMedPubMedCentralGoogle Scholar
  187. Wilkinson RN et al (2012) Hedgehog signaling via a calcitonin receptor-like receptor can induce arterial differentiation independently of VEGF signaling in zebrafish. Blood 120(2):477–488CrossRefPubMedGoogle Scholar
  188. Wu Y et al (2010) Therapeutic antibody targeting of individual Notch receptors. Nature 464(7291):1052–1057CrossRefPubMedGoogle Scholar
  189. Xu C et al (2014) Arteries are formed by vein-derived endothelial tip cells. Nat Commun 5:5758CrossRefPubMedPubMedCentralGoogle Scholar
  190. Xue Y et al (1999) Embryonic lethality and vascular defects in mice lacking the Notch ligand Jagged1. Hum Mol Genet 8(5):723–730CrossRefPubMedGoogle Scholar
  191. Yamamizu K et al (2010) Convergence of Notch and β-catenin signaling induces arterial fate in vascular progenitors. J Cell Biol 189(2):325–338CrossRefPubMedPubMedCentralGoogle Scholar
  192. Yan M et al (2010) Chronic DLL4 blockade induces vascular neoplasms. Nature 463(7282):E6–E7CrossRefPubMedGoogle Scholar
  193. Yang Y, Oliver G (2014) Development of the mammalian lymphatic vasculature. J Clin Investig 124(3):888–897CrossRefPubMedGoogle Scholar
  194. Yeh WL, Lin CJ, Fu WM (2008) Enhancement of glucose transporter expression of brain endothelial cells by vascular endothelial growth factor derived from glioma exposed to hypoxia. Mol Pharmacol 73(1):170–177CrossRefPubMedGoogle Scholar
  195. Yoon CH et al (2014) High glucose-induced jagged 1 in endothelial cells disturbs notch signaling for angiogenesis: a novel mechanism of diabetic vasculopathy. J Mol Cell Cardiol 69:52–66CrossRefPubMedGoogle Scholar
  196. You L-R et al (2005) Suppression of Notch signalling by the COUP-TFII transcription factor regulates vein identity. Nature 435(7038):98–104CrossRefPubMedGoogle Scholar
  197. Zarkada G et al (2015) VEGFR3 does not sustain retinal angiogenesis without VEGFR2. PNAS 112(3):761–766CrossRefPubMedGoogle Scholar
  198. Zhang J et al (2011) Angiopoietin-1/Tie2 signal augments basal Notch signal controlling vascular quiescence by inducing Delta-like 4 expression through AKT-mediated activation of β-catenin. J Biol Chem 286(10):8055–8066CrossRefPubMedPubMedCentralGoogle Scholar
  199. Zhong TP et al (2000) Gridlock, an HLH gene required for assembly of the aorta in zebrafish. Science 287(5459):1820–1824CrossRefPubMedGoogle Scholar
  200. Zhong TP et al (2001) Gridlock signalling pathway fashions the first embryonic artery. Nature 414(6860):216–220CrossRefPubMedGoogle Scholar
  201. Zhu TS et al (2011) Endothelial cells create a stem cell niche in glioblastoma by providing NOTCH ligands that nurture self-renewal of cancer stem-like cells. Cancer Res 71(18):6061–6072CrossRefPubMedPubMedCentralGoogle Scholar
  202. Zhuge Q et al (2009) Notch-1 signalling is activated in brain arteriovenous malformations in humans. Brain 132(12):3231–3241CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Vascular Signaling and Cancer (A270)German Cancer Research Center (DKFZ)HeidelbergGermany
  2. 2.Vascular Biology, CBTM, Medical Faculty MannheimHeidelberg UniversityMannheimGermany
  3. 3.Department of Medicine I and Clinical ChemistryHeidelberg University HospitalHeidelbergGermany

Personalised recommendations