Advertisement

Notch and Neurogenesis

  • Anna Engler
  • Runrui Zhang
  • Verdon Taylor
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1066)

Abstract

Neurogenesis is the process of forming neurons and is essential during vertebrate development to produce most of the neurons of the adult brain. However, neurogenesis continues throughout life at distinct locations in the vertebrate brain. Neural stem cells (NSCs) are the origin of both embryonic and adult neurogenesis, but their activity and fate are tightly regulated by their local milieu or niche. In this chapter, we will discuss the role of Notch signaling in the control of neurogenesis and regeneration in the embryo and adult. Notch-dependence is a common feature among NSC populations, we will discuss how differences in Notch signaling might contribute to heterogeneity among adult NSCs. Understanding the fate of multiple NSC populations with distinct functions could be important for effective brain regeneration.

Keywords

Neurogenesis Development Notch Rbpj Hes Central nervous system Maintenance Neural stem cells Subventricular zone Dentate gyrus 

Abbreviations

BMP

Bone Morphogenic Protein

CNS

Central Nervous System

DG

Dentate Gyrus

Dll

Delta-like

E

Embryonic day

FGF

Fibroblast Growth Factor

Hes

Hairy and enhancer of split

IP

Intermediate progenitor

IPC

Intermediate progenitor cell

LV

Lateral ventricle

NEPs

Neuroepithelial Cells

NICD

Notch intracellular domain

NSCs

Neural Stem Cells

OB

Olfactory Bulb

P

Postnatal day

RA

Retinoic Acid

RGC

radial glia cell

RMS

Rostral Migratory Stream

SGZ

Subgranular Zone

Shh

sonic hedgehog

SVZ

Subventricular Zone

TAP

transient amplifying progenitor

VZ

Ventricular Zone

Wnt

Wingless

Notes

Acknowledgments

We thank the members of the Taylor lab for critical reading of the manuscript and for helpful discussions. This work was supported by the Swiss National Science Foundation (VT) and the SystemsX.ch, NeuroStemX project (VT) and the University of Basel (VT) and the Forschungsfond of the University of Basel (AE).

References

  1. Ables JL, Decarolis NA, Johnson MA, Rivera PD, Gao Z, Cooper DC, Radtke F, Hsieh J, Eisch AJ (2010) Notch1 is required for maintenance of the reservoir of adult hippocampal stem cells. J Neurosci Off J Soc Neurosci 30(31):10484–10492.  https://doi.org/10.1523/JNEUROSCI.4721-09.2010 CrossRefGoogle Scholar
  2. Ables JL, Breunig JJ, Eisch AJ, Rakic P (2011) Not(ch) just development: Notch signalling in the adult brain. Nat Rev Neurosci 12(5):269–283.  https://doi.org/10.1038/nrn3024 CrossRefPubMedPubMedCentralGoogle Scholar
  3. Aguirre A, Rubio ME, Gallo V (2010) Notch and EGFR pathway interaction regulates neural stem cell number and self-renewal. Nature 467(7313):323–327.  https://doi.org/10.1038/nature09347 CrossRefPubMedPubMedCentralGoogle Scholar
  4. Alberi L, Liu S, Wang Y, Badie R, Smith-Hicks C, Wu J, Pierfelice TJ, Abazyan B, Mattson MP, Kuhl D, Pletnikov M, Worley PF, Gaiano N (2011) Activity-induced Notch signaling in neurons requires arc/Arg3.1 and is essential for synaptic plasticity in hippocampal networks. Neuron 69(3):437–444.  https://doi.org/10.1016/j.neuron.2011.01.004 CrossRefPubMedPubMedCentralGoogle Scholar
  5. Alunni A, Bally-Cuif L (2016) A comparative view of regenerative neurogenesis in vertebrates. Development 143(5):741–753.  https://doi.org/10.1242/dev.122796 CrossRefPubMedPubMedCentralGoogle Scholar
  6. Andersen J, Urban N, Achimastou A, Ito A, Simic M, Ullom K, Martynoga B, Lebel M, Goritz C, Frisen J, Nakafuku M, Guillemot F (2014) A transcriptional mechanism integrating inputs from extracellular signals to activate hippocampal stem cells. Neuron 83(5):1085–1097.  https://doi.org/10.1016/j.neuron.2014.08.004 CrossRefPubMedPubMedCentralGoogle Scholar
  7. Androutsellis-Theotokis A, Leker RR, Soldner F, Hoeppner DJ, Ravin R, Poser SW, Rueger MA, Bae SK, Kittappa R, McKay RD (2006) Notch signalling regulates stem cell numbers in vitro and in vivo. Nature 442(7104):823–826.  https://doi.org/10.1038/nature04940 CrossRefPubMedGoogle Scholar
  8. Artavanis-Tsakonas S, Rand MD, Lake RJ (1999) Notch signaling: cell fate control and signal integration in development. Science 284(5415):770–776CrossRefPubMedPubMedCentralGoogle Scholar
  9. Basak O, Taylor V (2007) Identification of self-replicating multipotent progenitors in the embryonic nervous system by high Notch activity and Hes5 expression. Eur J Neurosci 25(4):1006–1022.  https://doi.org/10.1111/j.1460-9568.2007.05370.x CrossRefPubMedGoogle Scholar
  10. Basak O, Giachino C, Fiorini E, Macdonald HR, Taylor V (2012) Neurogenic subventricular zone stem/progenitor cells are Notch1-dependent in their active but not quiescent state. J Neurosci Off J Soc Neurosci 32(16):5654–5666.  https://doi.org/10.1523/JNEUROSCI.0455-12.2012 CrossRefGoogle Scholar
  11. Bhatt S, Diaz R, Trainor PA (2013) Signals and switches in Mammalian neural crest cell differentiation. Cold Spring Harb Perspect Biol 5(2).  https://doi.org/10.1101/cshperspect.a008326
  12. Bonaguidi MA, Wheeler MA, Shapiro JS, Stadel RP, Sun GJ, Ming GL, Song H (2011) In vivo clonal analysis reveals self-renewing and multipotent adult neural stem cell characteristics. Cell 145(7):1142–1155.  https://doi.org/10.1016/j.cell.2011.05.024 CrossRefPubMedPubMedCentralGoogle Scholar
  13. Bonaguidi MA, Song J, Ming GL, Song H (2012) A unifying hypothesis on mammalian neural stem cell properties in the adult hippocampus. Curr Opin Neurobiol 22(5):754–761.  https://doi.org/10.1016/j.conb.2012.03.013 CrossRefPubMedPubMedCentralGoogle Scholar
  14. Breunig JJ, Silbereis J, Vaccarino FM, Sestan N, Rakic P (2007) Notch regulates cell fate and dendrite morphology of newborn neurons in the postnatal dentate gyrus. Proc Natl Acad Sci U S A 104(51):20558–20563.  https://doi.org/10.1073/pnas.0710156104 CrossRefPubMedPubMedCentralGoogle Scholar
  15. Castro DS, Martynoga B, Parras C, Ramesh V, Pacary E, Johnston C, Drechsel D, Lebel-Potter M, Garcia LG, Hunt C, Dolle D, Bithell A, Ettwiller L, Buckley N, Guillemot F (2011) A novel function of the proneural factor Ascl1 in progenitor proliferation identified by genome-wide characterization of its targets. Genes Dev 25(9):930–945.  https://doi.org/10.1101/gad.627811 CrossRefPubMedPubMedCentralGoogle Scholar
  16. Codega P, Silva-Vargas V, Paul A, Maldonado-Soto AR, Deleo AM, Pastrana E, Doetsch F (2014) Prospective identification and purification of quiescent adult neural stem cells from their in vivo niche. Neuron 82(3):545–559.  https://doi.org/10.1016/j.neuron.2014.02.039 CrossRefPubMedPubMedCentralGoogle Scholar
  17. Conlon RA, Reaume AG, Rossant J (1995) Notch1 is required for the coordinate segmentation of somites. Development 121(5):1533–1545PubMedGoogle Scholar
  18. de la Pompa JL, Wakeham A, Correia KM, Samper E, Brown S, Aguilera RJ, Nakano T, Honjo T, Mak TW, Rossant J, Conlon RA (1997) Conservation of the Notch signalling pathway in mammalian neurogenesis. Development 124(6):1139–1148PubMedGoogle Scholar
  19. Doetsch F, Caille I, Lim DA, Garcia-Verdugo JM, Alvarez-Buylla A (1999) Subventricular zone astrocytes are neural stem cells in the adult mammalian brain. Cell 97(6):703–716CrossRefPubMedGoogle Scholar
  20. Drago D, Cossetti C, Iraci N, Gaude E, Musco G, Bachi A, Pluchino S (2013) The stem cell secretome and its role in brain repair. Biochimie 95(12):2271–2285.  https://doi.org/10.1016/j.biochi.2013.06.020 CrossRefPubMedPubMedCentralGoogle Scholar
  21. Dunwoodie SL (2009) The role of Notch in patterning the human vertebral column. Curr Opin Genet Dev 19(4):329–337.  https://doi.org/10.1016/j.gde.2009.06.005 CrossRefPubMedGoogle Scholar
  22. Ehm O, Goritz C, Covic M, Schaffner I, Schwarz TJ, Karaca E, Kempkes B, Kremmer E, Pfrieger FW, Espinosa L, Bigas A, Giachino C, Taylor V, Frisen J, Lie DC (2010) RBPJkappa-dependent signaling is essential for long-term maintenance of neural stem cells in the adult hippocampus. J Neurosci Off J Soc Neurosci 30(41):13794–13807.  https://doi.org/10.1523/JNEUROSCI.1567-10.2010 CrossRefGoogle Scholar
  23. Ehninger D, Kempermann G (2008) Neurogenesis in the adult hippocampus. Cell Tissue Res 331(1):243–250.  https://doi.org/10.1007/s00441-007-0478-3 CrossRefPubMedGoogle Scholar
  24. Franco SJ, Muller U (2013) Shaping our minds: stem and progenitor cell diversity in the mammalian neocortex. Neuron 77(1):19–34.  https://doi.org/10.1016/j.neuron.2012.12.022 CrossRefPubMedPubMedCentralGoogle Scholar
  25. Franklin JL, Berechid BE, Cutting FB, Presente A, Chambers CB, Foltz DR, Ferreira A, Nye JS (1999) Autonomous and non-autonomous regulation of mammalian neurite development by Notch1 and Delta1. Curr Biol 9(24):1448–1457CrossRefPubMedGoogle Scholar
  26. Fuentealba LC, Rompani SB, Parraguez JI, Obernier K, Romero R, Cepko CL, Alvarez-Buylla A (2015) Embryonic origin of postnatal neural stem cells. Cell 161(7):1644–1655.  https://doi.org/10.1016/j.cell.2015.05.041 CrossRefPubMedPubMedCentralGoogle Scholar
  27. Furutachi S, Matsumoto A, Nakayama KI, Gotoh Y (2013) p57 controls adult neural stem cell quiescence and modulates the pace of lifelong neurogenesis. EMBO J 32(7):970–981.  https://doi.org/10.1038/emboj.2013.50 CrossRefPubMedPubMedCentralGoogle Scholar
  28. Furutachi S, Miya H, Watanabe T, Kawai H, Yamasaki N, Harada Y, Imayoshi I, Nelson M, Nakayama KI, Hirabayashi Y, Gotoh Y (2015) Slowly dividing neural progenitors are an embryonic origin of adult neural stem cells. Nat Neurosci 18(5):657–665.  https://doi.org/10.1038/nn.3989 CrossRefPubMedGoogle Scholar
  29. Gage FH (2000) Mammalian neural stem cells. Science 287(5457):1433–1438.  https://doi.org/10.1126/science.287.5457.1433 CrossRefPubMedGoogle Scholar
  30. Gaiano N, Nye JS, Fishell G (2000) Radial glial identity is promoted by Notch1 signaling in the murine forebrain. Neuron 26(2):395–404CrossRefPubMedGoogle Scholar
  31. Giachino C, Barz M, Tchorz JS, Tome M, Gassmann M, Bischofberger J, Bettler B, Taylor V (2014a) GABA suppresses neurogenesis in the adult hippocampus through GABAB receptors. Development 141(1):83–90.  https://doi.org/10.1242/dev.102608 CrossRefPubMedGoogle Scholar
  32. Giachino C, Basak O, Lugert S, Knuckles P, Obernier K, Fiorelli R, Frank S, Raineteau O, Alvarez-Buylla A, Taylor V (2014b) Molecular diversity subdivides the adult forebrain neural stem cell population. Stem Cells 32(1):70–84.  https://doi.org/10.1002/stem.1520 CrossRefPubMedPubMedCentralGoogle Scholar
  33. Gotz M, Huttner WB (2005) The cell biology of neurogenesis. Nat Rev Mol Cell Biol 6(10):777–788.  https://doi.org/10.1038/nrm1739 CrossRefPubMedGoogle Scholar
  34. Greig LC, Woodworth MB, Galazo MJ, Padmanabhan H, Macklis JD (2013) Molecular logic of neocortical projection neuron specification, development and diversity. Nat Rev Neurosci 14(11):755–769.  https://doi.org/10.1038/nrn3586 CrossRefGoogle Scholar
  35. Guo C, Eckler MJ, McKenna WL, McKinsey GL, Rubenstein JL, Chen B (2013) Fezf2 expression identifies a multipotent progenitor for neocortical projection neurons, astrocytes, and oligodendrocytes. Neuron 80(5):1167–1174.  https://doi.org/10.1016/j.neuron.2013.09.037 CrossRefPubMedGoogle Scholar
  36. Hamada Y, Kadokawa Y, Okabe M, Ikawa M, Coleman JR, Tsujimoto Y (1999) Mutation in ankyrin repeats of the mouse Notch2 gene induces early embryonic lethality. Development 126(15):3415–3424Google Scholar
  37. Hatakeyama J, Tomita K, Inoue T, Kageyama R (2001) Roles of homeobox and bHLH genes in specification of a retinal cell type. Development 128(8):1313–1322PubMedGoogle Scholar
  38. Hatakeyama J, Bessho Y, Katoh K, Ookawara S, Fujioka M, Guillemot F, Kageyama R (2004) Hes genes regulate size, shape and histogenesis of the nervous system by control of the timing of neural stem cell differentiation. Development 131(22):5539–5550.  https://doi.org/10.1242/dev.01436 CrossRefPubMedGoogle Scholar
  39. Hermann DM, Peruzzotti-Jametti L, Schlechter J, Bernstock JD, Doeppner TR, Pluchino S (2014) Neural precursor cells in the ischemic brain–integration, cellular crosstalk, and consequences for stroke recovery. Front Cell Neurosci 8:291.  https://doi.org/10.3389/fncel.2014.00291 CrossRefPubMedPubMedCentralGoogle Scholar
  40. Hirata H, Yoshiura S, Ohtsuka T, Bessho Y, Harada T, Yoshikawa K, Kageyama R (2002) Oscillatory expression of the bHLH factor Hes1 regulated by a negative feedback loop. Science 298(5594):840–843.  https://doi.org/10.1126/science.1074560 CrossRefPubMedGoogle Scholar
  41. Hitoshi S, Alexson T, Tropepe V, Donoviel D, Elia AJ, Nye JS, Conlon RA, Mak TW, Bernstein A, van der Kooy D (2002) Notch pathway molecules are essential for the maintenance, but not the generation, of mammalian neural stem cells. Genes Dev 16(7):846–858.  https://doi.org/10.1101/gad.975202 CrossRefPubMedPubMedCentralGoogle Scholar
  42. Homem CC, Knoblich JA (2012) Drosophila neuroblasts: a model for stem cell biology. Development 139(23):4297–4310.  https://doi.org/10.1242/dev.080515 CrossRefPubMedGoogle Scholar
  43. Honjo T (1996) The shortest path from the surface to the nucleus: RBP-J kappa/Su(H) transcription factor. Genes Cells Devot Mol Cell Mech 1(1):1–9CrossRefGoogle Scholar
  44. Ihrie RA, Alvarez-Buylla A (2011) Lake-front property: a unique germinal niche by the lateral ventricles of the adult brain. Neuron 70(4):674–686.  https://doi.org/10.1016/j.neuron.2011.05.004 CrossRefPubMedPubMedCentralGoogle Scholar
  45. Imayoshi I, Sakamoto M, Yamaguchi M, Mori K, Kageyama R (2010) Essential roles of Notch signaling in maintenance of neural stem cells in developing and adult brains. J Neurosci Off J Soc Neurosci 30(9):3489–3498.  https://doi.org/10.1523/JNEUROSCI.4987-09.2010 CrossRefGoogle Scholar
  46. Jessberger S, Parent JM (2015) Epilepsy and Adult Neurogenesis. Cold Spring Harb Perspect Biol 7(12).  https://doi.org/10.1101/cshperspect.a020677
  47. Kageyama R, Ohtsuka T, Kobayashi T (2007) The Hes gene family: repressors and oscillators that orchestrate embryogenesis. Development 134(7):1243–1251.  https://doi.org/10.1242/dev.000786 CrossRefPubMedGoogle Scholar
  48. Kawaguchi D, Furutachi S, Kawai H, Hozumi K, Gotoh Y (2013) Dll1 maintains quiescence of adult neural stem cells and segregates asymmetrically during mitosis. Nat Commun 4:1880.  https://doi.org/10.1038/ncomms2895 CrossRefPubMedPubMedCentralGoogle Scholar
  49. Kazanis I, Lathia J, Moss L, ffrench-Constant C (2008) The neural stem cell microenvironment. In: StemBook. Cambridge, MA. doi: https://doi.org/10.3824/stembook.1.15.1
  50. Lavado A, Oliver G (2014) Jagged1 is necessary for postnatal and adult neurogenesis in the dentate gyrus. Dev Biol 388(1):11–21.  https://doi.org/10.1016/j.ydbio.2014.02.004 CrossRefPubMedPubMedCentralGoogle Scholar
  51. Lavado A, Lagutin OV, Chow LM, Baker SJ, Oliver G (2010) Prox1 is required for granule cell maturation and intermediate progenitor maintenance during brain neurogenesis. PLoS Biol 8(8).  https://doi.org/10.1371/journal.pbio.1000460
  52. Lindsell CE, Boulter J, diSibio G, Gossler A, Weinmaster G (1996) Expression patterns of Jagged, Delta1, Notch1, Notch2, and Notch3 genes identify ligand-receptor pairs that may function in neural development. Mol Cell Neurosci 8(1):14–27.  https://doi.org/10.1006/mcne.1996.0040 CrossRefPubMedGoogle Scholar
  53. Liu XS, Chopp M, Zhang RL, Tao T, Wang XL, Kassis H, Hozeska-Solgot A, Zhang L, Chen C, Zhang ZG (2011) MicroRNA profiling in subventricular zone after stroke: MiR-124a regulates proliferation of neural progenitor cells through Notch signaling pathway. PLoS One 6(8):e23461.  https://doi.org/10.1371/journal.pone.0023461 CrossRefPubMedPubMedCentralGoogle Scholar
  54. Lois C (1996) Chain migration of neuronal precursors. Science 271:978–981CrossRefPubMedGoogle Scholar
  55. Louvi A, Artavanis-Tsakonas S (2006) Notch signalling in vertebrate neural development. Nat Rev Neurosci 7(2):93–102.  https://doi.org/10.1038/nrn1847 CrossRefPubMedGoogle Scholar
  56. Lugert S, Basak O, Knuckles P, Haussler U, Fabel K, Gotz M, Haas CA, Kempermann G, Taylor V, Giachino C (2010) Quiescent and active hippocampal neural stem cells with distinct morphologies respond selectively to physiological and pathological stimuli and aging. Cell Stem Cell 6(5):445–456.  https://doi.org/10.1016/j.stem.2010.03.017 CrossRefPubMedGoogle Scholar
  57. Lugert S, Vogt M, Tchorz JS, Muller M, Giachino C, Taylor V (2012) Homeostatic neurogenesis in the adult hippocampus does not involve amplification of Ascl1(high) intermediate progenitors. Nat Commun 3:670.  https://doi.org/10.1038/ncomms1670 CrossRefPubMedGoogle Scholar
  58. Lupo G, Harris WA, Lewis KE (2006) Mechanisms of ventral patterning in the vertebrate nervous system. Nat Rev Neurosci 7(2):103–114.  https://doi.org/10.1038/nrn1843 CrossRefPubMedGoogle Scholar
  59. Lutolf S, Radtke F, Aguet M, Suter U, Taylor V (2002) Notch1 is required for neuronal and glial differentiation in the cerebellum. Development 129(2):373–385PubMedGoogle Scholar
  60. Marin O (2013) Cellular and molecular mechanisms controlling the migration of neocortical interneurons. Eur J Neurosci 38(1):2019–2029.  https://doi.org/10.1111/ejn.12225 CrossRefPubMedGoogle Scholar
  61. Masamizu Y, Ohtsuka T, Takashima Y, Nagahara H, Takenaka Y, Yoshikawa K, Okamura H, Kageyama R (2006) Real-time imaging of the somite segmentation clock: revelation of unstable oscillators in the individual presomitic mesoderm cells. Proc Natl Acad Sci U S A 103(5):1313–1318.  https://doi.org/10.1073/pnas.0508658103 CrossRefPubMedPubMedCentralGoogle Scholar
  62. Mason HA, Rakowiecki SM, Gridley T, Fishell G (2006) Loss of notch activity in the developing central nervous system leads to increased cell death. Dev Neurosci 28(1–2):49–57.  https://doi.org/10.1159/000090752 CrossRefPubMedGoogle Scholar
  63. Merkle FT, Mirzadeh Z, Alvarez-Buylla A (2007) Mosaic organization of neural stem cells in the adult brain. Science 317(5836):381–384.  https://doi.org/10.1126/science.1144914 CrossRefPubMedGoogle Scholar
  64. Ming GL, Song H (2011) Adult neurogenesis in the mammalian brain: significant answers and significant questions. Neuron 70(4):687–702.  https://doi.org/10.1016/j.neuron.2011.05.001 CrossRefPubMedPubMedCentralGoogle Scholar
  65. Mirzadeh Z, Merkle FT, Soriano-Navarro M, Garcia-Verdugo JM, Alvarez-Buylla A (2008) Neural stem cells confer unique pinwheel architecture to the ventricular surface in neurogenic regions of the adult brain. Cell Stem Cell 3(3):265–278.  https://doi.org/10.1016/j.stem.2008.07.004 CrossRefPubMedPubMedCentralGoogle Scholar
  66. Nicola Z, Fabel K, Kempermann G (2015) Development of the adult neurogenic niche in the hippocampus of mice. Front Neuroanat 9:53.  https://doi.org/10.3389/fnana.2015.00053 CrossRefPubMedPubMedCentralGoogle Scholar
  67. Noctor SC, Martinez-Cerdeno V, Ivic L, Kriegstein AR (2004) Cortical neurons arise in symmetric and asymmetric division zones and migrate through specific phases. Nat Neurosci 7(2):136–144.  https://doi.org/10.1038/nn1172 CrossRefPubMedGoogle Scholar
  68. Noctor SC, Martinez-Cerdeno V, Kriegstein AR (2007) Contribution of intermediate progenitor cells to cortical histogenesis. Arch Neurol 64(5):639–642.  https://doi.org/10.1001/archneur.64.5.639 CrossRefPubMedGoogle Scholar
  69. Nyfeler Y, Kirch RD, Mantei N, Leone DP, Radtke F, Suter U, Taylor V (2005) Jagged1 signals in the postnatal subventricular zone are required for neural stem cell self-renewal. EMBO J 24:3504–3515CrossRefPubMedPubMedCentralGoogle Scholar
  70. Ohtsuka T, Ishibashi M, Gradwohl G, Nakanishi S, Guillemot F, Kageyama R (1999) Hes1 and Hes5 as notch effectors in mammalian neuronal differentiation. EMBO J 18(8):2196–2207.  https://doi.org/10.1093/emboj/18.8.2196 CrossRefPubMedPubMedCentralGoogle Scholar
  71. Ohtsuka T, Sakamoto M, Guillemot F, Kageyama R (2001) Roles of the basic helix-loop-helix genes Hes1 and Hes5 in expansion of neural stem cells of the developing brain. J Biol Chem 276(32):30467–30474.  https://doi.org/10.1074/jbc.M102420200 CrossRefPubMedGoogle Scholar
  72. Ottone C, Krusche B, Whitby A, Clements M, Quadrato G, Pitulescu ME, Adams RH, Parrinello S (2014) Direct cell-cell contact with the vascular niche maintains quiescent neural stem cells. Nat Cell Biol 16(11):1045–1056.  https://doi.org/10.1038/ncb3045 CrossRefPubMedPubMedCentralGoogle Scholar
  73. Pierfelice T, Alberi L, Gaiano N (2011) Notch in the vertebrate nervous system: an old dog with new tricks. Neuron 69(5):840–855.  https://doi.org/10.1016/j.neuron.2011.02.031 CrossRefPubMedGoogle Scholar
  74. Rolando C, Taylor V (2014) Neural stem cell of the hippocampus: development, physiology regulation, and dysfunction in disease. Curr Top Dev Biol 107:183–206.  https://doi.org/10.1016/B978-0-12-416022-4.00007-X CrossRefPubMedGoogle Scholar
  75. Rolando C, Erni A, Grison A, Beattie R, Engler A, Gokhale PJ, Milo M, Wegleiter T, Jessberger S, Taylor V (2016) Multipotency of adult hippocampal NSCs in vivo is restricted by Drosha/NFIB. Cell Stem Cell 19(5):653–662.  https://doi.org/10.1016/j.stem.2016.07.003 CrossRefPubMedGoogle Scholar
  76. Sauka-Spengler T, Bronner M (2010) Snapshot: neural crest. Cell 143(3):486–486. e481.  https://doi.org/10.1016/j.cell.2010.10.025 CrossRefPubMedGoogle Scholar
  77. Shimojo H, Ohtsuka T, Kageyama R (2008) Oscillations in notch signaling regulate maintenance of neural progenitors. Neuron 58(1):52–64.  https://doi.org/10.1016/j.neuron.2008.02.014 CrossRefPubMedGoogle Scholar
  78. Shimojo H, Ohtsuka T, Kageyama R (2011) Dynamic expression of notch signaling genes in neural stem/progenitor cells. Front Neurosci 5:78.  https://doi.org/10.3389/fnins.2011.00078 CrossRefPubMedPubMedCentralGoogle Scholar
  79. Song J, Zhong C, Bonaguidi MA, Sun GJ, Hsu D, Gu Y, Meletis K, Huang ZJ, Ge S, Enikolopov G, Deisseroth K, Luscher B, Christian KM, Ming GL, Song H (2012) Neuronal circuitry mechanism regulating adult quiescent neural stem-cell fate decision. Nature 489(7414):150–154.  https://doi.org/10.1038/nature11306 CrossRefPubMedPubMedCentralGoogle Scholar
  80. Spalding KL, Bergmann O, Alkass K, Bernard S, Salehpour M, Huttner HB, Bostrom E, Westerlund I, Vial C, Buchholz BA, Possnert G, Mash DC, Druid H, Frisen J (2013) Dynamics of hippocampal neurogenesis in adult humans. Cell 153(6):1219–1227.  https://doi.org/10.1016/j.cell.2013.05.002 CrossRefPubMedPubMedCentralGoogle Scholar
  81. Stump G, Durrer A, Klein AL, Lutolf S, Suter U, Taylor V (2002) Notch1 and its ligands Delta-like and Jagged are expressed and active in distinct cell populations in the postnatal mouse brain. Mech Dev 114(1–2):153–159CrossRefPubMedGoogle Scholar
  82. Tam PP, Loebel DA (2007) Gene function in mouse embryogenesis: get set for gastrulation. Nat Rev Genet 8(5):368–381.  https://doi.org/10.1038/nrg2084 CrossRefPubMedGoogle Scholar
  83. Telley L, Govindan S, Prados J, Stevant I, Nef S, Dermitzakis E, Dayer A, Jabaudon D (2016) Sequential transcriptional waves direct the differentiation of newborn neurons in the mouse neocortex. Science 351(6280):1443–1446.  https://doi.org/10.1126/science.aad8361 CrossRefPubMedGoogle Scholar
  84. Temple S (2001) The development of neural stem cells. Nature 414:112–117CrossRefPubMedGoogle Scholar
  85. Urban N, van den Berg DL, Forget A, Andersen J, Demmers JA, Hunt C, Ayrault O, Guillemot F (2016) Return to quiescence of mouse neural stem cells by degradation of a proactivation protein. Science 353(6296):292–295.  https://doi.org/10.1126/science.aaf4802 CrossRefPubMedPubMedCentralGoogle Scholar
  86. Weinmaster G, Roberts VJ, Lemke G (1991) A homolog of Drosophila Notch expressed during mammalian development. Development 113(1):199–205PubMedGoogle Scholar
  87. Weller M, Krautler N, Mantei N, Suter U, Taylor V (2006) Jagged1 ablation results in cerebellar granule cell migration defects and depletion of Bergmann glia. Dev Neurosci 28(1–2):70–80.  https://doi.org/10.1159/000090754 CrossRefPubMedGoogle Scholar
  88. Xue Y, Gao X, Lindsell CE, Norton CR, Chang B, Hicks C, Gendron-Maguire M, Rand EB, Weinmaster G, Gridley T (1999) Embryonic lethality and vascular defects in mice lacking the Notch ligand Jagged1. Hum Mol Genet 8(5):723–730CrossRefPubMedGoogle Scholar
  89. Zhao C, Deng W, Gage FH (2008) Mechanisms and functional implications of adult neurogenesis. Cell 132(4):645–660.  https://doi.org/10.1016/j.cell.2008.01.033 CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Embryology and Stem Cell Biology, Department of BiomedicineUniversity of BaselBaselSwitzerland

Personalised recommendations