Adipokines, Inflammation, and Insulin Resistance in Obesity

  • Hyokjoon Kwon
  • Jeffrey E. PessinEmail author


Humans have highly integrated system to regulate energy storage and expenditure. Adipose tissue is a major depot to store triglycerides during energy excess and release fatty acids and glycerol for systemic energy need. However, adipose tissues have also been shown as highly active endocrine and metabolically important organs to modulate energy expenditure and glucose homeostasis. Brown adipose tissue plays an essential role in non-shivering thermogenesis and in energy dissipation that can serve to protect against obesity. White adipose tissue, referred as either subcutaneous or visceral adipose tissue, has been shown to secret an array of molecules, termed adipokines. These adipokines function as circulating hormones to communicate with other organs including the brain, liver, muscle, immune system, and adipose tissue itself, resulting in the regulation of glucose homeostasis. The dysregulation of adipokines has been implicated in obesity, type 2 diabetes, and cardiovascular disease. Recently, inflammatory responses in adipose tissue have also been shown as one of the major mechanisms to induce peripheral tissue glucose intolerance and insulin resistance. Although leptin and adiponectin regulate feeding behavior and energy expenditure, these adipokines are also involved in the regulation of obesity-induced inflammation. Adipose tissue secretes various pro- and anti-inflammatory adipokines to modulate inflammation and insulin resistance. In obese humans and rodent models, the expression of pro-inflammatory adipokines is enhanced and can directly result in insulin resistance. Collectively, these findings have suggested that obesity-induced insulin resistance may result, at least in part, from an imbalance in the production of pro- and anti-inflammatory adipokines at adipose tissues. Thus, we will describe the recent progress regarding the physiological and molecular function of adipokines in the obesity-induced inflammation and insulin resistance.


  1. Ahima, R. S., Prabakaran, D., Mantzoros, C., Qu, D., Lowell, B., Maratos-Flier, E., & Flier, J. S. (1996). Role of leptin in the neuroendocrine response to fasting. Nature, 382, 250–252.CrossRefPubMedGoogle Scholar
  2. Akbay, E., Muslu, N., Nayir, E., Ozhan, O., & Kiykim, A. (2010). Serum retinol binding protein 4 level is related with renal functions in type 2 diabetes. Journal of Endocrinological Investigation, 33, 725–729.PubMedCrossRefPubMedCentralGoogle Scholar
  3. Albanesi, C., Scarponi, C., Pallotta, S., Daniele, R., Bosisio, D., Madonna, S., Fortugno, P., Gonzalvo-Feo, S., Franssen, J. D., Parmentier, M., et al. (2009). Chemerin expression marks early psoriatic skin lesions and correlates with plasmacytoid dendritic cell recruitment. The Journal of Experimental Medicine, 206, 249–258.PubMedPubMedCentralCrossRefGoogle Scholar
  4. Aleffi, S., Petrai, I., Bertolani, C., Parola, M., Colombatto, S., Novo, E., Vizzutti, F., Anania, F. A., Milani, S., Rombouts, K., et al. (2005). Upregulation of proinflammatory and proangiogenic cytokines by leptin in human hepatic stellate cells. Hepatology, 42, 1339–1348.PubMedCrossRefPubMedCentralGoogle Scholar
  5. Ashcroft, F. M., & Rorsman, P. (2012). Diabetes mellitus and the beta cell: The last ten years. Cell, 148, 1160–1171.PubMedPubMedCentralCrossRefGoogle Scholar
  6. Attane, C., Foussal, C., Le Gonidec, S., Benani, A., Daviaud, D., Wanecq, E., Guzman-Ruiz, R., Dray, C., Bezaire, V., Rancoule, C., et al. (2012). Apelin treatment increases complete fatty acid oxidation, mitochondrial oxidative capacity, and biogenesis in muscle of insulin-resistant mice. Diabetes, 61, 310–320.PubMedPubMedCentralCrossRefGoogle Scholar
  7. Badin, P. M., Vila, I. K., Louche, K., Mairal, A., Marques, M. A., Bourlier, V., Tavernier, G., Langin, D., & Moro, C. (2013). High-fat diet-mediated lipotoxicity and insulin resistance is related to impaired lipase expression in mouse skeletal muscle. Endocrinology, 154, 1444–1453.PubMedCrossRefPubMedCentralGoogle Scholar
  8. Badman, M. K., Pissios, P., Kennedy, A. R., Koukos, G., Flier, J. S., & Maratos-Flier, E. (2007). Hepatic fibroblast growth factor 21 is regulated by PPARalpha and is a key mediator of hepatic lipid metabolism in ketotic states. Cell Metabolism, 5, 426–437.PubMedCrossRefPubMedCentralGoogle Scholar
  9. Badman, M. K., Koester, A., Flier, J. S., Kharitonenkov, A., & Maratos-Flier, E. (2009). Fibroblast growth factor 21-deficient mice demonstrate impaired adaptation to ketosis. Endocrinology, 150, 4931–4940.PubMedPubMedCentralCrossRefGoogle Scholar
  10. Bard-Chapeau, E. A., Hevener, A. L., Long, S., Zhang, E. E., Olefsky, J. M., & Feng, G. S. (2005). Deletion of Gab1 in the liver leads to enhanced glucose tolerance and improved hepatic insulin action. Nature Medicine, 11, 567–571.PubMedCrossRefPubMedCentralGoogle Scholar
  11. Bauer, S., Wanninger, J., Schmidhofer, S., Weigert, J., Neumeier, M., Dorn, C., Hellerbrand, C., Zimara, N., Schaffler, A., Aslanidis, C., et al. (2011). Sterol regulatory element-binding protein 2 (SREBP2) activation after excess triglyceride storage induces chemerin in hypertrophic adipocytes. Endocrinology, 152, 26–35.PubMedCrossRefPubMedCentralGoogle Scholar
  12. Bendelac, A., Savage, P. B., & Teyton, L. (2007). The biology of NKT cells. Annual Review of Immunology, 25, 297–336.PubMedCrossRefPubMedCentralGoogle Scholar
  13. Benomar, Y., Gertler, A., De Lacy, P., Crepin, D., Hamouda, H. O., Riffault, L., & Taouis, M. (2012). Central resistin overexposure induces insulin resistance through toll-like receptor 4. Diabetes.Google Scholar
  14. Bertola, A., Ciucci, T., Rousseau, D., Bourlier, V., Duffaut, C., Bonnafous, S., Blin-Wakkach, C., Anty, R., Iannelli, A., Gugenheim, J., et al. (2012). Identification of adipose tissue dendritic cells correlated with obesity-associated insulin-resistance and inducing Th17 responses in mice and patients. Diabetes, 61, 2238–2247.PubMedPubMedCentralCrossRefGoogle Scholar
  15. Bokarewa, M., Nagaev, I., Dahlberg, L., Smith, U., & Tarkowski, A. (2005). Resistin, an adipokine with potent proinflammatory properties. Journal of Immunology, 174, 5789–5795.CrossRefGoogle Scholar
  16. Bondue, B., Wittamer, V., & Parmentier, M. (2011). Chemerin and its receptors in leukocyte trafficking, inflammation and metabolism. Cytokine & Growth Factor Reviews, 22, 331–338.CrossRefGoogle Scholar
  17. Boucher, J., Masri, B., Daviaud, D., Gesta, S., Guigne, C., Mazzucotelli, A., Castan-Laurell, I., Tack, I., Knibiehler, B., Carpene, C., et al. (2005). Apelin, a newly identified adipokine up-regulated by insulin and obesity. Endocrinology, 146, 1764–1771.PubMedCrossRefPubMedCentralGoogle Scholar
  18. Boura-Halfon, S., & Zick, Y. (2009). Phosphorylation of IRS proteins, insulin action, and insulin resistance. American Journal of Physiology. Endocrinology and Metabolism, 296, E581–E591.PubMedCrossRefPubMedCentralGoogle Scholar
  19. Butler, A. E., Janson, J., Bonner-Weir, S., Ritzel, R., Rizza, R. A., & Butler, P. C. (2003). Beta-cell deficit and increased beta-cell apoptosis in humans with type 2 diabetes. Diabetes, 52, 102–110.PubMedCrossRefPubMedCentralGoogle Scholar
  20. Cancello, R., Tordjman, J., Poitou, C., Guilhem, G., Bouillot, J. L., Hugol, D., Coussieu, C., Basdevant, A., Bar Hen, A., Bedossa, P., et al. (2006). Increased infiltration of macrophages in omental adipose tissue is associated with marked hepatic lesions in morbid human obesity. Diabetes, 55, 1554–1561.PubMedCrossRefPubMedCentralGoogle Scholar
  21. Carey, A. L., Steinberg, G. R., Macaulay, S. L., Thomas, W. G., Holmes, A. G., Ramm, G., Prelovsek, O., Hohnen-Behrens, C., Watt, M. J., James, D. E., et al. (2006). Interleukin-6 increases insulin-stimulated glucose disposal in humans and glucose uptake and fatty acid oxidation in vitro via AMP-activated protein kinase. Diabetes, 55, 2688–2697.PubMedCrossRefPubMedCentralGoogle Scholar
  22. Carpene, C., Dray, C., Attane, C., Valet, P., Portillo, M. P., Churruca, I., Milagro, F. I., & Castan-Laurell, I. (2007). Expanding role for the apelin/APJ system in physiopathology. Journal of Physiology and Biochemistry, 63, 359–373.PubMedCrossRefPubMedCentralGoogle Scholar
  23. Cash, J. L., Hart, R., Russ, A., Dixon, J. P., Colledge, W. H., Doran, J., Hendrick, A. G., Carlton, M. B., & Greaves, D. R. (2008). Synthetic chemerin-derived peptides suppress inflammation through ChemR23. The Journal of Experimental Medicine, 205, 767–775.PubMedPubMedCentralCrossRefGoogle Scholar
  24. Chavez, J. A., & Summers, S. A. (2012). A ceramide-centric view of insulin resistance. Cell Metabolism, 15, 585–594.PubMedCrossRefPubMedCentralGoogle Scholar
  25. Chiefari, E., Tanyolac, S., Paonessa, F., Pullinger, C. R., Capula, C., Iiritano, S., Mazza, T., Forlin, M., Fusco, A., Durlach, V., et al. (2011). Functional variants of the HMGA1 gene and type 2 diabetes mellitus. JAMA, 305, 903–912.PubMedCrossRefPubMedCentralGoogle Scholar
  26. Chin, J. E., Liu, F., & Roth, R. A. (1994). Activation of protein kinase C alpha inhibits insulin-stimulated tyrosine phosphorylation of insulin receptor substrate-1. Molecular Endocrinology, 8, 51–58.PubMedPubMedCentralGoogle Scholar
  27. Cho, H., Mu, J., Kim, J. K., Thorvaldsen, J. L., Chu, Q., Crenshaw, E. B., 3rd, Kaestner, K. H., Bartolomei, M. S., Shulman, G. I., & Birnbaum, M. J. (2001). Insulin resistance and a diabetes mellitus-like syndrome in mice lacking the protein kinase Akt2 (PKB beta). Science, 292, 1728–1731.PubMedCrossRefPubMedCentralGoogle Scholar
  28. Cipolletta, D., Feuerer, M., Li, A., Kamei, N., Lee, J., Shoelson, S. E., Benoist, C., & Mathis, D. (2012). PPAR-gamma is a major driver of the accumulation and phenotype of adipose tissue Treg cells. Nature, 486, 549–553.PubMedPubMedCentralCrossRefGoogle Scholar
  29. Cook, K. S., Min, H. Y., Johnson, D., Chaplinsky, R. J., Flier, J. S., Hunt, C. R., & Spiegelman, B. M. (1987). Adipsin: A circulating serine protease homolog secreted by adipose tissue and sciatic nerve. Science, 237, 402–405.PubMedCrossRefPubMedCentralGoogle Scholar
  30. Cornejo, M. P., Hentges, S. T., Maliqueo, M., Coirini, H., Becu-Villalobos, D., & Elias, C. F. (2016). Neuroendocrine regulation of metabolism. Journal of Neuroendocrinology, 28.Google Scholar
  31. Cornier, M. A., Dabelea, D., Hernandez, T. L., Lindstrom, R. C., Steig, A. J., Stob, N. R., Van Pelt, R. E., Wang, H., & Eckel, R. H. (2008). The metabolic syndrome. Endocrine Reviews, 29, 777–822.PubMedPubMedCentralCrossRefGoogle Scholar
  32. Cross, D. A., Alessi, D. R., Cohen, P., Andjelkovich, M., & Hemmings, B. A. (1995). Inhibition of glycogen synthase kinase-3 by insulin mediated by protein kinase B. Nature, 378, 785–789.PubMedCrossRefPubMedCentralGoogle Scholar
  33. Day, R. T., Cavaglieri, R. C., & Feliers, D. (2013). Apelin retards the progression of diabetic nephropathy. American Journal of Physiology. Renal Physiology, 304, F788–F800.PubMedCrossRefPubMedCentralGoogle Scholar
  34. de Souza Batista, C. M., Yang, R. Z., Lee, M. J., Glynn, N. M., Yu, D. Z., Pray, J., Ndubuizu, K., Patil, S., Schwartz, A., Kligman, M., et al. (2007). Omentin plasma levels and gene expression are decreased in obesity. Diabetes, 56, 1655–1661.PubMedCrossRefPubMedCentralGoogle Scholar
  35. DeFuria, J., Belkina, A. C., Jagannathan-Bogdan, M., Snyder-Cappione, J., Carr, J. D., Nersesova, Y. R., Markham, D., Strissel, K. J., Watkins, A. A., Zhu, M., et al. (2013). B cells promote inflammation in obesity and type 2 diabetes through regulation of T-cell function and an inflammatory cytokine profile. Proceedings of the National Academy of Sciences of the United States of America, 110, 5133–5138.PubMedPubMedCentralCrossRefGoogle Scholar
  36. Deng, J., Liu, Y., Yang, M., Wang, S., Zhang, M., Wang, X., Ko, K. H., Hua, Z., Sun, L., Cao, X., et al. (2012). Leptin exacerbates collagen-induced arthritis via enhancement of Th17 cell response. Arthritis and Rheumatism, 64, 3564–3573.PubMedCrossRefPubMedCentralGoogle Scholar
  37. Dinarello, C. A. (2009). Immunological and inflammatory functions of the interleukin-1 family. Annual Review of Immunology, 27, 519–550.PubMedCrossRefPubMedCentralGoogle Scholar
  38. Ding, X., Boney-Montoya, J., Owen, B. M., Bookout, A. L., Coate, K. C., Mangelsdorf, D. J., & Kliewer, S. A. (2012). betaKlotho is required for fibroblast growth factor 21 effects on growth and metabolism. Cell Metabolism, 16, 387–393.PubMedPubMedCentralCrossRefGoogle Scholar
  39. Donath, M. Y., Gross, D. J., Cerasi, E., & Kaiser, N. (1999). Hyperglycemia-induced beta-cell apoptosis in pancreatic islets of Psammomys obesus during development of diabetes. Diabetes, 48, 738–744.PubMedCrossRefPubMedCentralGoogle Scholar
  40. Ebina, Y., Ellis, L., Jarnagin, K., Edery, M., Graf, L., Clauser, E., Ou, J. H., Masiarz, F., Kan, Y. W., Goldfine, I. D., et al. (1985). The human insulin receptor cDNA: The structural basis for hormone-activated transmembrane signalling. Cell, 40, 747–758.PubMedCrossRefPubMedCentralGoogle Scholar
  41. Ehses, J. A., Lacraz, G., Giroix, M. H., Schmidlin, F., Coulaud, J., Kassis, N., Irminger, J. C., Kergoat, M., Portha, B., Homo-Delarche, F., et al. (2009). IL-1 antagonism reduces hyperglycemia and tissue inflammation in the type 2 diabetic GK rat. Proceedings of the National Academy of Sciences of the United States of America, 106, 13998–14003.PubMedPubMedCentralCrossRefGoogle Scholar
  42. Ernst, M. C., Issa, M., Goralski, K. B., & Sinal, C. J. (2010). Chemerin exacerbates glucose intolerance in mouse models of obesity and diabetes. Endocrinology, 151, 1998–2007.PubMedCrossRefPubMedCentralGoogle Scholar
  43. Faggioni, R., Jones-Carson, J., Reed, D. A., Dinarello, C. A., Feingold, K. R., Grunfeld, C., & Fantuzzi, G. (2000). Leptin-deficient (ob/ob) mice are protected from T cell-mediated hepatotoxicity: Role of tumor necrosis factor alpha and IL-18. Proceedings of the National Academy of Sciences of the United States of America, 97, 2367–2372.PubMedPubMedCentralCrossRefGoogle Scholar
  44. Farjo, K. M., Farjo, R. A., Halsey, S., Moiseyev, G., & Ma, J. X. (2012). Retinol-binding protein 4 induces inflammation in human endothelial cells by a NADPH oxidase- and nuclear factor kappa B-dependent and retinol-independent mechanism. Molecular and Cellular Biology.PubMedPubMedCentralCrossRefGoogle Scholar
  45. Feingold, K. R., Grunfeld, C., Heuer, J. G., Gupta, A., Cramer, M., Zhang, T., Shigenaga, J. K., Patzek, S. M., Chan, Z. W., Moser, A., et al. (2012). FGF21 is increased by inflammatory stimuli and protects leptin-deficient ob/ob mice from the toxicity of sepsis. Endocrinology, 153, 2689–2700.PubMedPubMedCentralCrossRefGoogle Scholar
  46. Feuerer, M., Herrero, L., Cipolletta, D., Naaz, A., Wong, J., Nayer, A., Lee, J., Goldfine, A. B., Benoist, C., Shoelson, S., et al. (2009). Lean, but not obese, fat is enriched for a unique population of regulatory T cells that affect metabolic parameters. Nature Medicine, 15, 930–939.PubMedPubMedCentralCrossRefGoogle Scholar
  47. Finkelstein, E. A., Khavjou, O. A., Thompson, H., Trogdon, J. G., Pan, L., Sherry, B., & Dietz, W. (2012). Obesity and severe obesity forecasts through 2030. American Journal of Preventive Medicine, 42, 563–570.PubMedCrossRefPubMedCentralGoogle Scholar
  48. Fisher, F. M., Kleiner, S., Douris, N., Fox, E. C., Mepani, R. J., Verdeguer, F., Wu, J., Kharitonenkov, A., Flier, J. S., Maratos-Flier, E., et al. (2012). FGF21 regulates PGC-1alpha and browning of white adipose tissues in adaptive thermogenesis. Genes & Development, 26, 271–281.CrossRefGoogle Scholar
  49. Fontana, L., Eagon, J. C., Trujillo, M. E., Scherer, P. E., & Klein, S. (2007). Visceral fat adipokine secretion is associated with systemic inflammation in obese humans. Diabetes, 56, 1010–1013.PubMedCrossRefPubMedCentralGoogle Scholar
  50. Friedman, J. M., & Halaas, J. L. (1998). Leptin and the regulation of body weight in mammals. Nature, 395, 763–770.PubMedCrossRefPubMedCentralGoogle Scholar
  51. Gaich, G., Chien, J. Y., Fu, H., Glass, L. C., Deeg, M. A., Holland, W. L., Kharitonenkov, A., Bumol, T., Schilske, H. K., & Moller, D. E. (2013). The effects of LY2405319, an FGF21 analog, in obese human subjects with type 2 diabetes. Cell Metabolism, 18, 333–340.PubMedCrossRefGoogle Scholar
  52. Gainsford, T., Willson, T. A., Metcalf, D., Handman, E., McFarlane, C., Ng, A., Nicola, N. A., Alexander, W. S., & Hilton, D. J. (1996). Leptin can induce proliferation, differentiation, and functional activation of hemopoietic cells. Proceedings of the National Academy of Sciences of the United States of America, 93, 14564–14568.PubMedPubMedCentralCrossRefGoogle Scholar
  53. Gan, L., Guo, K., Cremona, M. L., McGraw, T. E., Leibel, R. L., & Zhang, Y. (2012). TNF-alpha up-regulates protein level and cell surface expression of the leptin receptor by stimulating its export via a PKC-dependent mechanism. Endocrinology.Google Scholar
  54. Ghosh, A. R., Bhattacharya, R., Bhattacharya, S., Nargis, T., Rahaman, O., Duttagupta, P., Raychaudhuri, D., Liu, C. S., Roy, S., Ghosh, P., et al. (2016). Adipose recruitment and activation of plasmacytoid dendritic cells fuel metaflammation. Diabetes, 65, 3440–3452.PubMedCrossRefGoogle Scholar
  55. Ghoshal, S., Witta, J., Zhong, J., de Villiers, W., & Eckhardt, E. (2009). Chylomicrons promote intestinal absorption of lipopolysaccharides. Journal of Lipid Research, 50, 90–97.PubMedCrossRefPubMedCentralGoogle Scholar
  56. Gonzalez-Gay, M. A., De Matias, J. M., Gonzalez-Juanatey, C., Garcia-Porrua, C., Sanchez-Andrade, A., Martin, J., & Llorca, J. (2006). Anti-tumor necrosis factor-alpha blockade improves insulin resistance in patients with rheumatoid arthritis. Clinical and Experimental Rheumatology, 24, 83–86.PubMedPubMedCentralGoogle Scholar
  57. Goralski, K. B., McCarthy, T. C., Hanniman, E. A., Zabel, B. A., Butcher, E. C., Parlee, S. D., Muruganandan, S., & Sinal, C. J. (2007). Chemerin, a novel adipokine that regulates adipogenesis and adipocyte metabolism. The Journal of Biological Chemistry, 282, 28175–28188.PubMedCrossRefPubMedCentralGoogle Scholar
  58. Graham, T. E., Yang, Q., Bluher, M., Hammarstedt, A., Ciaraldi, T. P., Henry, R. R., Wason, C. J., Oberbach, A., Jansson, P. A., Smith, U., et al. (2006). Retinol-binding protein 4 and insulin resistance in lean, obese, and diabetic subjects. The New England Journal of Medicine, 354, 2552–2563.PubMedCrossRefPubMedCentralGoogle Scholar
  59. Gregor, M. F., & Hotamisligil, G. S. (2011). Inflammatory mechanisms in obesity. Annual Review of Immunology, 29, 415–445.PubMedCrossRefPubMedCentralGoogle Scholar
  60. Grgurevic, L., Christensen, G. L., Schulz, T. J., & Vukicevic, S. (2016). Bone morphogenetic proteins in inflammation, glucose homeostasis and adipose tissue energy metabolism. Cytokine & Growth Factor Reviews, 27, 105–118.CrossRefGoogle Scholar
  61. Griffin, M. E., Marcucci, M. J., Cline, G. W., Bell, K., Barucci, N., Lee, D., Goodyear, L. J., Kraegen, E. W., White, M. F., & Shulman, G. I. (1999). Free fatty acid-induced insulin resistance is associated with activation of protein kinase C theta and alterations in the insulin signaling cascade. Diabetes, 48, 1270–1274.PubMedCrossRefPubMedCentralGoogle Scholar
  62. Grunfeld, C., Zhao, C., Fuller, J., Pollack, A., Moser, A., Friedman, J., & Feingold, K. R. (1996). Endotoxin and cytokines induce expression of leptin, the ob gene product, in hamsters. The Journal of Clinical Investigation, 97, 2152–2157.PubMedPubMedCentralCrossRefGoogle Scholar
  63. Gupta, R. K., Mepani, R. J., Kleiner, S., Lo, J. C., Khandekar, M. J., Cohen, P., Frontini, A., Bhowmick, D. C., Ye, L., Cinti, S., et al. (2012). Zfp423 expression identifies committed preadipocytes and localizes to adipose endothelial and perivascular cells. Cell Metabolism, 15, 230–239.PubMedPubMedCentralCrossRefGoogle Scholar
  64. Gustafson, B., Hammarstedt, A., Hedjazifar, S., Hoffmann, J. M., Svensson, P. A., Grimsby, J., Rondinone, C., & Smith, U. (2015). BMP4 and BMP antagonists regulate human white and beige adipogenesis. Diabetes, 64, 1670–1681.PubMedCrossRefPubMedCentralGoogle Scholar
  65. Haemmerle, G., Lass, A., Zimmermann, R., Gorkiewicz, G., Meyer, C., Rozman, J., Heldmaier, G., Maier, R., Theussl, C., Eder, S., et al. (2006). Defective lipolysis and altered energy metabolism in mice lacking adipose triglyceride lipase. Science, 312, 734–737.PubMedCrossRefPubMedCentralGoogle Scholar
  66. Han, M. S., Jung, D. Y., Morel, C., Lakhani, S. A., Kim, J. K., Flavell, R. A., & Davis, R. J. (2013). JNK expression by macrophages promotes obesity-induced insulin resistance and inflammation. Science, 339, 218–222.CrossRefPubMedGoogle Scholar
  67. Hardy, O. T., Czech, M. P., & Corvera, S. (2012). What causes the insulin resistance underlying obesity? Current Opinion in Endocrinology, Diabetes, and Obesity, 19, 81–87.PubMedPubMedCentralCrossRefGoogle Scholar
  68. Harman-Boehm, I., Bluher, M., Redel, H., Sion-Vardy, N., Ovadia, S., Avinoach, E., Shai, I., Kloting, N., Stumvoll, M., Bashan, N., et al. (2007). Macrophage infiltration into omental versus subcutaneous fat across different populations: Effect of regional adiposity and the comorbidities of obesity. The Journal of Clinical Endocrinology and Metabolism, 92, 2240–2247.PubMedCrossRefPubMedCentralGoogle Scholar
  69. Hegele, R. A. (2003). Monogenic forms of insulin resistance: Apertures that expose the common metabolic syndrome. Trends in Endocrinology and Metabolism, 14, 371–377.PubMedCrossRefPubMedCentralGoogle Scholar
  70. Heymsfield, S. B., Greenberg, A. S., Fujioka, K., Dixon, R. M., Kushner, R., Hunt, T., Lubina, J. A., Patane, J., Self, B., Hunt, P., et al. (1999). Recombinant leptin for weight loss in obese and lean adults: A randomized, controlled, dose-escalation trial. JAMA, 282, 1568–1575.PubMedCrossRefPubMedCentralGoogle Scholar
  71. Hida, K., Wada, J., Eguchi, J., Zhang, H., Baba, M., Seida, A., Hashimoto, I., Okada, T., Yasuhara, A., Nakatsuka, A., et al. (2005). Visceral adipose tissue-derived serine protease inhibitor: A unique insulin-sensitizing adipocytokine in obesity. Proceedings of the National Academy of Sciences of the United States of America, 102, 10610–10615.PubMedPubMedCentralCrossRefGoogle Scholar
  72. Hiramatsu-Ito, M., Shibata, R., Ohashi, K., Uemura, Y., Kanemura, N., Kambara, T., Enomoto, T., Yuasa, D., Matsuo, K., Ito, M., et al. (2016). Omentin attenuates atherosclerotic lesion formation in apolipoprotein E-deficient mice. Cardiovascular Research, 110, 107–117.PubMedCrossRefPubMedCentralGoogle Scholar
  73. Hirosumi, J., Tuncman, G., Chang, L., Gorgun, C. Z., Uysal, K. T., Maeda, K., Karin, M., & Hotamisligil, G. S. (2002). A central role for JNK in obesity and insulin resistance. Nature, 420, 333–336.CrossRefPubMedGoogle Scholar
  74. Holcomb, I. N., Kabakoff, R. C., Chan, B., Baker, T. W., Gurney, A., Henzel, W., Nelson, C., Lowman, H. B., Wright, B. D., Skelton, N. J., et al. (2000). FIZZ1, a novel cysteine-rich secreted protein associated with pulmonary inflammation, defines a new gene family. The EMBO Journal, 19, 4046–4055.PubMedPubMedCentralCrossRefGoogle Scholar
  75. Holland, W. L., Adams, A. C., Brozinick, J. T., Bui, H. H., Miyauchi, Y., Kusminski, C. M., Bauer, S. M., Wade, M., Singhal, E., Cheng, C. C., et al. (2013). An FGF21-adiponectin-ceramide axis controls energy expenditure and insulin action in mice. Cell Metabolism, 17, 790–797.PubMedPubMedCentralCrossRefGoogle Scholar
  76. Hotamisligil, G. S. (2006). Inflammation and metabolic disorders. Nature, 444, 860–867.PubMedCrossRefPubMedCentralGoogle Scholar
  77. Hotamisligil, G. S., Shargill, N. S., & Spiegelman, B. M. (1993). Adipose expression of tumor necrosis factor-alpha: Direct role in obesity-linked insulin resistance. Science, 259, 87–91.CrossRefPubMedGoogle Scholar
  78. Hotamisligil, G. S., Peraldi, P., Budavari, A., Ellis, R., White, M. F., & Spiegelman, B. M. (1996). IRS-1-mediated inhibition of insulin receptor tyrosine kinase activity in TNF-alpha- and obesity-induced insulin resistance. Science, 271, 665–668.PubMedPubMedCentralCrossRefGoogle Scholar
  79. Itoh, N. (2014). FGF21 as a hepatokine, adipokine, and myokine in metabolism and diseases. Frontiers in Endocrinology, 5, 107.PubMedPubMedCentralCrossRefGoogle Scholar
  80. Jagannathan-Bogdan, M., McDonnell, M. E., Shin, H., Rehman, Q., Hasturk, H., Apovian, C. M., & Nikolajczyk, B. S. (2011). Elevated proinflammatory cytokine production by a skewed T cell compartment requires monocytes and promotes inflammation in type 2 diabetes. Journal of Immunology, 186, 1162–1172.CrossRefGoogle Scholar
  81. Jornayvaz, F. R., & Shulman, G. I. (2012). Diacylglycerol activation of protein kinase Cepsilon and hepatic insulin resistance. Cell Metabolism, 15, 574–584.PubMedPubMedCentralCrossRefGoogle Scholar
  82. Kanda, H., Tateya, S., Tamori, Y., Kotani, K., Hiasa, K., Kitazawa, R., Kitazawa, S., Miyachi, H., Maeda, S., Egashira, K., et al. (2006). MCP-1 contributes to macrophage infiltration into adipose tissue, insulin resistance, and hepatic steatosis in obesity. The Journal of Clinical Investigation, 116, 1494–1505.PubMedPubMedCentralCrossRefGoogle Scholar
  83. Kawano, Y., Nakae, J., Watanabe, N., Kikuchi, T., Tateya, S., Tamori, Y., Kaneko, M., Abe, T., Onodera, M., & Itoh, H. (2016). Colonic pro-inflammatory macrophages cause insulin resistance in an intestinal Ccl2/Ccr2-dependent manner. Cell Metabolism, 24, 295–310.PubMedCrossRefGoogle Scholar
  84. Kazama, K., Usui, T., Okada, M., Hara, Y., & Yamawaki, H. (2012). Omentin plays an anti-inflammatory role through inhibition of TNF-alpha-induced superoxide production in vascular smooth muscle cells. European Journal of Pharmacology, 686, 116–123.PubMedCrossRefPubMedCentralGoogle Scholar
  85. Kharitonenkov, A., Shiyanova, T. L., Koester, A., Ford, A. M., Micanovic, R., Galbreath, E. J., Sandusky, G. E., Hammond, L. J., Moyers, J. S., Owens, R. A., et al. (2005). FGF-21 as a novel metabolic regulator. The Journal of Clinical Investigation, 115, 1627–1635.PubMedPubMedCentralCrossRefGoogle Scholar
  86. Kievit, P., Howard, J. K., Badman, M. K., Balthasar, N., Coppari, R., Mori, H., Lee, C. E., Elmquist, J. K., Yoshimura, A., & Flier, J. S. (2006). Enhanced leptin sensitivity and improved glucose homeostasis in mice lacking suppressor of cytokine signaling-3 in POMC-expressing cells. Cell Metabolism, 4, 123–132.PubMedCrossRefPubMedCentralGoogle Scholar
  87. Kim, J. Y., van de Wall, E., Laplante, M., Azzara, A., Trujillo, M. E., Hofmann, S. M., Schraw, T., Durand, J. L., Li, H., Li, G., et al. (2007a). Obesity-associated improvements in metabolic profile through expansion of adipose tissue. The Journal of Clinical Investigation, 117, 2621–2637.PubMedPubMedCentralCrossRefGoogle Scholar
  88. Kim, F., Pham, M., Luttrell, I., Bannerman, D. D., Tupper, J., Thaler, J., Hawn, T. R., Raines, E. W., & Schwartz, M. W. (2007b). Toll-like receptor-4 mediates vascular inflammation and insulin resistance in diet-induced obesity. Circulation Research, 100, 1589–1596.PubMedCrossRefPubMedCentralGoogle Scholar
  89. Kirk, E. A., Sagawa, Z. K., McDonald, T. O., O'Brien, K. D., & Heinecke, J. W. (2008). Monocyte chemoattractant protein deficiency fails to restrain macrophage infiltration into adipose tissue [corrected]. Diabetes, 57, 1254–1261.PubMedCrossRefPubMedCentralGoogle Scholar
  90. Kitade, H., Sawamoto, K., Nagashimada, M., Inoue, H., Yamamoto, Y., Sai, Y., Takamura, T., Yamamoto, H., Miyamoto, K., Ginsberg, H. N., et al. (2012). CCR5 plays a critical role in obesity-induced adipose tissue inflammation and insulin resistance by regulating both macrophage recruitment and M1/M2 status. Diabetes, 61, 1680–1690.PubMedPubMedCentralCrossRefGoogle Scholar
  91. Kleinridders, A., Schenten, D., Konner, A. C., Belgardt, B. F., Mauer, J., Okamura, T., Wunderlich, F. T., Medzhitov, R., & Bruning, J. C. (2009). MyD88 signaling in the CNS is required for development of fatty acid-induced leptin resistance and diet-induced obesity. Cell Metabolism, 10, 249–259.PubMedPubMedCentralCrossRefGoogle Scholar
  92. Knudsen, J. G., Murholm, M., Carey, A. L., Bienso, R. S., Basse, A. L., Allen, T. L., Hidalgo, J., Kingwell, B. A., Febbraio, M. A., Hansen, J. B., et al. (2014). Role of IL-6 in exercise training- and cold-induced UCP1 expression in subcutaneous white adipose tissue. PLoS One, e84910, 9.Google Scholar
  93. Kopp, H. P., Kopp, C. W., Festa, A., Krzyzanowska, K., Kriwanek, S., Minar, E., Roka, R., & Schernthaner, G. (2003). Impact of weight loss on inflammatory proteins and their association with the insulin resistance syndrome in morbidly obese patients. Arteriosclerosis, Thrombosis, and Vascular Biology, 23, 1042–1047.PubMedCrossRefPubMedCentralGoogle Scholar
  94. Kumada, M., Kihara, S., Ouchi, N., Kobayashi, H., Okamoto, Y., Ohashi, K., Maeda, K., Nagaretani, H., Kishida, K., Maeda, N., et al. (2004). Adiponectin specifically increased tissue inhibitor of metalloproteinase-1 through interleukin-10 expression in human macrophages. Circulation, 109, 2046–2049.PubMedCrossRefGoogle Scholar
  95. Kursawe, R., Caprio, S., Giannini, C., Narayan, D., Lin, A., D'Adamo, E., Shaw, M., Pierpont, B., Cushman, S. W., & Shulman, G. I. (2013). Decreased transcription of ChREBP-alpha/beta isoforms in abdominal subcutaneous adipose tissue of obese adolescents with prediabetes or early type 2 diabetes: Associations with insulin resistance and hyperglycemia. Diabetes, 62, 837–844.PubMedPubMedCentralCrossRefGoogle Scholar
  96. Larsen, C. M., Faulenbach, M., Vaag, A., Volund, A., Ehses, J. A., Seifert, B., Mandrup-Poulsen, T., & Donath, M. Y. (2007). Interleukin-1-receptor antagonist in type 2 diabetes mellitus. The New England Journal of Medicine, 356, 1517–1526.PubMedCrossRefGoogle Scholar
  97. Lee, J. Y., Sohn, K. H., Rhee, S. H., & Hwang, D. (2001). Saturated fatty acids, but not unsaturated fatty acids, induce the expression of cyclooxygenase-2 mediated through toll-like receptor 4. The Journal of Biological Chemistry, 276, 16683–16689.PubMedCrossRefGoogle Scholar
  98. Leyns, L., Bouwmeester, T., Kim, S. H., Piccolo, S., & De Robertis, E. M. (1997). Frzb-1 is a secreted antagonist of Wnt signaling expressed in the Spemann organizer. Cell, 88, 747–756.PubMedPubMedCentralCrossRefGoogle Scholar
  99. Li, S., Shin, H. J., Ding, E. L., & van Dam, R. M. (2009). Adiponectin levels and risk of type 2 diabetes: A systematic review and meta-analysis. JAMA, 302, 179–188.PubMedCrossRefGoogle Scholar
  100. Lin, Z., Tian, H., Lam, K. S., Lin, S., Hoo, R. C., Konishi, M., Itoh, N., Wang, Y., Bornstein, S. R., Xu, A., et al. (2013). Adiponectin mediates the metabolic effects of FGF21 on glucose homeostasis and insulin sensitivity in mice. Cell Metabolism, 17, 779–789.PubMedCrossRefPubMedCentralGoogle Scholar
  101. Liu, J., Divoux, A., Sun, J., Zhang, J., Clement, K., Glickman, J. N., Sukhova, G. K., Wolters, P. J., Du, J., Gorgun, C. Z., et al. (2009). Genetic deficiency and pharmacological stabilization of mast cells reduce diet-induced obesity and diabetes in mice. Nature Medicine, 15, 940–945.PubMedPubMedCentralCrossRefGoogle Scholar
  102. Liu, Y., Palanivel, R., Rai, E., Park, M., Gabor, T. V., Scheid, M. P., Xu, A., & Sweeney, G. (2015). Adiponectin stimulates autophagy and reduces oxidative stress to enhance insulin sensitivity during high-fat diet feeding in mice. Diabetes, 64, 36–48.PubMedCrossRefPubMedCentralGoogle Scholar
  103. Lord, G. M., Matarese, G., Howard, J. K., Baker, R. J., Bloom, S. R., & Lechler, R. I. (1998). Leptin modulates the T-cell immune response and reverses starvation-induced immunosuppression. Nature, 394, 897–901.PubMedCrossRefPubMedCentralGoogle Scholar
  104. Lu, Y., Zhu, X., Liang, G. X., Cui, R. R., Liu, Y., Wu, S. S., Liang, Q. H., Liu, G. Y., Jiang, Y., Liao, X. B., et al. (2012). Apelin-APJ induces ICAM-1, VCAM-1 and MCP-1 expression via NF-kappaB/JNK signal pathway in human umbilical vein endothelial cells. Amino Acids, 43, 2125–2136.PubMedCrossRefPubMedCentralGoogle Scholar
  105. Lumeng, C. N., Bodzin, J. L., & Saltiel, A. R. (2007a). Obesity induces a phenotypic switch in adipose tissue macrophage polarization. The Journal of Clinical Investigation, 117, 175–184.PubMedPubMedCentralCrossRefGoogle Scholar
  106. Lumeng, C. N., Deyoung, S. M., Bodzin, J. L., & Saltiel, A. R. (2007b). Increased inflammatory properties of adipose tissue macrophages recruited during diet-induced obesity. Diabetes, 56, 16–23.PubMedCrossRefPubMedCentralGoogle Scholar
  107. Lynch, L., Nowak, M., Varghese, B., Clark, J., Hogan, A. E., Toxavidis, V., Balk, S. P., O'Shea, D., O'Farrelly, C., & Exley, M. A. (2012). Adipose tissue invariant NKT cells protect against diet-induced obesity and metabolic disorder through regulatory cytokine production. Immunity, 37, 574–587.PubMedPubMedCentralCrossRefGoogle Scholar
  108. Maeda, N., Takahashi, M., Funahashi, T., Kihara, S., Nishizawa, H., Kishida, K., Nagaretani, H., Matsuda, M., Komuro, R., Ouchi, N., et al. (2001). PPARgamma ligands increase expression and plasma concentrations of adiponectin, an adipose-derived protein. Diabetes, 50, 2094–2099.PubMedCrossRefPubMedCentralGoogle Scholar
  109. Maeda, N., Shimomura, I., Kishida, K., Nishizawa, H., Matsuda, M., Nagaretani, H., Furuyama, N., Kondo, H., Takahashi, M., Arita, Y., et al. (2002). Diet-induced insulin resistance in mice lacking adiponectin/ACRP30. Nature Medicine, 8, 731–737.PubMedCrossRefPubMedCentralGoogle Scholar
  110. Mandal, P., Pratt, B. T., Barnes, M., McMullen, M. R., & Nagy, L. E. (2011). Molecular mechanism for adiponectin-dependent M2 macrophage polarization: Link between the metabolic and innate immune activity of full-length adiponectin. The Journal of Biological Chemistry, 286, 13460–13469.PubMedPubMedCentralCrossRefGoogle Scholar
  111. Mantell, B. S., Stefanovic-Racic, M., Yang, X., Dedousis, N., Sipula, I. J., & O'Doherty, R. M. (2011). Mice lacking NKT cells but with a complete complement of CD8+ T-cells are not protected against the metabolic abnormalities of diet-induced obesity. PLoS One, 6, e19831.PubMedPubMedCentralCrossRefGoogle Scholar
  112. Mantovani, A., Sica, A., Sozzani, S., Allavena, P., Vecchi, A., & Locati, M. (2004). The chemokine system in diverse forms of macrophage activation and polarization. Trends in Immunology, 25, 677–686.PubMedCrossRefPubMedCentralGoogle Scholar
  113. Martinez, F. O., Helming, L., & Gordon, S. (2009). Alternative activation of macrophages: An immunologic functional perspective. Annual Review of Immunology, 27, 451–483.PubMedCrossRefPubMedCentralGoogle Scholar
  114. Matarese, G., Di Giacomo, A., Sanna, V., Lord, G. M., Howard, J. K., Di Tuoro, A., Bloom, S. R., Lechler, R. I., Zappacosta, S., & Fontana, S. (2001). Requirement for leptin in the induction and progression of autoimmune encephalomyelitis. Journal of Immunology, 166, 5909–5916.CrossRefGoogle Scholar
  115. Matthews, V. B., Allen, T. L., Risis, S., Chan, M. H., Henstridge, D. C., Watson, N., Zaffino, L. A., Babb, J. R., Boon, J., Meikle, P. J., et al. (2010). Interleukin-6-deficient mice develop hepatic inflammation and systemic insulin resistance. Diabetologia, 53, 2431–2441.PubMedCrossRefPubMedCentralGoogle Scholar
  116. Meier, C. A., Bobbioni, E., Gabay, C., Assimacopoulos-Jeannet, F., Golay, A., & Dayer, J. M. (2002). IL-1 receptor antagonist serum levels are increased in human obesity: A possible link to the resistance to leptin? The Journal of Clinical Endocrinology and Metabolism, 87, 1184–1188.PubMedCrossRefPubMedCentralGoogle Scholar
  117. Miyoshi, H., Souza, S. C., Zhang, H. H., Strissel, K. J., Christoffolete, M. A., Kovsan, J., Rudich, A., Kraemer, F. B., Bianco, A. C., Obin, M. S., et al. (2006). Perilipin promotes hormone-sensitive lipase-mediated adipocyte lipolysis via phosphorylation-dependent and -independent mechanisms. The Journal of Biological Chemistry, 281, 15837–15844.PubMedCrossRefPubMedCentralGoogle Scholar
  118. Mohamed-Ali, V., Goodrick, S., Rawesh, A., Katz, D. R., Miles, J. M., Yudkin, J. S., Klein, S., & Coppack, S. W. (1997). Subcutaneous adipose tissue releases interleukin-6, but not tumor necrosis factor-alpha, in vivo. The Journal of Clinical Endocrinology and Metabolism, 82, 4196–4200.PubMedPubMedCentralGoogle Scholar
  119. Monteiro, M., Almeida, C. F., Agua-Doce, A., & Graca, L. (2013). Induced IL-17-producing invariant NKT cells require activation in presence of TGF-beta and IL-1beta. Journal of Immunology, 190, 805–811.CrossRefGoogle Scholar
  120. Moraes-Vieira, P. M., Yore, M. M., Dwyer, P. M., Syed, I., Aryal, P., & Kahn, B. B. (2014). RBP4 activates antigen-presenting cells, leading to adipose tissue inflammation and systemic insulin resistance. Cell Metabolism, 19, 512–526.PubMedPubMedCentralCrossRefGoogle Scholar
  121. Mosser, D. M., & Edwards, J. P. (2008). Exploring the full spectrum of macrophage activation. Nature Reviews. Immunology, 8, 958–969.PubMedPubMedCentralCrossRefGoogle Scholar
  122. Mulder, P., van den Hoek, A. M., & Kleemann, R. (2017). The CCR2 inhibitor propagermanium attenuates diet-induced insulin resistance, adipose tissue inflammation and non-alcoholic steatohepatitis. PLoS One, 12, e0169740.PubMedPubMedCentralCrossRefGoogle Scholar
  123. Mulvihill, E. E., & Drucker, D. J. (2014). Pharmacology, physiology, and mechanisms of action of dipeptidyl peptidase-4 inhibitors. Endocrine Reviews, 35, 992–1019.PubMedCrossRefPubMedCentralGoogle Scholar
  124. Myers, M. G., Jr., Backer, J. M., Sun, X. J., Shoelson, S., Hu, P., Schlessinger, J., Yoakim, M., Schaffhausen, B., & White, M. F. (1992). IRS-1 activates phosphatidylinositol 3′-kinase by associating with src homology 2 domains of p85. Proceedings of the National Academy of Sciences of the United States of America, 89, 10350–10354.PubMedPubMedCentralCrossRefGoogle Scholar
  125. Nakamura, T., Furuhashi, M., Li, P., Cao, H., Tuncman, G., Sonenberg, N., Gorgun, C. Z., & Hotamisligil, G. S. (2010). Double-stranded RNA-dependent protein kinase links pathogen sensing with stress and metabolic homeostasis. Cell, 140, 338–348.PubMedPubMedCentralCrossRefGoogle Scholar
  126. Nakamura, K., Sano, S., Fuster, J. J., Kikuchi, R., Shimizu, I., Ohshima, K., Katanasaka, Y., Ouchi, N., & Walsh, K. (2016). Secreted frizzled-related protein 5 diminishes cardiac inflammation and protects the heart from ischemia/reperfusion injury. The Journal of Biological Chemistry, 291, 2566–2575.PubMedCrossRefPubMedCentralGoogle Scholar
  127. Nishimura, S., Manabe, I., Nagasaki, M., Eto, K., Yamashita, H., Ohsugi, M., Otsu, M., Hara, K., Ueki, K., Sugiura, S., et al. (2009). CD8+ effector T cells contribute to macrophage recruitment and adipose tissue inflammation in obesity. Nature Medicine, 15, 914–920.PubMedCrossRefPubMedCentralGoogle Scholar
  128. Odegaard, J. I., & Chawla, A. (2013). Pleiotropic actions of insulin resistance and inflammation in metabolic homeostasis. Science, 339, 172–177.PubMedPubMedCentralCrossRefGoogle Scholar
  129. Ofei, F., Hurel, S., Newkirk, J., Sopwith, M., & Taylor, R. (1996). Effects of an engineered human anti-TNF-alpha antibody (CDP571) on insulin sensitivity and glycemic control in patients with NIDDM. Diabetes, 45, 881–885.PubMedCrossRefPubMedCentralGoogle Scholar
  130. Okada-Iwabu, M., Yamauchi, T., Iwabu, M., Honma, T., Hamagami, K., Matsuda, K., Yamaguchi, M., Tanabe, H., Kimura-Someya, T., Shirouzu, M., et al. (2013). A small-molecule AdipoR agonist for type 2 diabetes and short life in obesity. Nature, 503, 493–499.PubMedCrossRefPubMedCentralGoogle Scholar
  131. Okamoto, Y., Kihara, S., Ouchi, N., Nishida, M., Arita, Y., Kumada, M., Ohashi, K., Sakai, N., Shimomura, I., Kobayashi, H., et al. (2002). Adiponectin reduces atherosclerosis in apolipoprotein E-deficient mice. Circulation, 106, 2767–2770.PubMedCrossRefPubMedCentralGoogle Scholar
  132. Ouchi, N., Higuchi, A., Ohashi, K., Oshima, Y., Gokce, N., Shibata, R., Akasaki, Y., Shimono, A., & Walsh, K. (2010). Sfrp5 is an anti-inflammatory adipokine that modulates metabolic dysfunction in obesity. Science, 329, 454–457.PubMedPubMedCentralCrossRefGoogle Scholar
  133. Ouchi, N., Parker, J. L., Lugus, J. J., & Walsh, K. (2011). Adipokines in inflammation and metabolic disease. Nature Reviews. Immunology, 11, 85–97.PubMedPubMedCentralCrossRefGoogle Scholar
  134. Ozcan, L., Ergin, A. S., Lu, A., Chung, J., Sarkar, S., Nie, D., Myers, M. G., Jr., & Ozcan, U. (2009). Endoplasmic reticulum stress plays a central role in development of leptin resistance. Cell Metabolism, 9, 35–51.PubMedCrossRefPubMedCentralGoogle Scholar
  135. Pedersen, B. K., Steensberg, A., Fischer, C., Keller, C., Keller, P., Plomgaard, P., Wolsk-Petersen, E., & Febbraio, M. (2004). The metabolic role of IL-6 produced during exercise: Is IL-6 an exercise factor? The Proceedings of the Nutrition Society, 63, 263–267.PubMedCrossRefPubMedCentralGoogle Scholar
  136. Perry, R. J., Zhang, X. M., Zhang, D., Kumashiro, N., Camporez, J. P., Cline, G. W., Rothman, D. L., & Shulman, G. I. (2014). Leptin reverses diabetes by suppression of the hypothalamic-pituitary-adrenal axis. Nature Medicine, 20, 759–763.PubMedPubMedCentralCrossRefGoogle Scholar
  137. Perry, R. J., Camporez, J. P., Kursawe, R., Titchenell, P. M., Zhang, D., Perry, C. J., Jurczak, M. J., Abudukadier, A., Han, M. S., Zhang, X. M., et al. (2015). Hepatic acetyl CoA links adipose tissue inflammation to hepatic insulin resistance and type 2 diabetes. Cell, 160, 745–758.PubMedPubMedCentralCrossRefGoogle Scholar
  138. Pessin, J. E., & Saltiel, A. R. (2000). Signaling pathways in insulin action: Molecular targets of insulin resistance. The Journal of Clinical Investigation, 106, 165–169.PubMedPubMedCentralCrossRefGoogle Scholar
  139. Phalitakul, S., Okada, M., Hara, Y., & Yamawaki, H. (2011). Vaspin prevents TNF-alpha-induced intracellular adhesion molecule-1 via inhibiting reactive oxygen species-dependent NF-kappaB and PKCtheta activation in cultured rat vascular smooth muscle cells. Pharmacological Research, 64, 493–500.PubMedCrossRefPubMedCentralGoogle Scholar
  140. Qi, L., van Dam, R. M., Meigs, J. B., Manson, J. E., Hunter, D., & Hu, F. B. (2006a). Genetic variation in IL6 gene and type 2 diabetes: Tagging-SNP haplotype analysis in large-scale case-control study and meta-analysis. Human Molecular Genetics, 15, 1914–1920.PubMedCrossRefPubMedCentralGoogle Scholar
  141. Qi, Y., Nie, Z., Lee, Y. S., Singhal, N. S., Scherer, P. E., Lazar, M. A., & Ahima, R. S. (2006b). Loss of resistin improves glucose homeostasis in leptin deficiency. Diabetes, 55, 3083–3090.PubMedCrossRefPubMedCentralGoogle Scholar
  142. Qi, D., Tang, X., He, J., Wang, D., Zhao, Y., Deng, W., Deng, X., Zhou, G., Xia, J., Zhong, X., et al. (2016). Omentin protects against LPS-induced ARDS through suppressing pulmonary inflammation and promoting endothelial barrier via an Akt/eNOS-dependent mechanism. Cell Death & Disease, e2360, 7.Google Scholar
  143. Quan, W., Kim, H. K., Moon, E. Y., Kim, S. S., Choi, C. S., Komatsu, M., Jeong, Y. T., Lee, M. K., Kim, K. W., Kim, M. S., et al. (2012). Role of hypothalamic proopiomelanocortin neuron autophagy in the control of appetite and leptin response. Endocrinology, 153, 1817–1826.PubMedPubMedCentralCrossRefGoogle Scholar
  144. Ramnanan, C. J., Edgerton, D. S., Rivera, N., Irimia-Dominguez, J., Farmer, B., Neal, D. W., Lautz, M., Donahue, E. P., Meyer, C. M., Roach, P. J., et al. (2010). Molecular characterization of insulin-mediated suppression of hepatic glucose production in vivo. Diabetes, 59, 1302–1311.PubMedPubMedCentralCrossRefGoogle Scholar
  145. Ravussin, E., & Galgani, J. E. (2011). The implication of brown adipose tissue for humans. Annual Review of Nutrition, 31, 33–47.PubMedPubMedCentralCrossRefGoogle Scholar
  146. Rebrin, K., Steil, G. M., Mittelman, S. D., & Bergman, R. N. (1996). Causal linkage between insulin suppression of lipolysis and suppression of liver glucose output in dogs. The Journal of Clinical Investigation, 98, 741–749.PubMedPubMedCentralCrossRefGoogle Scholar
  147. Rosen, E. D., & MacDougald, O. A. (2006). Adipocyte differentiation from the inside out. Nature Reviews. Molecular Cell Biology, 7, 885–896.PubMedCrossRefPubMedCentralGoogle Scholar
  148. Rui, L., Yuan, M., Frantz, D., Shoelson, S., & White, M. F. (2002). SOCS-1 and SOCS-3 block insulin signaling by ubiquitin-mediated degradation of IRS1 and IRS2. The Journal of Biological Chemistry, 277, 42394–42398.PubMedCrossRefPubMedCentralGoogle Scholar
  149. Samuel, V. T., & Shulman, G. I. (2012). Mechanisms for insulin resistance: Common threads and missing links. Cell, 148, 852–871.PubMedPubMedCentralCrossRefGoogle Scholar
  150. Sarbassov, D. D., Guertin, D. A., Ali, S. M., & Sabatini, D. M. (2005). Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex. Science, 307, 1098–1101.CrossRefPubMedGoogle Scholar
  151. Sauter, N. S., Schulthess, F. T., Galasso, R., Castellani, L. W., & Maedler, K. (2008). The antiinflammatory cytokine interleukin-1 receptor antagonist protects from high-fat diet-induced hyperglycemia. Endocrinology, 149, 2208–2218.PubMedPubMedCentralCrossRefGoogle Scholar
  152. Savkur, R. S., Philips, A. V., & Cooper, T. A. (2001). Aberrant regulation of insulin receptor alternative splicing is associated with insulin resistance in myotonic dystrophy. Nature Genetics, 29, 40–47.PubMedCrossRefPubMedCentralGoogle Scholar
  153. Schaffler, A., Neumeier, M., Herfarth, H., Furst, A., Scholmerich, J., & Buchler, C. (2005). Genomic structure of human omentin, a new adipocytokine expressed in omental adipose tissue. Biochimica et Biophysica Acta, 1732, 96–102.PubMedCrossRefPubMedCentralGoogle Scholar
  154. Schenk, S., Saberi, M., & Olefsky, J. M. (2008). Insulin sensitivity: Modulation by nutrients and inflammation. The Journal of Clinical Investigation, 118, 2992–3002.PubMedPubMedCentralCrossRefGoogle Scholar
  155. Scherer, P. E., Williams, S., Fogliano, M., Baldini, G., & Lodish, H. F. (1995). A novel serum protein similar to C1q, produced exclusively in adipocytes. The Journal of Biological Chemistry, 270, 26746–26749.PubMedCrossRefPubMedCentralGoogle Scholar
  156. Schipper, H. S., Rakhshandehroo, M., van de Graaf, S. F., Venken, K., Koppen, A., Stienstra, R., Prop, S., Meerding, J., Hamers, N., Besra, G., et al. (2012). Natural killer T cells in adipose tissue prevent insulin resistance. The Journal of Clinical Investigation, 122, 3343–3354.PubMedPubMedCentralCrossRefGoogle Scholar
  157. Schulte, D. M., Muller, N., Neumann, K., Oberhauser, F., Faust, M., Gudelhofer, H., Brandt, B., Krone, W., & Laudes, M. (2012). Pro-inflammatory wnt5a and anti-inflammatory sFRP5 are differentially regulated by nutritional factors in obese human subjects. PLoS One, 7, e32437.PubMedPubMedCentralCrossRefGoogle Scholar
  158. Schwartz, D. R., & Lazar, M. A. (2011). Human resistin: Found in translation from mouse to man. Trends in Endocrinology and Metabolism, 22, 259–265.PubMedPubMedCentralGoogle Scholar
  159. Seale, P., Bjork, B., Yang, W., Kajimura, S., Chin, S., Kuang, S., Scime, A., Devarakonda, S., Conroe, H. M., Erdjument-Bromage, H., et al. (2008). PRDM16 controls a brown fat/skeletal muscle switch. Nature, 454, 961–967.PubMedPubMedCentralCrossRefGoogle Scholar
  160. Sell, H., Bluher, M., Kloting, N., Schlich, R., Willems, M., Ruppe, F., Knoefel, W. T., Dietrich, A., Fielding, B. A., Arner, P., et al. (2013). Adipose dipeptidyl peptidase-4 and obesity: Correlation with insulin resistance and depot-specific release from adipose tissue in vivo and in vitro. Diabetes Care, 36, 4083–4090.PubMedPubMedCentralCrossRefGoogle Scholar
  161. Senn, J. J., Klover, P. J., Nowak, I. A., Zimmers, T. A., Koniaris, L. G., Furlanetto, R. W., & Mooney, R. A. (2003). Suppressor of cytokine signaling-3 (SOCS-3), a potential mediator of interleukin-6-dependent insulin resistance in hepatocytes. The Journal of Biological Chemistry, 278, 13740–13746.PubMedCrossRefGoogle Scholar
  162. Shah, O. J., & Hunter, T. (2006). Turnover of the active fraction of IRS1 involves raptor-mTOR- and S6K1-dependent serine phosphorylation in cell culture models of tuberous sclerosis. Molecular and Cellular Biology, 26, 6425–6434.PubMedPubMedCentralCrossRefGoogle Scholar
  163. Shi, H., Kokoeva, M. V., Inouye, K., Tzameli, I., Yin, H., & Flier, J. S. (2006). TLR4 links innate immunity and fatty acid-induced insulin resistance. The Journal of Clinical Investigation, 116, 3015–3025.PubMedPubMedCentralCrossRefGoogle Scholar
  164. Shimomura, I., Matsuda, M., Hammer, R. E., Bashmakov, Y., Brown, M. S., & Goldstein, J. L. (2000). Decreased IRS-2 and increased SREBP-1c lead to mixed insulin resistance and sensitivity in livers of lipodystrophic and ob/ob mice. Molecular Cell, 6, 77–86.PubMedCrossRefPubMedCentralGoogle Scholar
  165. Shoelson, S. E., Lee, J., & Goldfine, A. B. (2006). Inflammation and insulin resistance. The Journal of Clinical Investigation, 116, 1793–1801.PubMedPubMedCentralCrossRefGoogle Scholar
  166. Sleeman, M. W., Wortley, K. E., Lai, K. M., Gowen, L. C., Kintner, J., Kline, W. O., Garcia, K., Stitt, T. N., Yancopoulos, G. D., Wiegand, S. J., et al. (2005). Absence of the lipid phosphatase SHIP2 confers resistance to dietary obesity. Nature Medicine, 11, 199–205.PubMedCrossRefPubMedCentralGoogle Scholar
  167. Solinas, G., & Karin, M. (2010). JNK1 and IKKbeta: Molecular links between obesity and metabolic dysfunction. The FASEB Journal, 24, 2596–2611.PubMedCrossRefPubMedCentralGoogle Scholar
  168. Souza, S. C., de Vargas, L. M., Yamamoto, M. T., Lien, P., Franciosa, M. D., Moss, L. G., & Greenberg, A. S. (1998). Overexpression of perilipin A and B blocks the ability of tumor necrosis factor alpha to increase lipolysis in 3T3-L1 adipocytes. The Journal of Biological Chemistry, 273, 24665–24669.PubMedCrossRefPubMedCentralGoogle Scholar
  169. Spranger, J., Kroke, A., Mohlig, M., Hoffmann, K., Bergmann, M. M., Ristow, M., Boeing, H., & Pfeiffer, A. F. (2003). Inflammatory cytokines and the risk to develop type 2 diabetes: Results of the prospective population-based European Prospective Investigation into Cancer and Nutrition (EPIC)-Potsdam Study. Diabetes, 52, 812–817.PubMedCrossRefPubMedCentralGoogle Scholar
  170. Stanley, T. L., Zanni, M. V., Johnsen, S., Rasheed, S., Makimura, H., Lee, H., Khor, V. K., Ahima, R. S., & Grinspoon, S. K. (2011). TNF-alpha antagonism with etanercept decreases glucose and increases the proportion of high molecular weight adiponectin in obese subjects with features of the metabolic syndrome. The Journal of Clinical Endocrinology and Metabolism, 96, E146–E150.PubMedCrossRefPubMedCentralGoogle Scholar
  171. Steppan, C. M., Bailey, S. T., Bhat, S., Brown, E. J., Banerjee, R. R., Wright, C. M., Patel, H. R., Ahima, R. S., & Lazar, M. A. (2001). The hormone resistin links obesity to diabetes. Nature, 409, 307–312.PubMedCrossRefPubMedCentralGoogle Scholar
  172. Steppan, C. M., Wang, J., Whiteman, E. L., Birnbaum, M. J., & Lazar, M. A. (2005). Activation of SOCS-3 by resistin. Molecular and Cellular Biology, 25, 1569–1575.PubMedPubMedCentralCrossRefGoogle Scholar
  173. Stienstra, R., Joosten, L. A., Koenen, T., van Tits, B., van Diepen, J. A., van den Berg, S. A., Rensen, P. C., Voshol, P. J., Fantuzzi, G., Hijmans, A., et al. (2010). The inflammasome-mediated caspase-1 activation controls adipocyte differentiation and insulin sensitivity. Cell Metabolism, 12, 593–605.PubMedPubMedCentralCrossRefGoogle Scholar
  174. Stienstra, R., Tack, C. J., Kanneganti, T. D., Joosten, L. A., & Netea, M. G. (2012). The inflammasome puts obesity in the danger zone. Cell Metabolism, 15, 10–18.PubMedCrossRefPubMedCentralGoogle Scholar
  175. Sun, Q., Kiernan, U. A., Shi, L., Phillips, D. A., Kahn, B. B., Hu, F. B., Manson, J. E., Albert, C. M., & Rexrode, K. M. (2013). Plasma retinol-binding protein 4 (RBP4) levels and risk of coronary heart disease: A prospective analysis among women in the nurses' health study. Circulation, 127, 1938–1947.PubMedPubMedCentralCrossRefGoogle Scholar
  176. Talukdar, S., Oh, D. Y., Bandyopadhyay, G., Li, D., Xu, J., McNelis, J., Lu, M., Li, P., Yan, Q., Zhu, Y., et al. (2012). Neutrophils mediate insulin resistance in mice fed a high-fat diet through secreted elastase. In Nat Med.Google Scholar
  177. Tan, B. K., Adya, R., Farhatullah, S., Chen, J., Lehnert, H., & Randeva, H. S. (2010). Metformin treatment may increase omentin-1 levels in women with polycystic ovary syndrome. Diabetes, 59, 3023–3031.PubMedPubMedCentralCrossRefGoogle Scholar
  178. Tang, Q. Q., & Lane, M. D. (2012). Adipogenesis: From stem cell to adipocyte. Annual Review of Biochemistry, 81, 715–736.PubMedCrossRefGoogle Scholar
  179. Taniguchi, C. M., Emanuelli, B., & Kahn, C. R. (2006). Critical nodes in signalling pathways: Insights into insulin action. Nature Reviews. Molecular Cell Biology, 7, 85–96.PubMedCrossRefGoogle Scholar
  180. Tatemoto, K., Hosoya, M., Habata, Y., Fujii, R., Kakegawa, T., Zou, M. X., Kawamata, Y., Fukusumi, S., Hinuma, S., Kitada, C., et al. (1998). Isolation and characterization of a novel endogenous peptide ligand for the human APJ receptor. Biochemical and Biophysical Research Communications, 251, 471–476.PubMedCrossRefGoogle Scholar
  181. Than, A., He, H. L., Chua, S. H., Xu, D., Sun, L., Leow, M. K., & Chen, P. (2015). Apelin enhances brown adipogenesis and browning of white adipocytes. The Journal of Biological Chemistry, 290, 14679–14691.PubMedPubMedCentralCrossRefGoogle Scholar
  182. Tiemessen, M. M., Jagger, A. L., Evans, H. G., van Herwijnen, M. J., John, S., & Taams, L. S. (2007). CD4+CD25+Foxp3+ regulatory T cells induce alternative activation of human monocytes/macrophages. Proceedings of the National Academy of Sciences of the United States of America, 104, 19446–19451.PubMedPubMedCentralCrossRefGoogle Scholar
  183. Timmons, J. A., Wennmalm, K., Larsson, O., Walden, T. B., Lassmann, T., Petrovic, N., Hamilton, D. L., Gimeno, R. E., Wahlestedt, C., Baar, K., et al. (2007). Myogenic gene expression signature establishes that brown and white adipocytes originate from distinct cell lineages. Proceedings of the National Academy of Sciences of the United States of America, 104, 4401–4406.PubMedPubMedCentralCrossRefGoogle Scholar
  184. Townsend, K. L., Suzuki, R., Huang, T. L., Jing, E., Schulz, T. J., Lee, K., Taniguchi, C. M., Espinoza, D. O., McDougall, L. E., Zhang, H., et al. (2012). Bone morphogenetic protein 7 (BMP7) reverses obesity and regulates appetite through a central mTOR pathway. The FASEB Journal, 26, 2187–2196.PubMedPubMedCentralCrossRefGoogle Scholar
  185. Tran, K. V., Gealekman, O., Frontini, A., Zingaretti, M. C., Morroni, M., Giordano, A., Smorlesi, A., Perugini, J., De Matteis, R., Sbarbati, A., et al. (2012). The vascular endothelium of the adipose tissue gives rise to both white and brown fat cells. Cell Metabolism, 15, 222–229.PubMedPubMedCentralCrossRefGoogle Scholar
  186. Ullrich, A., Bell, J. R., Chen, E. Y., Herrera, R., Petruzzelli, L. M., Dull, T. J., Gray, A., Coussens, L., Liao, Y. C., Tsubokawa, M., et al. (1985). Human insulin receptor and its relationship to the tyrosine kinase family of oncogenes. Nature, 313, 756–761.PubMedCrossRefGoogle Scholar
  187. Uysal, K. T., Wiesbrock, S. M., Marino, M. W., & Hotamisligil, G. S. (1997). Protection from obesity-induced insulin resistance in mice lacking TNF-alpha function. Nature, 389, 610–614.CrossRefPubMedGoogle Scholar
  188. Villarroya, F., Cereijo, R., Villarroya, J., & Giralt, M. (2017). Brown adipose tissue as a secretory organ. Nature Reviews. Endocrinology, 13, 26–35.PubMedCrossRefGoogle Scholar
  189. von Holstein-Rathlou, S., BonDurant, L. D., Peltekian, L., Naber, M. C., Yin, T. C., Claflin, K. E., Urizar, A. I., Madsen, A. N., Ratner, C., Holst, B., et al. (2016). FGF21 mediates endocrine control of simple sugar intake and sweet taste preference by the liver. Cell Metabolism, 23, 335–343.CrossRefGoogle Scholar
  190. Waki, H., & Tontonoz, P. (2007). Endocrine functions of adipose tissue. Annual Review of Pathology, 2, 31–56.PubMedCrossRefGoogle Scholar
  191. Wallenius, V., Wallenius, K., Ahren, B., Rudling, M., Carlsten, H., Dickson, S. L., Ohlsson, C., & Jansson, J. O. (2002). Interleukin-6-deficient mice develop mature-onset obesity. Nature Medicine, 8, 75–79.PubMedCrossRefGoogle Scholar
  192. Wang, S., Krinks, M., Lin, K., Luyten, F. P., & Moos, M., Jr. (1997). Frzb, a secreted protein expressed in the Spemann organizer, binds and inhibits Wnt-8. Cell, 88, 757–766.PubMedCrossRefPubMedCentralGoogle Scholar
  193. Weisberg, S. P., Hunter, D., Huber, R., Lemieux, J., Slaymaker, S., Vaddi, K., Charo, I., Leibel, R. L., & Ferrante, A. W., Jr. (2006). CCR2 modulates inflammatory and metabolic effects of high-fat feeding. The Journal of Clinical Investigation, 116, 115–124.PubMedCrossRefPubMedCentralGoogle Scholar
  194. Wen, H., Gris, D., Lei, Y., Jha, S., Zhang, L., Huang, M. T., Brickey, W. J., & Ting, J. P. (2011). Fatty acid-induced NLRP3-ASC inflammasome activation interferes with insulin signaling. Nature Immunology, 12, 408–415.PubMedPubMedCentralCrossRefGoogle Scholar
  195. Wijesekara, N., Konrad, D., Eweida, M., Jefferies, C., Liadis, N., Giacca, A., Crackower, M., Suzuki, A., Mak, T. W., Kahn, C. R., et al. (2005). Muscle-specific Pten deletion protects against insulin resistance and diabetes. Molecular and Cellular Biology, 25, 1135–1145.PubMedPubMedCentralCrossRefGoogle Scholar
  196. Wilk, S., Scheibenbogen, C., Bauer, S., Jenke, A., Rother, M., Guerreiro, M., Kudernatsch, R., Goerner, N., Poller, W., Elligsen-Merkel, D., et al. (2011). Adiponectin is a negative regulator of antigen-activated T cells. European Journal of Immunology, 41, 2323–2332.PubMedCrossRefPubMedCentralGoogle Scholar
  197. Wilk, S., Jenke, A., Stehr, J., Yang, C. A., Bauer, S., Goldner, K., Kotsch, K., Volk, H. D., Poller, W., Schultheiss, H. P., et al. (2013). Adiponectin modulates NK-cell function. European Journal of Immunology, 43, 1024–1033.PubMedCrossRefPubMedCentralGoogle Scholar
  198. Winer, S., Paltser, G., Chan, Y., Tsui, H., Engleman, E., Winer, D., & Dosch, H. M. (2009a). Obesity predisposes to Th17 bias. European Journal of Immunology, 39, 2629–2635.PubMedCrossRefPubMedCentralGoogle Scholar
  199. Winer, S., Chan, Y., Paltser, G., Truong, D., Tsui, H., Bahrami, J., Dorfman, R., Wang, Y., Zielenski, J., Mastronardi, F., et al. (2009b). Normalization of obesity-associated insulin resistance through immunotherapy. Nature Medicine, 15, 921–929.PubMedPubMedCentralCrossRefGoogle Scholar
  200. Winer, D. A., Winer, S., Shen, L., Wadia, P. P., Yantha, J., Paltser, G., Tsui, H., Wu, P., Davidson, M. G., Alonso, M. N., et al. (2011). B cells promote insulin resistance through modulation of T cells and production of pathogenic IgG antibodies. Nature Medicine, 17, 610–617.PubMedPubMedCentralCrossRefGoogle Scholar
  201. Wittamer, V., Franssen, J. D., Vulcano, M., Mirjolet, J. F., Le Poul, E., Migeotte, I., Brezillon, S., Tyldesley, R., Blanpain, C., Detheux, M., et al. (2003). Specific recruitment of antigen-presenting cells by chemerin, a novel processed ligand from human inflammatory fluids. The Journal of Experimental Medicine, 198, 977–985.PubMedPubMedCentralCrossRefGoogle Scholar
  202. Wu, D., Molofsky, A. B., Liang, H. E., Ricardo-Gonzalez, R. R., Jouihan, H. A., Bando, J. K., Chawla, A., & Locksley, R. M. (2011). Eosinophils sustain adipose alternatively activated macrophages associated with glucose homeostasis. Science, 332, 243–247.PubMedPubMedCentralCrossRefGoogle Scholar
  203. Wu, J., Bostrom, P., Sparks, L. M., Ye, L., Choi, J. H., Giang, A. H., Khandekar, M., Virtanen, K. A., Nuutila, P., Schaart, G., et al. (2012a). Beige adipocytes are a distinct type of thermogenic fat cell in mouse and human. Cell, 150, 366–376.PubMedPubMedCentralCrossRefGoogle Scholar
  204. Wu, L., Parekh, V. V., Gabriel, C. L., Bracy, D. P., Marks-Shulman, P. A., Tamboli, R. A., Kim, S., Mendez-Fernandez, Y. V., Besra, G. S., Lomenick, J. P., et al. (2012b). Activation of invariant natural killer T cells by lipid excess promotes tissue inflammation, insulin resistance, and hepatic steatosis in obese mice. Proceedings of the National Academy of Sciences of the United States of America, 109, E1143–E1152.PubMedPubMedCentralCrossRefGoogle Scholar
  205. Xu, A., Wang, Y., Keshaw, H., Xu, L. Y., Lam, K. S., & Cooper, G. J. (2003). The fat-derived hormone adiponectin alleviates alcoholic and nonalcoholic fatty liver diseases in mice. The Journal of Clinical Investigation, 112, 91–100.PubMedPubMedCentralCrossRefGoogle Scholar
  206. Yamauchi, T., Kamon, J., Minokoshi, Y., Ito, Y., Waki, H., Uchida, S., Yamashita, S., Noda, M., Kita, S., Ueki, K., et al. (2002). Adiponectin stimulates glucose utilization and fatty-acid oxidation by activating AMP-activated protein kinase. Nature Medicine, 8, 1288–1295.PubMedCrossRefPubMedCentralGoogle Scholar
  207. Yang, Q., Graham, T. E., Mody, N., Preitner, F., Peroni, O. D., Zabolotny, J. M., Kotani, K., Quadro, L., & Kahn, B. B. (2005). Serum retinol binding protein 4 contributes to insulin resistance in obesity and type 2 diabetes. Nature, 436, 356–362.PubMedCrossRefPubMedCentralGoogle Scholar
  208. Yang, R. Z., Lee, M. J., Hu, H., Pray, J., Wu, H. B., Hansen, B. C., Shuldiner, A. R., Fried, S. K., McLenithan, J. C., & Gong, D. W. (2006). Identification of omentin as a novel depot-specific adipokine in human adipose tissue: Possible role in modulating insulin action. American Journal of Physiology. Endocrinology and Metabolism, 290, E1253–E1261.PubMedCrossRefPubMedCentralGoogle Scholar
  209. Yokota, T., Oritani, K., Takahashi, I., Ishikawa, J., Matsuyama, A., Ouchi, N., Kihara, S., Funahashi, T., Tenner, A. J., Tomiyama, Y., et al. (2000). Adiponectin, a new member of the family of soluble defense collagens, negatively regulates the growth of myelomonocytic progenitors and the functions of macrophages. Blood, 96, 1723–1732.PubMedPubMedCentralGoogle Scholar
  210. Youn, B. S., Kloting, N., Kratzsch, J., Lee, N., Park, J. W., Song, E. S., Ruschke, K., Oberbach, A., Fasshauer, M., Stumvoll, M., et al. (2008). Serum vaspin concentrations in human obesity and type 2 diabetes. Diabetes, 57, 372–377.PubMedCrossRefPubMedCentralGoogle Scholar
  211. Yue, P., Jin, H., Aillaud, M., Deng, A. C., Azuma, J., Asagami, T., Kundu, R. K., Reaven, G. M., Quertermous, T., & Tsao, P. S. (2010). Apelin is necessary for the maintenance of insulin sensitivity. American Journal of Physiology. Endocrinology and Metabolism, 298, E59–E67.PubMedCrossRefPubMedCentralGoogle Scholar
  212. Yue, P., Jin, H., Xu, S., Aillaud, M., Deng, A. C., Azuma, J., Kundu, R. K., Reaven, G. M., Quertermous, T., & Tsao, P. S. (2011). Apelin decreases lipolysis via G(q), G(i), and AMPK-dependent mechanisms. Endocrinology, 152, 59–68.PubMedCrossRefPubMedCentralGoogle Scholar
  213. Zeisberg, M., Hanai, J., Sugimoto, H., Mammoto, T., Charytan, D., Strutz, F., & Kalluri, R. (2003). BMP-7 counteracts TGF-beta1-induced epithelial-to-mesenchymal transition and reverses chronic renal injury. Nature Medicine, 9, 964–968.PubMedCrossRefPubMedCentralGoogle Scholar
  214. Zhang, Y., Proenca, R., Maffei, M., Barone, M., Leopold, L., & Friedman, J. M. (1994). Positional cloning of the mouse obese gene and its human homologue. Nature, 372, 425–432.PubMedCrossRefGoogle Scholar
  215. Zhang, H. H., Halbleib, M., Ahmad, F., Manganiello, V. C., & Greenberg, A. S. (2002). Tumor necrosis factor-alpha stimulates lipolysis in differentiated human adipocytes through activation of extracellular signal-related kinase and elevation of intracellular cAMP. Diabetes, 51, 2929–2935.PubMedCrossRefPubMedCentralGoogle Scholar
  216. Zhang, X., Zhang, G., Zhang, H., Karin, M., Bai, H., & Cai, D. (2008). Hypothalamic IKKbeta/NF-kappaB and ER stress link overnutrition to energy imbalance and obesity. Cell, 135, 61–73.PubMedPubMedCentralCrossRefGoogle Scholar
  217. Zhang, C., Shao, M., Yang, H., Chen, L., Yu, L., Cong, W., Tian, H., Zhang, F., Cheng, P., Jin, L., et al. (2013). Attenuation of hyperlipidemia- and diabetes-induced early-stage apoptosis and late-stage renal dysfunction via administration of fibroblast growth factor-21 is associated with suppression of renal inflammation. PLoS One, e82275, 8.Google Scholar
  218. Zhou, Q., Brown, J., Kanarek, A., Rajagopal, J., & Melton, D. A. (2008). In vivo reprogramming of adult pancreatic exocrine cells to beta-cells. Nature, 455, 627–632.PubMedCrossRefPubMedCentralGoogle Scholar
  219. Zhuge, F., Ni, Y., Nagashimada, M., Nagata, N., Xu, L., Mukaida, N., Kaneko, S., & Ota, T. (2016). DPP-4 inhibition by linagliptin attenuates obesity-related inflammation and insulin resistance by regulating M1/M2 macrophage polarization. Diabetes, 65, 2966–2979.PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Medicine and Molecular PharmacologyAlbert Einstein College of MedicineBronxUSA

Personalised recommendations