Advertisement

Gastrointestinal Hormones Controlling Energy Homeostasis and Their Potential Role in Obesity

  • María F. Andreoli
  • Pablo N. De Francesco
  • Mario Perello
Chapter

Abstract

Gastrointestinal (GI) hormones are a family of peptides secreted by endocrine cells located in the GI tract. Currently, GI hormones group more than 50 hormone genes that give rise to a multitude of bioactive peptides. All GI hormones play a key role in communicating cells within the GI tract in order to regulate and coordinate numerous GI functions, including secretion, absorption, and digestion, as well as motility. In addition, around a dozen of GI hormones are also able to play a role regulating glycemia and body weight. Here, we focus on some of the key GI hormones that are believed to play a relevant role in the control of the energy homeostasis: ghrelin, cholecystokinin (CCK), glucagon-like peptide-1 (GLP-1), and peptide tyrosine-tyrosine (PYY), oxyntomodulin (OXM), pancreatic polypeptide (PP), and somatostatin (SST). We briefly review their physiological role, and we discuss their potential implications in the pathophysiology of obesity.

Abbreviations

ARC

Arcuate nucleus

cAMP

Cyclic adenosine monophosphate

CCK

Cholecystokinin

CCK-1R

Cholecystokinin receptor 1

CCK-2R

Cholecystokinin receptor 2

CNS

Central nervous system

DAG

Diacylglycerol

DPP-4

Dipeptidyl peptidase 4

GCGR

Glucagon receptors

GHSR

Growth hormone secretagogue receptor type 1a

GI

Gastrointestinal

GIP

Gastric inhibitory polypeptide

GLP-1

Glucagon-like peptide-1

GLP1R

Glucagon-like peptide-1 receptor

GLP-2

Glucagon-like peptide-2

GOAT

Ghrelin O-acyltransferase

GPCRs

G protein-coupled receptors

GRPP

Glicentin-related pancreatic peptide

GTP

Guanosine triphosphate

IP3

Inositol (1,4,5)-trisphosphate

NPY

Neuropeptide Y

NTS

Nucleus of the solitary tract

OXM

Oxyntomodulin

PAM

Peptidylglycine α-amidating monooxygenase enzyme

PC

Prohormone convertase

PP

Pancreatic polypeptide

PYY

Peptide tyrosine-tyrosine

RYGB

Roux-en-Y gastric bypass

SST

Somatostatin

SSTR

Somatostatin receptor

YR

Neuropeptide Y receptor

Notes

Disclosure Statement

The authors have nothing to disclose.

References

  1. Adler, G., Beglinger, C., Braun, U., Reinshagen, M., Koop, I., Schafmayer, A., Rovati, L., & Arnold, R. (1991). Interaction of the cholinergic system and cholecystokinin in the regulation of endogenous and exogenous stimulation of pancreatic secretion in humans. Gastroenterology, 100(2), 537–543.CrossRefPubMedGoogle Scholar
  2. Ahlman, H. N. (2001). The gut as the largest endocrine organ in the body. Annals of Oncology: Official Journal of the European Society for Medical Oncology, 12(Suppl 2), S63–S68.CrossRefGoogle Scholar
  3. Akamizu, T., Takaya, K., Irako, T., Hosoda, H., Teramukai, S., Matsuyama, A., Tada, H., Miura, K., Shimizu, A., Fukushima, M., Yokode, M., Tanaka, K., & Kangawa, K. (2004). Pharmacokinetics, safety, and endocrine and appetite effects of ghrelin administration in young healthy subjects. European Journal of Endocrinology, 150(4), 447–455.CrossRefPubMedGoogle Scholar
  4. Al Massadi, O., Lopez, M., Tschop, M., Dieguez, C., & Nogueiras, R. (2017). Current understanding of the hypothalamic ghrelin pathways inducing appetite and adiposity. Trends in Neurosciences. https://doi.org/10.1016/j.tins.2016.12.003.
  5. Alvarez, E., Martinez, M. D., Roncero, I., Chowen, J. A., Garcia-Cuartero, B., Gispert, J. D., Sanz, C., Vazquez, P., Maldonado, A., de Caceres, J., Desco, M., Pozo, M. A., & Blazquez, E. (2005). The expression of GLP-1 receptor mRNA and protein allows the effect of GLP-1 on glucose metabolism in the human hypothalamus and brainstem. Journal of Neurochemistry, 92(4), 798–806. https://doi.org/10.1111/j.1471-4159.2004.02914.x.CrossRefPubMedGoogle Scholar
  6. Aragon, F., Karaca, M., Novials, A., Maldonado, R., Maechler, P., & Rubi, B. (2015). Pancreatic polypeptide regulates glucagon release through PPYR1 receptors expressed in mouse and human alpha-cells. Biochimica et Biophysica Acta, 1850(2), 343–351. https://doi.org/10.1016/j.bbagen.2014.11.005.CrossRefPubMedGoogle Scholar
  7. Arnold, M., Mura, A., Langhans, W., & Geary, N. (2006). Gut vagal afferents are not necessary for the eating-stimulatory effect of intraperitoneally injected ghrelin in the rat. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 26(43), 11052–11060. https://doi.org/10.1523/JNEUROSCI.2606-06.2006.CrossRefGoogle Scholar
  8. Asakawa, A., Inui, A., Yuzuriha, H., Ueno, N., Katsuura, G., Fujimiya, M., Fujino, M. A., Niijima, A., Meguid, M. M., & Kasuga, M. (2003). Characterization of the effects of pancreatic polypeptide in the regulation of energy balance. Gastroenterology, 124(5), 1325–1336.CrossRefPubMedGoogle Scholar
  9. Aulinger, B. A., Vahl, T. P., Wilson-Perez, H. E., Prigeon, R. L., & D’Alessio, D. A. (2015). Beta-cell sensitivity to GLP-1 in healthy humans is variable and proportional to insulin sensitivity. The Journal of Clinical Endocrinology and Metabolism, 100(6), 2489–2496. https://doi.org/10.1210/jc.2014-4009.CrossRefPubMedPubMedCentralGoogle Scholar
  10. Bagger, J. I., Knop, F. K., Lund, A., Vestergaard, H., Holst, J. J., & Vilsboll, T. (2011). Impaired regulation of the incretin effect in patients with type 2 diabetes. The Journal of Clinical Endocrinology and Metabolism, 96(3), 737–745. https://doi.org/10.1210/jc.2010-2435.CrossRefPubMedGoogle Scholar
  11. Baranowska, B., Radzikowska, M., Wasilewska-Dziubinska, E., Roguski, K., & Borowiec, M. (2000). Disturbed release of gastrointestinal peptides in anorexia nervosa and in obesity. Diabetes, Obesity & Metabolism, 2(2), 99–103.CrossRefGoogle Scholar
  12. Barrera, J. G., Sandoval, D. A., D’Alessio, D. A., & Seeley, R. J. (2011). GLP-1 and energy balance: An integrated model of short-term and long-term control. Nature Reviews Endocrinology, 7(9), 507–516. https://doi.org/10.1038/nrendo.2011.77.CrossRefPubMedPubMedCentralGoogle Scholar
  13. Bataille, D., Gespach, C., Tatemoto, K., Marie, J. C., Coudray, A. M., Rosselin, G., & Mutt, V. (1981). Bioactive enteroglucagon (oxyntomodulin): Present knowledge on its chemical structure and its biological activities. Peptides, 2(Suppl 2), 41–44.CrossRefPubMedGoogle Scholar
  14. Batterham, R. L., Cohen, M. A., Ellis, S. M., Le Roux, C. W., Withers, D. J., Frost, G. S., Ghatei, M. A., & Bloom, S. R. (2003). Inhibition of food intake in obese subjects by peptide YY3-36. The New England Journal of Medicine, 349(10), 941–948. https://doi.org/10.1056/NEJMoa030204.CrossRefPubMedGoogle Scholar
  15. Batterham, R. L., Cowley, M. A., Small, C. J., Herzog, H., Cohen, M. A., Dakin, C. L., Wren, A. M., Brynes, A. E., Low, M. J., Ghatei, M. A., Cone, R. D., & Bloom, S. R. (2002). Gut hormone PYY(3-36) physiologically inhibits food intake. Nature, 418(6898), 650–654. https://doi.org/10.1038/nature02666.CrossRefPubMedGoogle Scholar
  16. Bayliss, W. M., & Starling, E. H. (1902). The mechanism of pancreatic secretion. The Journal of Physiology, 28(5), 325–353.CrossRefPubMedPubMedCentralGoogle Scholar
  17. Beckman, L. M., Beckman, T. R., & Earthman, C. P. (2010). Changes in gastrointestinal hormones and leptin after roux-en-Y gastric bypass procedure: A review. Journal of the American Dietetic Association, 110(4), 571–584. https://doi.org/10.1016/j.jada.2009.12.023.CrossRefPubMedPubMedCentralGoogle Scholar
  18. Beinfeld, M. C. (2003). Biosynthesis and processing of pro CCK: Recent progress and future challenges. Life Sciences, 72(7), 747–757.CrossRefPubMedGoogle Scholar
  19. Brazeau, P., Vale, W., Burgus, R., Ling, N., Butcher, M., Rivier, J., & Guillemin, R. (1973). Hypothalamic polypeptide that inhibits the secretion of immunoreactive pituitary growth hormone. Science, 179(4068), 77–79.CrossRefPubMedGoogle Scholar
  20. Brennan, I. M., Luscombe-Marsh, N. D., Seimon, R. V., Otto, B., Horowitz, M., Wishart, J. M., & Feinle-Bisset, C. (2012). Effects of fat, protein, and carbohydrate and protein load on appetite, plasma cholecystokinin, peptide YY, and ghrelin, and energy intake in lean and obese men. American Journal of Physiology Gastrointestinal and Liver Physiology, 303(1), G129–G140. https://doi.org/10.1152/ajpgi.00478.2011.CrossRefPubMedGoogle Scholar
  21. Brennan, I. M., Otto, B., Feltrin, K. L., Meyer, J. H., Horowitz, M., & Feinle-Bisset, C. (2007). Intravenous CCK-8, but not GLP-1, suppresses ghrelin and stimulates PYY release in healthy men. Peptides, 28(3), 607–611. https://doi.org/10.1016/j.peptides.2006.10.014.CrossRefPubMedGoogle Scholar
  22. Broglio, F., Gottero, C., Van Koetsveld, P., Prodam, F., Destefanis, S., Benso, A., Gauna, C., Hofland, L., Arvat, E., van der Lely, A. J., & Ghigo, E. (2004). Acetylcholine regulates ghrelin secretion in humans. The Journal of Clinical Endocrinology and Metabolism, 89(5), 2429–2433. https://doi.org/10.1210/jc.2003-031517.CrossRefPubMedGoogle Scholar
  23. Cabral, A., Portiansky, E., Sanchez-Jaramillo, E., Zigman, J. M., & Perello, M. (2016). Ghrelin activates hypophysiotropic corticotropin-releasing factor neurons independently of the arcuate nucleus. Psychoneuroendocrinology, 67, 27–39. https://doi.org/10.1016/j.psyneuen.2016.01.027.CrossRefPubMedPubMedCentralGoogle Scholar
  24. Callaghan, B., & Furness, J. B. (2014). Novel and conventional receptors for ghrelin, desacyl-ghrelin, and pharmacologically related compounds. Pharmacological Reviews, 66(4), 984–1001. https://doi.org/10.1124/pr.113.008433.CrossRefPubMedGoogle Scholar
  25. Carr, R. D., Larsen, M. O., Jelic, K., Lindgren, O., Vikman, J., Holst, J. J., Deacon, C. F., & Ahren, B. (2010). Secretion and dipeptidyl peptidase-4-mediated metabolism of incretin hormones after a mixed meal or glucose ingestion in obese compared to lean, nondiabetic men. The Journal of Clinical Endocrinology and Metabolism, 95(2), 872–878. https://doi.org/10.1210/jc.2009-2054.CrossRefPubMedGoogle Scholar
  26. Corp, E. S., McQuade, J., Moran, T. H., & Smith, G. P. (1993). Characterization of type a and type B CCK receptor binding sites in rat vagus nerve. Brain Research, 623(1), 161–166.CrossRefPubMedGoogle Scholar
  27. Crawley, J. N., & Beinfeld, M. C. (1983). Rapid development of tolerance to the behavioural actions of cholecystokinin. Nature, 302(5910), 703–706.CrossRefPubMedGoogle Scholar
  28. Cruz, C. R., & Smith, R. G. (2008). The growth hormone secretagogue receptor. Vitamins and Hormones, 77, 47–88. https://doi.org/10.1016/S0083-6729(06)77004-2.CrossRefPubMedGoogle Scholar
  29. Cummings, D. E. (2006). Ghrelin and the short- and long-term regulation of appetite and body weight. Physiology & Behavior, 89(1), 71–84. https://doi.org/10.1016/j.physbeh.2006.05.022.CrossRefGoogle Scholar
  30. Cummings, D. E., & Shannon, M. H. (2003). Ghrelin and gastric bypass: Is there a hormonal contribution to surgical weight loss? The Journal of Clinical Endocrinology and Metabolism, 88(7), 2999–3002. https://doi.org/10.1210/jc.2003-030705.CrossRefPubMedGoogle Scholar
  31. Cummings, D. E., Weigle, D. S., Frayo, R. S., Breen, P. A., Ma, M. K., Dellinger, E. P., & Purnell, J. Q. (2002). Plasma ghrelin levels after diet-induced weight loss or gastric bypass surgery. The New England Journal of Medicine, 346(21), 1623–1630. https://doi.org/10.1056/NEJMoa012908.CrossRefPubMedGoogle Scholar
  32. Chan, J. L., Bullen, J., Lee, J. H., Yiannakouris, N., & Mantzoros, C. S. (2004). Ghrelin levels are not regulated by recombinant leptin administration and/or three days of fasting in healthy subjects. The Journal of Clinical Endocrinology and Metabolism, 89(1), 335–343. https://doi.org/10.1210/jc.2003-031412.CrossRefPubMedGoogle Scholar
  33. Chandarana, K., Gelegen, C., Irvine, E. E., Choudhury, A. I., Amouyal, C., Andreelli, F., Withers, D. J., & Batterham, R. L. (2013). Peripheral activation of the Y2-receptor promotes secretion of GLP-1 and improves glucose tolerance. Molecular Metabolism, 2(3), 142–152. https://doi.org/10.1016/j.molmet.2013.03.001.CrossRefPubMedPubMedCentralGoogle Scholar
  34. Chaudhri, O., Small, C., & Bloom, S. (2006). Gastrointestinal hormones regulating appetite. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 361(1471), 1187–1209. https://doi.org/10.1098/rstb.2006.1856.CrossRefPubMedPubMedCentralGoogle Scholar
  35. Cheung, G. W., Kokorovic, A., Lam, C. K., Chari, M., & Lam, T. K. (2009). Intestinal cholecystokinin controls glucose production through a neuronal network. Cell Metabolism, 10(2), 99–109. https://doi.org/10.1016/j.cmet.2009.07.005.CrossRefPubMedGoogle Scholar
  36. Choudhury, S. M., Tan, T. M., & Bloom, S. R. (2016). Gastrointestinal hormones and their role in obesity. Current Opinion in Endocrinology, Diabetes, and Obesity, 23(1), 18–22. https://doi.org/10.1097/MED.0000000000000216.CrossRefPubMedGoogle Scholar
  37. Chuang, J. C., Sakata, I., Kohno, D., Perello, M., Osborne-Lawrence, S., Repa, J. J., & Zigman, J. M. (2011). Ghrelin directly stimulates glucagon secretion from pancreatic alpha-cells. Molecular Endocrinology, 25(9), 1600–1611. https://doi.org/10.1210/me.2011-1001.CrossRefPubMedPubMedCentralGoogle Scholar
  38. Dakin, C. L., Gunn, I., Small, C. J., Edwards, C. M., Hay, D. L., Smith, D. M., Ghatei, M. A., & Bloom, S. R. (2001). Oxyntomodulin inhibits food intake in the rat. Endocrinology, 142(10), 4244–4250. https://doi.org/10.1210/endo.142.10.8430.CrossRefPubMedGoogle Scholar
  39. De Vriese, C., Gregoire, F., Lema-Kisoka, R., Waelbroeck, M., Robberecht, P., & Delporte, C. (2004). Ghrelin degradation by serum and tissue homogenates: Identification of the cleavage sites. Endocrinology, 145(11), 4997–5005. https://doi.org/10.1210/en.2004-0569.CrossRefPubMedGoogle Scholar
  40. Degen, L., Oesch, S., Casanova, M., Graf, S., Ketterer, S., Drewe, J., & Beglinger, C. (2005). Effect of peptide YY3-36 on food intake in humans. Gastroenterology, 129(5), 1430–1436. https://doi.org/10.1053/j.gastro.2005.09.001.CrossRefPubMedGoogle Scholar
  41. Dockray, G. J. (2009). Cholecystokinin and gut-brain signalling. Regulatory Peptides, 155(1–3), 6–10. https://doi.org/10.1016/j.regpep.2009.03.015.CrossRefPubMedGoogle Scholar
  42. Drucker, D. J., Philippe, J., Mojsov, S., Chick, W. L., & Habener, J. F. (1987). Glucagon-like peptide I stimulates insulin gene expression and increases cyclic AMP levels in a rat islet cell line. Proceedings of the National Academy of Sciences of the United States of America, 84(10), 3434–3438.CrossRefPubMedPubMedCentralGoogle Scholar
  43. Du, X., Kosinski, J. R., Lao, J., Shen, X., Petrov, A., Chicchi, G. G., Eiermann, G. J., & Pocai, A. (2012). Differential effects of oxyntomodulin and GLP-1 on glucose metabolism. American Journal of Physiology. Endocrinology and Metabolism, 303(2), E265–E271. https://doi.org/10.1152/ajpendo.00142.2012.CrossRefPubMedGoogle Scholar
  44. Dufresne, M., Seva, C., & Fourmy, D. (2006). Cholecystokinin and gastrin receptors. Physiological Reviews, 86(3), 805–847. https://doi.org/10.1152/physrev.00014.2005.CrossRefPubMedGoogle Scholar
  45. Dumont, Y., Fournier, A., St-Pierre, S., & Quirion, R. (1995). Characterization of neuropeptide Y binding sites in rat brain membrane preparations using [125I][Leu31,Pro34]peptide YY and [125I]peptide YY3-36 as selective Y1 and Y2 radioligands. The Journal of Pharmacology and Experimental Therapeutics, 272(2), 673–680.PubMedGoogle Scholar
  46. Eysselein, V. E., Reeve, J. R., Jr., & Eberlein, G. (1986). Cholecystokinin--gene structure, and molecular forms in tissue and blood. Zeitschrift fur Gastroenterologie, 24(10), 645–659.PubMedGoogle Scholar
  47. Fehmann, H. C., Goke, R., & Goke, B. (1995). Cell and molecular biology of the incretin hormones glucagon-like peptide-I and glucose-dependent insulin releasing polypeptide. Endocrine Reviews, 16(3), 390–410. https://doi.org/10.1210/edrv-16-3-390.CrossRefPubMedGoogle Scholar
  48. Fenske, W. K., Bueter, M., Miras, A. D., Ghatei, M. A., Bloom, S. R., & le Roux, C. W. (2012). Exogenous peptide YY3-36 and Exendin-4 further decrease food intake, whereas octreotide increases food intake in rats after roux-en-Y gastric bypass. International Journal of Obesity, 36(3), 379–384. https://doi.org/10.1038/ijo.2011.126.CrossRefPubMedGoogle Scholar
  49. Field, B. C. T., Wren, A. M., Cooke, D., & Bloom, S. R. (2008). Gut hormones as potential new targets for appetite regulation and the treatment of obesity. Drugs, 68(2), 147–163.CrossRefPubMedGoogle Scholar
  50. Flanagan, D. E., Evans, M. L., Monsod, T. P., Rife, F., Heptulla, R. A., Tamborlane, W. V., & Sherwin, R. S. (2003). The influence of insulin on circulating ghrelin. American Journal of Physiology. Endocrinology and Metabolism, 284(2), E313–E316. https://doi.org/10.1152/ajpendo.00569.2001.CrossRefPubMedGoogle Scholar
  51. Foster-Schubert, K. E., Overduin, J., Prudom, C. E., Liu, J., Callahan, H. S., Gaylinn, B. D., Thorner, M. O., & Cummings, D. E. (2008). Acyl and total ghrelin are suppressed strongly by ingested proteins, weakly by lipids, and biphasically by carbohydrates. The Journal of Clinical Endocrinology and Metabolism, 93(5), 1971–1979. https://doi.org/10.1210/jc.2007-2289.CrossRefPubMedPubMedCentralGoogle Scholar
  52. Gourcerol, G., Coskun, T., Craft, L. S., Mayer, J. P., Heiman, M. L., Wang, L., Million, M., St-Pierre, D. H., & Tache, Y. (2007). Preproghrelin-derived peptide, obestatin, fails to influence food intake in lean or obese rodents. Obesity (Silver Spring), 15(11), 2643–2652. https://doi.org/10.1038/oby.2007.316.CrossRefGoogle Scholar
  53. Gueorguiev, M., Lecoeur, C., Meyre, D., Benzinou, M., Mein, C. A., Hinney, A., Vatin, V., Weill, J., Heude, B., Hebebrand, J., Grossman, A. B., Korbonits, M., & Froguel, P. (2009). Association studies on ghrelin and ghrelin receptor gene polymorphisms with obesity. Obesity (Silver Spring), 17(4), 745–754. https://doi.org/10.1038/oby.2008.589.CrossRefGoogle Scholar
  54. Gutierrez, J. A., Solenberg, P. J., Perkins, D. R., Willency, J. A., Knierman, M. D., Jin, Z., Witcher, D. R., Luo, S., Onyia, J. E., & Hale, J. E. (2008). Ghrelin octanoylation mediated by an orphan lipid transferase. Proceedings of the National Academy of Sciences of the United States of America, 105(17), 6320–6325. https://doi.org/10.1073/pnas.0800708105.CrossRefPubMedPubMedCentralGoogle Scholar
  55. Hansen, K. B., Rosenkilde, M. M., Knop, F. K., Wellner, N., Diep, T. A., Rehfeld, J. F., Andersen, U. B., Holst, J. J., & Hansen, H. S. (2011). 2-Oleoyl glycerol is a GPR119 agonist and signals GLP-1 release in humans. The Journal of Clinical Endocrinology and Metabolism, 96(9), E1409–E1417. https://doi.org/10.1210/jc.2011-0647.CrossRefPubMedGoogle Scholar
  56. Hillman, J. B., Tong, J., & Tschop, M. (2011). Ghrelin biology and its role in weight-related disorders. Discovery Medicine, 11(61), 521–528.PubMedGoogle Scholar
  57. Holst, B., Cygankiewicz, A., Jensen, T. H., Ankersen, M., & Schwartz, T. W. (2003). High constitutive signaling of the ghrelin receptor--identification of a potent inverse agonist. Molecular Endocrinology, 17(11), 2201–2210. https://doi.org/10.1210/me.2003-0069.CrossRefPubMedGoogle Scholar
  58. Holst, J. J. (2007). The physiology of glucagon-like peptide 1. Physiological Reviews, 87(4), 1409–1439. https://doi.org/10.1152/physrev.00034.2006.CrossRefPubMedGoogle Scholar
  59. Hosoda, H., & Kangawa, K. (2008). The autonomic nervous system regulates gastric ghrelin secretion in rats. Regulatory Peptides, 146(1–3), 12–18. https://doi.org/10.1016/j.regpep.2007.07.005.CrossRefPubMedGoogle Scholar
  60. Howard, A. D., Feighner, S. D., Cully, D. F., Arena, J. P., Liberator, P. A., Rosenblum, C. I., Hamelin, M., Hreniuk, D. L., Palyha, O. C., Anderson, J., Paress, P. S., Diaz, C., Chou, M., Liu, K. K., McKee, K. K., Pong, S. S., Chaung, L. Y., Elbrecht, A., Dashkevicz, M., Heavens, R., Rigby, M., Sirinathsinghji, D. J., Dean, D. C., Melillo, D. G., Patchett, A. A., Nargund, R., Griffin, P. R., DeMartino, J. A., Gupta, S. K., Schaeffer, J. M., Smith, R. G., & Van der Ploeg, L. H. (1996). A receptor in pituitary and hypothalamus that functions in growth hormone release. Science, 273(5277), 974–977.CrossRefPubMedGoogle Scholar
  61. Huang, S. C., Yu, D. H., Wank, S. A., Mantey, S., Gardner, J. D., & Jensen, R. T. (1989). Importance of sulfation of gastrin or cholecystokinin (CCK) on affinity for gastrin and CCK receptors. Peptides, 10(4), 785–789.CrossRefPubMedGoogle Scholar
  62. Huda, M. S. B., Wilding, J. P. H., & Pinkney, J. H. (2006). Gut peptides and the regulation of appetite. Obesity Reviews, 7(2), 163–182. https://doi.org/10.1111/j.1467-789X.2006.00245.x.CrossRefPubMedGoogle Scholar
  63. Imamura, M. (2002). Effects of surgical manipulation of the intestine on peptide YY and its physiology. Peptides, 23(2), 403–407.CrossRefPubMedGoogle Scholar
  64. Jones, R. B., McKie, S., Astbury, N., Little, T. J., Tivey, S., Lassman, D. J., McLaughlin, J., Luckman, S., Williams, S. R., Dockray, G. J., & Thompson, D. G. (2012). Functional neuroimaging demonstrates that ghrelin inhibits the central nervous system response to ingested lipid. Gut, 61(11), 1543–1551. https://doi.org/10.1136/gutjnl-2011-301323.CrossRefPubMedGoogle Scholar
  65. Jordan, J., Greenway, F. L., Leiter, L. A., Li, Z., Jacobson, P., Murphy, K., Hill, J., Kler, L., & Aftring, R. P. (2008). Stimulation of cholecystokinin-a receptors with GI181771X does not cause weight loss in overweight or obese patients. Clinical Pharmacology and Therapeutics, 83(2), 281–287. https://doi.org/10.1038/sj.clpt.6100272.CrossRefPubMedGoogle Scholar
  66. Karra, E., Chandarana, K., & Batterham, R. L. (2009). The role of peptide YY in appetite regulation and obesity. The Journal of Physiology, 587(1), 19–25. https://doi.org/10.1113/jphysiol.2008.164269.CrossRefPubMedGoogle Scholar
  67. Khandekar, N., Berning, B. A., Sainsbury, A., & Lin, S. (2015). The role of pancreatic polypeptide in the regulation of energy homeostasis. Molecular and Cellular Endocrinology, 418(Pt 1), 33–41. https://doi.org/10.1016/j.mce.2015.06.028.CrossRefPubMedGoogle Scholar
  68. Kimmel, J. R., Hayden, L. J., & Pollock, H. G. (1975). Isolation and characterization of a new pancreatic polypeptide hormone. The Journal of Biological Chemistry, 250(24), 9369–9376.PubMedGoogle Scholar
  69. Kirchner, H., Tong, J., Tschöp, M. H., & Pfluger, P. T. (2010). Ghrelin and PYY in the regulation of energy balance and metabolism: Lessons from mouse mutants. American Journal of Physiology. Endocrinology and Metabolism, 298(5), E909–E919. https://doi.org/10.1152/ajpendo.00191.2009.CrossRefPubMedGoogle Scholar
  70. Kissileff, H. R., Pi-Sunyer, F. X., Thornton, J., & Smith, G. P. (1981). C-terminal octapeptide of cholecystokinin decreases food intake in man. The American Journal of Clinical Nutrition, 34(2), 154–160.CrossRefPubMedGoogle Scholar
  71. Kojima, M., Hosoda, H., Date, Y., Nakazato, M., Matsuo, H., & Kangawa, K. (1999). Ghrelin is a growth-hormone-releasing acylated peptide from stomach. Nature, 402(6762), 656–660. https://doi.org/10.1038/45230.CrossRefPubMedGoogle Scholar
  72. Kojima, M., & Kangawa, K. (2010). Ghrelin: More than endogenous growth hormone secretagogue. Annals of the New York Academy of Sciences, 1200, 140–148. https://doi.org/10.1111/j.1749-6632.2010.05516.x.CrossRefPubMedGoogle Scholar
  73. Kumar, U., & Grant, M. (2010). Somatostatin and somatostatin receptors. Results and Problems in Cell Differentiation, 50, 137–184. https://doi.org/10.1007/400_2009_29.CrossRefPubMedGoogle Scholar
  74. Kurashina, T., Dezaki, K., Yoshida, M., Sukma Rita, R., Ito, K., Taguchi, M., Miura, R., Tominaga, M., Ishibashi, S., Kakei, M., & Yada, T. (2015). The beta-cell GHSR and downstream cAMP/TRPM2 signaling account for insulinostatic and glycemic effects of ghrelin. Scientific Reports, 5, 14041. https://doi.org/10.1038/srep14041.CrossRefPubMedPubMedCentralGoogle Scholar
  75. le Roux, C. W., Patterson, M., Vincent, R. P., Hunt, C., Ghatei, M. A., & Bloom, S. R. (2005). Postprandial plasma ghrelin is suppressed proportional to meal calorie content in normal-weight but not obese subjects. The Journal of Clinical Endocrinology and Metabolism, 90(2), 1068–1071. https://doi.org/10.1210/jc.2004-1216.CrossRefPubMedGoogle Scholar
  76. Lean, M. E., & Malkova, D. (2016). Altered gut and adipose tissue hormones in overweight and obese individuals: Cause or consequence? International Journal of Obesity, 40(4), 622–632. https://doi.org/10.1038/ijo.2015.220.CrossRefPubMedGoogle Scholar
  77. Levin, F., Edholm, T., Schmidt, P. T., Gryback, P., Jacobsson, H., Degerblad, M., Hoybye, C., Holst, J. J., Rehfeld, J. F., Hellstrom, P. M., & Naslund, E. (2006). Ghrelin stimulates gastric emptying and hunger in normal-weight humans. The Journal of Clinical Endocrinology and Metabolism, 91(9), 3296–3302. https://doi.org/10.1210/jc.2005-2638.CrossRefPubMedGoogle Scholar
  78. Li, P., Tiwari, H. K., Lin, W. Y., Allison, D. B., Chung, W. K., Leibel, R. L., Yi, N., & Liu, N. (2014). Genetic association analysis of 30 genes related to obesity in a European American population. International Journal of Obesity, 38(5), 724–729. https://doi.org/10.1038/ijo.2013.140.CrossRefPubMedGoogle Scholar
  79. Liddle, R. A., Goldfine, I. D., Rosen, M. S., Taplitz, R. A., & Williams, J. A. (1985). Cholecystokinin bioactivity in human plasma. Molecular forms, responses to feeding, and relationship to gallbladder contraction. The Journal of Clinical Investigation, 75(4), 1144–1152. https://doi.org/10.1172/JCI111809.CrossRefPubMedPubMedCentralGoogle Scholar
  80. Lieverse, R. J., Jansen, J. B., Masclee, A. A., & Lamers, C. B. (1995). Satiety effects of a physiological dose of cholecystokinin in humans. Gut, 36(2), 176–179.CrossRefPubMedPubMedCentralGoogle Scholar
  81. Little, T. J., Doran, S., Meyer, J. H., Smout, A. J., O’Donovan, D. G., Wu, K. L., Jones, K. L., Wishart, J., Rayner, C. K., Horowitz, M., & Feinle-Bisset, C. (2006). The release of GLP-1 and ghrelin, but not GIP and CCK, by glucose is dependent upon the length of small intestine exposed. American Journal of Physiology. Endocrinology and Metabolism, 291(3), E647–E655. https://doi.org/10.1152/ajpendo.00099.2006.CrossRefPubMedGoogle Scholar
  82. Liu, B., Garcia, E. A., & Korbonits, M. (2011). Genetic studies on the ghrelin, growth hormone secretagogue receptor (GHSR) and ghrelin O-acyl transferase (GOAT) genes. Peptides, 32(11), 2191–2207. https://doi.org/10.1016/j.peptides.2011.09.006.CrossRefPubMedGoogle Scholar
  83. Lopez Soto, E. J., Agosti, F., Cabral, A., Mustafa, E. R., Damonte, V. M., Gandini, M. A., Rodriguez, S., Castrogiovanni, D., Felix, R., Perello, M., & Raingo, J. (2015). Constitutive and ghrelin-dependent GHSR1a activation impairs CaV2.1 and CaV2.2 currents in hypothalamic neurons. The Journal of General Physiology, 146(3), 205–219. https://doi.org/10.1085/jgp.201511383.CrossRefPubMedPubMedCentralGoogle Scholar
  84. Low, M. J. (2004). Clinical endocrinology and metabolism. The somatostatin neuroendocrine system: Physiology and clinical relevance in gastrointestinal and pancreatic disorders. Best Practice & Research Clinical Endocrinology & Metabolism, 18(4), 607–622. https://doi.org/10.1016/j.beem.2004.08.005.CrossRefGoogle Scholar
  85. M’Kadmi, C., Leyris, J. P., Onfroy, L., Gales, C., Sauliere, A., Gagne, D., Damian, M., Mary, S., Maingot, M., Denoyelle, S., Verdie, P., Fehrentz, J. A., Martinez, J., Baneres, J. L., & Marie, J. (2015). Agonism, antagonism, and inverse Agonism Bias at the ghrelin receptor signaling. The Journal of Biological Chemistry, 290(45), 27021–27039. https://doi.org/10.1074/jbc.M115.659250.CrossRefPubMedPubMedCentralGoogle Scholar
  86. Mace, O. J., Tehan, B., & Marshall, F. (2015). Pharmacology and physiology of gastrointestinal enteroendocrine cells. Pharmacology Research & Perspectives, 3(4), e00155. https://doi.org/10.1002/prp2.155.CrossRefGoogle Scholar
  87. Manning, S., & Batterham, R. L. (2014). The role of gut hormone peptide YY in energy and glucose homeostasis: Twelve years on. Annual Review of Physiology, 76, 585–608. https://doi.org/10.1146/annurev-physiol-021113-170404.CrossRefPubMedGoogle Scholar
  88. Mayo, K. E., Miller, L. J., Bataille, D., Dalle, S., Goke, B., Thorens, B., & Drucker, D. J. (2003). International Union of Pharmacology. XXXV. The glucagon receptor family. Pharmacological Reviews, 55(1), 167–194. https://doi.org/10.1124/pr.55.1.6.CrossRefPubMedGoogle Scholar
  89. Miller, L. J., & Desai, A. J. (2016). Metabolic actions of the type 1 cholecystokinin receptor: Its potential as a therapeutic target. Trends in Endocrinology and Metabolism: TEM, 27(9), 609–619. https://doi.org/10.1016/j.tem.2016.04.002.CrossRefPubMedGoogle Scholar
  90. Mohlig, M., Spranger, J., Otto, B., Ristow, M., Tschop, M., & Pfeiffer, A. F. (2002). Euglycemic hyperinsulinemia, but not lipid infusion, decreases circulating ghrelin levels in humans. Journal of Endocrinological Investigation, 25(11), RC36–RC38. https://doi.org/10.1007/BF03344062.CrossRefPubMedGoogle Scholar
  91. Mojsov, S., Heinrich, G., Wilson, I. B., Ravazzola, M., Orci, L., & Habener, J. F. (1986). Preproglucagon gene expression in pancreas and intestine diversifies at the level of post-translational processing. The Journal of Biological Chemistry, 261(25), 11880–11889.PubMedGoogle Scholar
  92. Morpurgo, P. S., Resnik, M., Agosti, F., Cappiello, V., Sartorio, A., & Spada, A. (2003). Ghrelin secretion in severely obese subjects before and after a 3-week integrated body mass reduction program. Journal of Endocrinological Investigation, 26(8), 723–727. https://doi.org/10.1007/BF03347353.CrossRefPubMedGoogle Scholar
  93. Mortensen, K., Christensen, L. L., Holst, J. J., & Orskov, C. (2003). GLP-1 and GIP are colocalized in a subset of endocrine cells in the small intestine. Regulatory Peptides, 114(2–3), 189–196.CrossRefPubMedGoogle Scholar
  94. Nauck, M. A., Niedereichholz, U., Ettler, R., Holst, J. J., Orskov, C., Ritzel, R., & Schmiegel, W. H. (1997). Glucagon-like peptide 1 inhibition of gastric emptying outweighs its insulinotropic effects in healthy humans. The American Journal of Physiology, 273(5 Pt 1), E981–E988.PubMedGoogle Scholar
  95. Nogueiras, R., Pfluger, P., Tovar, S., Arnold, M., Mitchell, S., Morris, A., Perez-Tilve, D., Vazquez, M. J., Wiedmer, P., Castaneda, T. R., DiMarchi, R., Tschop, M., Schurmann, A., Joost, H. G., Williams, L. M., Langhans, W., & Dieguez, C. (2007). Effects of obestatin on energy balance and growth hormone secretion in rodents. Endocrinology, 148(1), 21–26. https://doi.org/10.1210/en.2006-0915.CrossRefPubMedGoogle Scholar
  96. Orskov, C., Holst, J. J., Knuhtsen, S., Baldissera, F. G., Poulsen, S. S., & Nielsen, O. V. (1986). Glucagon-like peptides GLP-1 and GLP-2, predicted products of the glucagon gene, are secreted separately from pig small intestine but not pancreas. Endocrinology, 119(4), 1467–1475. https://doi.org/10.1210/endo-119-4-1467.CrossRefPubMedGoogle Scholar
  97. Orskov, C., Poulsen, S. S., Moller, M., & Holst, J. J. (1996). Glucagon-like peptide I receptors in the subfornical organ and the area postrema are accessible to circulating glucagon-like peptide I. Diabetes, 45(6), 832–835.CrossRefPubMedGoogle Scholar
  98. Overduin, J., Gibbs, J., Cummings, D. E., & Reeve, J. R., Jr. (2014). CCK-58 elicits both satiety and satiation in rats while CCK-8 elicits only satiation. Peptides, 54, 71–80. https://doi.org/10.1016/j.peptides.2014.01.008.CrossRefPubMedPubMedCentralGoogle Scholar
  99. Owyang, C., & Heldsinger, A. (2011). Vagal control of satiety and hormonal regulation of appetite. Journal of Neurogastroenterology and Motility, 17(4), 338–348. https://doi.org/10.5056/jnm.2011.17.4.338.CrossRefPubMedPubMedCentralGoogle Scholar
  100. Parker, H. E., Reimann, F., & Gribble, F. M. (2010). Molecular mechanisms underlying nutrient-stimulated incretin secretion. Expert Reviews in Molecular Medicine, 12, e1. https://doi.org/10.1017/S146239940900132X.CrossRefPubMedGoogle Scholar
  101. Perello, M., & Nillni, E. A. (2007). The biosynthesis and processing of neuropeptides: Lessons from prothyrotropin releasing hormone (proTRH). Frontiers in Bioscience: A Journal and Virtual Library, 12, 3554–3565.CrossRefGoogle Scholar
  102. Perello, M., & Raingo, J. (2014). Central ghrelin receptors and food intake. In J. Portelli & I. Smolders (Eds.), Central functions of the ghrelin receptor (pp. 65–88). New York: Springer. https://doi.org/10.1007/978-1-4939-0823-3_5.CrossRefGoogle Scholar
  103. Perello, M., & Zigman, J. M. (2012). The role of ghrelin in reward-based eating. Biological Psychiatry, 72(5), 347–353. https://doi.org/10.1016/j.biopsych.2012.02.016.CrossRefPubMedPubMedCentralGoogle Scholar
  104. Persaud, S. J., & Bewick, G. A. (2014). Peptide YY: More than just an appetite regulator. Diabetologia, 57(9), 1762–1769. https://doi.org/10.1007/s00125-014-3292-y.CrossRefPubMedGoogle Scholar
  105. Peterli, R., Steinert, R. E., Woelnerhanssen, B., Peters, T., Christoffel-Courtin, C., Gass, M., Kern, B., von Fluee, M., & Beglinger, C. (2012). Metabolic and hormonal changes after laparoscopic roux-en-Y gastric bypass and sleeve gastrectomy: A randomized, prospective trial. Obesity Surgery, 22(5), 740–748. https://doi.org/10.1007/s11695-012-0622-3.CrossRefPubMedPubMedCentralGoogle Scholar
  106. Pocai, A. (2014). Action and therapeutic potential of oxyntomodulin. Molecular Metabolism, 3(3), 241–251. https://doi.org/10.1016/j.molmet.2013.12.001.CrossRefPubMedGoogle Scholar
  107. Rai, U., Thrimawithana, T. R., Valery, C., & Young, S. A. (2015). Therapeutic uses of somatostatin and its analogues: Current view and potential applications. Pharmacology & Therapeutics, 152, 98–110. https://doi.org/10.1016/j.pharmthera.2015.05.007.CrossRefGoogle Scholar
  108. Reeve, J. R., Jr., Eysselein, V. E., Rosenquist, G., Zeeh, J., Regner, U., Ho, F. J., Chew, P., Davis, M. T., Lee, T. D., Shively, J. E., Brazer, S. R., & Liddle, R. A. (1996). Evidence that CCK-58 has structure that influences its biological activity. The American Journal of Physiology, 270(5 Pt 1), G860–G868.PubMedGoogle Scholar
  109. Rhee, N. A., Vilsboll, T., & Knop, F. K. (2012). Current evidence for a role of GLP-1 in roux-en-Y gastric bypass-induced remission of type 2 diabetes. Diabetes, Obesity & Metabolism, 14(4), 291–298. https://doi.org/10.1111/j.1463-1326.2011.01505.x.CrossRefGoogle Scholar
  110. Sandoval, D. A., & D’Alessio, D. A. (2015). Physiology of proglucagon peptides: Role of glucagon and GLP-1 in health and disease. Physiological Reviews, 95(2), 513–548. https://doi.org/10.1152/physrev.00013.2014.CrossRefPubMedGoogle Scholar
  111. Schellekens, H., De Francesco, P. N., Kandil, D., Theeuwes, W. F., McCarthy, T., van Oeffelen, W. E., Perello, M., Giblin, L., Dinan, T. G., & Cryan, J. F. (2015). Ghrelin’s Orexigenic effect is modulated via a serotonin 2C receptor interaction. ACS Chemical Neuroscience, 6(7), 1186–1197. https://doi.org/10.1021/cn500318q.CrossRefPubMedGoogle Scholar
  112. Schwartz, G. J., McHugh, P. R., & Moran, T. H. (1993). Gastric loads and cholecystokinin synergistically stimulate rat gastric vagal afferents. The American Journal of Physiology, 265(4 Pt 2), R872–R876.PubMedGoogle Scholar
  113. Sjostrom, L., Narbro, K., Sjostrom, C. D., Karason, K., Larsson, B., Wedel, H., Lystig, T., Sullivan, M., Bouchard, C., Carlsson, B., Bengtsson, C., Dahlgren, S., Gummesson, A., Jacobson, P., Karlsson, J., Lindroos, A. K., Lonroth, H., Naslund, I., Olbers, T., Stenlof, K., Torgerson, J., Agren, G., & Carlsson, L. M. (2007). Effects of bariatric surgery on mortality in Swedish obese subjects. The New England Journal of Medicine, 357(8), 741–752. https://doi.org/10.1056/NEJMoa066254.CrossRefPubMedGoogle Scholar
  114. Spreckley, E., & Murphy, K. G. (2015). The L-cell in nutritional sensing and the regulation of appetite. Frontiers in Nutrition, 2, 23. https://doi.org/10.3389/fnut.2015.00023.CrossRefPubMedPubMedCentralGoogle Scholar
  115. Stadlbauer, U., Woods, S. C., Langhans, W., & Meyer, U. (2015). PYY3-36: Beyond food intake. Frontiers in Neuroendocrinology, 38, 1–11. https://doi.org/10.1016/j.yfrne.2014.12.003.CrossRefPubMedGoogle Scholar
  116. Stanley, S., Wynne, K., & Bloom, S. (2004). Gastrointestinal satiety signals III. Glucagon-like peptide 1, oxyntomodulin, peptide YY, and pancreatic polypeptide. American Journal of Physiology Gastrointestinal and Liver Physiology, 286(5), G693–G697. https://doi.org/10.1152/ajpgi.00536.2003.CrossRefPubMedGoogle Scholar
  117. Steinert, R. E., Feinle-Bisset, C., Asarian, L., Horowitz, M., Beglinger, C., & Geary, N. (2017). Ghrelin, CCK, GLP-1, and PYY(3-36): Secretory controls and physiological roles in eating and Glycemia in health, obesity, and after RYGB. Physiological Reviews, 97(1), 411–463. https://doi.org/10.1152/physrev.00031.2014.CrossRefPubMedGoogle Scholar
  118. Stewart, J. E., Seimon, R. V., Otto, B., Keast, R. S., Clifton, P. M., & Feinle-Bisset, C. (2011). Marked differences in gustatory and gastrointestinal sensitivity to oleic acid between lean and obese men. The American Journal of Clinical Nutrition, 93(4), 703–711. https://doi.org/10.3945/ajcn.110.007583.CrossRefPubMedGoogle Scholar
  119. Svendsen, B., Pedersen, J., Albrechtsen, N. J., Hartmann, B., Torang, S., Rehfeld, J. F., Poulsen, S. S., & Holst, J. J. (2015). An analysis of cosecretion and coexpression of gut hormones from male rat proximal and distal small intestine. Endocrinology, 156(3), 847–857. https://doi.org/10.1210/en.2014-1710.CrossRefPubMedGoogle Scholar
  120. Takahashi, T., Ida, T., Sato, T., Nakashima, Y., Nakamura, Y., Tsuji, A., & Kojima, M. (2009). Production of n-octanoyl-modified ghrelin in cultured cells requires prohormone processing protease and ghrelin O-acyltransferase, as well as n-octanoic acid. Journal of Biochemistry, 146(5), 675–682. https://doi.org/10.1093/jb/mvp112.CrossRefPubMedGoogle Scholar
  121. Tatemoto, K., & Mutt, V. (1980). Isolation of two novel candidate hormones using a chemical method for finding naturally occurring polypeptides. Nature, 285(5764), 417–418.CrossRefPubMedGoogle Scholar
  122. Tong, J., Prigeon, R. L., Davis, H. W., Bidlingmaier, M., Tschop, M. H., & D’Alessio, D. (2013). Physiologic concentrations of exogenously infused ghrelin reduces insulin secretion without affecting insulin sensitivity in healthy humans. The Journal of Clinical Endocrinology and Metabolism, 98(6), 2536–2543. https://doi.org/10.1210/jc.2012-4162.CrossRefPubMedPubMedCentralGoogle Scholar
  123. Trapp, S., & Hisadome, K. (2011). Glucagon-like peptide 1 and the brain: Central actions-central sources? Autonomic Neuroscience: Basic & Clinical, 161(1–2), 14–19. https://doi.org/10.1016/j.autneu.2010.09.008.CrossRefGoogle Scholar
  124. Troke, R. C., Tan, T. M., & Bloom, S. R. (2014). The future role of gut hormones in the treatment of obesity. Therapeutic Advances in Chronic Disease, 5(1), 4–14. https://doi.org/10.1177/2040622313506730.CrossRefPubMedPubMedCentralGoogle Scholar
  125. Tschop, M., Weyer, C., Tataranni, P. A., Devanarayan, V., Ravussin, E., & Heiman, M. L. (2001). Circulating ghrelin levels are decreased in human obesity. Diabetes, 50(4), 707–709.CrossRefPubMedGoogle Scholar
  126. Valle, J. D. (2014). Gastrointestinal hormones in the regulation of gut function in health and disease. In Gastrointestinal anatomy and physiology (pp. 15–32). John Wiley & Sons, Ltd. https://doi.org/10.1002/9781118833001.ch2.CrossRefGoogle Scholar
  127. Vilsboll, T., Krarup, T., Madsbad, S., & Holst, J. J. (2003). Both GLP-1 and GIP are insulinotropic at basal and postprandial glucose levels and contribute nearly equally to the incretin effect of a meal in healthy subjects. Regulatory Peptides, 114(2–3), 115–121.CrossRefPubMedGoogle Scholar
  128. Wang, Y., Prpic, V., Green, G. M., Reeve, J. R., Jr., & Liddle, R. A. (2002). Luminal CCK-releasing factor stimulates CCK release from human intestinal endocrine and STC-1 cells. American Journal of Physiology Gastrointestinal and Liver Physiology, 282(1), G16–G22.CrossRefPubMedGoogle Scholar
  129. Wank, S. A. (1995). Cholecystokinin receptors. The American Journal of Physiology, 269(5 Pt 1), G628–G646.PubMedGoogle Scholar
  130. Wheeler, M. B., Lu, M., Dillon, J. S., Leng, X. H., Chen, C., & Boyd, A. E., 3rd. (1993). Functional expression of the rat glucagon-like peptide-I receptor, evidence for coupling to both adenylyl cyclase and phospholipase-C. Endocrinology, 133(1), 57–62. https://doi.org/10.1210/endo.133.1.8391428.CrossRefPubMedGoogle Scholar
  131. Whited, K. L., Thao, D., Lloyd, K. C., Kopin, A. S., & Raybould, H. E. (2006). Targeted disruption of the murine CCK1 receptor gene reduces intestinal lipid-induced feedback inhibition of gastric function. American Journal of Physiology Gastrointestinal and Liver Physiology, 291(1), G156–G162. https://doi.org/10.1152/ajpgi.00569.2005.CrossRefPubMedGoogle Scholar
  132. Williams, D. L. (2009). Minireview: Finding the sweet spot: Peripheral versus central glucagon-like peptide 1 action in feeding and glucose homeostasis. Endocrinology, 150(7), 2997–3001. https://doi.org/10.1210/en.2009-0220.CrossRefPubMedPubMedCentralGoogle Scholar
  133. Woods, S. C. (2004). Gastrointestinal satiety signals I. An overview of gastrointestinal signals that influence food intake. American Journal of Physiology Gastrointestinal and Liver Physiology, 286(1), G7–G13. https://doi.org/10.1152/ajpgi.00448.2003.CrossRefPubMedGoogle Scholar
  134. Wren, A. M., & Bloom, S. R. (2007). Gut hormones and appetite control. Gastroenterology, 132(6), 2116–2130. https://doi.org/10.1053/j.gastro.2007.03.048.CrossRefPubMedGoogle Scholar
  135. Wynne, K., & Bloom, S. R. (2006). The role of oxyntomodulin and peptide tyrosine-tyrosine (PYY) in appetite control. Nature Clinical Practice. Endocrinology & Metabolism, 2(11), 612–620. https://doi.org/10.1038/ncpendmet0318.CrossRefGoogle Scholar
  136. Yamamoto, M., Reeve, J. R., Jr., Keire, D. A., & Green, G. M. (2005). Water and enzyme secretion are tightly coupled in pancreatic secretion stimulated by food or CCK-58 but not by CCK-8. American Journal of Physiology Gastrointestinal and Liver Physiology, 288(5), G866–G879. https://doi.org/10.1152/ajpgi.00389.2003.CrossRefPubMedGoogle Scholar
  137. Yang, J., Brown, M. S., Liang, G., Grishin, N. V., & Goldstein, J. L. (2008). Identification of the acyltransferase that octanoylates ghrelin, an appetite-stimulating peptide hormone. Cell, 132(3), 387–396. https://doi.org/10.1016/j.cell.2008.01.017.CrossRefPubMedGoogle Scholar
  138. Yang, N., Liu, X., Ding, E. L., Xu, M., Wu, S., Liu, L., Sun, X., & Hu, F. B. (2009). Impaired ghrelin response after high-fat meals is associated with decreased satiety in obese and lean Chinese young adults. The Journal of Nutrition, 139(7), 1286–1291. https://doi.org/10.3945/jn.109.104406.CrossRefPubMedGoogle Scholar
  139. Yi, J., Warunek, D., & Craft, D. (2015). Degradation and stabilization of peptide hormones in human blood specimens. PLoS One, 10(7), e0134427. https://doi.org/10.1371/journal.pone.0134427.CrossRefPubMedPubMedCentralGoogle Scholar
  140. Zhang, J. V., Ren, P. G., Avsian-Kretchmer, O., Luo, C. W., Rauch, R., Klein, C., & Hsueh, A. J. (2005). Obestatin, a peptide encoded by the ghrelin gene, opposes ghrelin’s effects on food intake. Science, 310(5750), 996–999. https://doi.org/10.1126/science.1117255.CrossRefPubMedGoogle Scholar
  141. Zhao, T. J., Sakata, I., Li, R. L., Liang, G., Richardson, J. A., Brown, M. S., Goldstein, J. L., & Zigman, J. M. (2010). Ghrelin secretion stimulated by {beta}1-adrenergic receptors in cultured ghrelinoma cells and in fasted mice. Proceedings of the National Academy of Sciences of the United States of America, 107(36), 15868–15873. https://doi.org/10.1073/pnas.1011116107.CrossRefPubMedPubMedCentralGoogle Scholar
  142. Zhu, X., Cao, Y., Voogd, K., & Steiner, D. F. (2006). On the processing of proghrelin to ghrelin. The Journal of Biological Chemistry, 281(50), 38867–38870. https://doi.org/10.1074/jbc.M607955200.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • María F. Andreoli
    • 1
  • Pablo N. De Francesco
    • 2
  • Mario Perello
    • 2
  1. 1.School of Biochemistry and Biological SciencesNational University of Litoral (UNL) and Institute of Environmental Health [ISAL, Argentine Research Council (CONICET)- (UNL)]Santa FeArgentina
  2. 2.Laboratory of Neurophysiology, Multidisciplinary Institute of Cell Biology [IMBICE, Argentine Research Council (CONICET)National University of La Plata and Scientific Research Commission, Province of Buenos Aires (CIC-PBA)]La Plata, Buenos AiresArgentina

Personalised recommendations