Advertisement

Nutrient Sensors Regulating Peptides

  • Isin Cakir
  • Eduardo A. Nillni
Chapter

Abstract

The hypothalamus is an important center for coordinating mammalian physiology and maintenance of homeostasis. Accordingly, the hypothalamus regulates feeding, body temperature, energy expenditure, glucose metabolism, thirst, blood pressure, reproductive axis, and other metabolic functions associated with the overall metabolism. At the central level, the hypothalamus is the primary component of the nervous system in interpreting adiposity and nutrient-related inputs; it delivers hormonal and behavioral responses with the ultimate purpose of regulating body weight, food intake, and energy consumption (Williams et al. 2001; Wardlaw 2011; Toorie and Nillni 2014). Among the hormonal inputs that feed into the hypothalamic circuitries are adipose tissue-derived hormone leptin and adiponectin, pancreatic hormone insulin, and several hormones secreted by the gastrointestinal tract, such as ghrelin. The activity of the hypothalamic feeding centers is also responsive to basic nutrients including glucose, amino acids, and fatty acids besides other metabolites, such as ketone bodies. Much like the hypothalamus acting at the organismal level to regulate homeostasis by integrating such hormonal and nutritional signals, there are evolutionarily conserved proteins and protein complexes that act at the cellular level as “nutrient sensors” that couple cellular energetics to downstream pathways to regulate various cellular functions. The activity of these nutrient sensors in key hypothalamic feeding centers plays a major role in the regulation of energy balance and glucose metabolism.

References

  1. Adan, R. A. H., Tiesjema, B., Hillebrand, J. J. G., la Fleur, S. E., Kas, M. J. H., & de Krom, M. (2006). The MC4 receptor and control of appetite. British Journal of Pharmacology, 149(7), 815–827.PubMedPubMedCentralCrossRefGoogle Scholar
  2. Aguilera, G., Subburaju, S., Young, S., & Chen, J. (2008). The parvocellular vasopressinergic system and responsiveness of the hypothalamic pituitary adrenal axis during chronic stress. Progress in Brain Research, 170, 29–39.PubMedPubMedCentralCrossRefGoogle Scholar
  3. Akieda-Asai, S., Zaima, N., Ikegami, K., Kahyo, T., & Yao, I. SIRT1 Regulates Thyroid-Stimulating Hormone Release by Enhancing PIP5Kγ [subscript gamma] Activity through Deacetylation of Specific Lysine Residues in …. 2010. Available at: https://dspace.mit.edu/handle/1721.1/60353.
  4. Aksoy, P., White, T. A., Thompson, M., & Chini, E. N. (2006a). Regulation of intracellular levels of NAD: A novel role for CD38. Biochemical and Biophysical Research Communications, 345(4), 1386–1392.PubMedCrossRefPubMedCentralGoogle Scholar
  5. Aksoy, P., Escande, C., White, T. A., Thompson, M., Soares, S., Benech, J. C., & Chini, E. N. (2006b). Regulation of SIRT 1 mediated NAD dependent deacetylation: A novel role for the multifunctional enzyme CD38. Biochemical and Biophysical Research Communications, 349(1), 353–359.PubMedCrossRefPubMedCentralGoogle Scholar
  6. Al-Qassab, H., Smith, M. A., Irvine, E. E., Guillermet-Guibert, J., Claret, M., Choudhury, A. I., Selman, C., Piipari, K., Clements, M., Lingard, S., Chandarana, K., Bell, J. D., Barsh, G. S., Smith, A. J. H., Batterham, R. L., Ashford, M. L. J., Vanhaesebroeck, B., & Withers, D. J. (2009). Dominant role of the p110beta isoform of PI3K over p110alpha in energy homeostasis regulation by POMC and AgRP neurons. Cell Metabolism, 10(5), 343–354.PubMedPubMedCentralCrossRefGoogle Scholar
  7. Anderson, K. A., Ribar, T. J., Lin, F., Noeldner, P. K., Green, M. F., Muehlbauer, M. J., Witters, L. A., Kemp, B. E., & Means, A. R. (2008). Hypothalamic CaMKK2 contributes to the regulation of energy balance. Cell Metabolism, 7(5), 377–388.PubMedCrossRefPubMedCentralGoogle Scholar
  8. Anderson, E. J. P., Çakir, I., Carrington, S. J., Cone, R. D., Ghamari-Langroudi, M., Gillyard, T., Gimenez, L. E., & Litt, M. J. (2016). 60 YEARS OF POMC: Regulation of feeding and energy homeostasis by α-MSH. Journal of Molecular Endocrinology, 56(4), T157–T174.PubMedPubMedCentralCrossRefGoogle Scholar
  9. Anderson, K. A., Huynh, F. K., Fisher-Wellman, K., Stuart, J. D., Peterson, B. S., Douros, J. D., Wagner, G. R., Thompson, J. W., Madsen, A. S., Green, M. F., Sivley, R. M., Ilkayeva, O. R., Stevens, R. D., Backos, D. S., Capra, J. A., Olsen, C. A., Campbell, J. E., Muoio, D. M., Grimsrud, P. A., & Hirschey, M. D. (2017). SIRT4 is a lysine Deacylase that controls leucine metabolism and insulin secretion. Cell Metabolism, 25(4), 838–855.e15.PubMedPubMedCentralCrossRefGoogle Scholar
  10. Andersson, U., Filipsson, K., Abbott, C. R., Woods, A., Smith, K., Bloom, S. R., Carling, D., & Small, C. J. (2004). AMP-activated protein kinase plays a role in the control of food intake. The Journal of Biological Chemistry, 279(13), 12005–12008.PubMedCrossRefPubMedCentralGoogle Scholar
  11. Araki, T., Sasaki, Y., & Milbrandt, J. (2004). Increased nuclear NAD biosynthesis and SIRT1 activation prevent axonal degeneration. Science, 305(5686), 1010–1013.PubMedCrossRefPubMedCentralGoogle Scholar
  12. Asher, G., Gatfield, D., Stratmann, M., Reinke, H., Dibner, C., Kreppel, F., Mostoslavsky, R., Alt, F. W., & Schibler, U. (2008). SIRT1 regulates circadian clock gene expression through PER2 deacetylation. Cell, 134(2), 317–328.PubMedCrossRefPubMedCentralGoogle Scholar
  13. Barbosa, M. T. P., Soares, S. M., Novak, C. M., Sinclair, D., Levine, J. A., Aksoy, P., & Chini, E. N. (2007). The enzyme CD38 (a NAD glycohydrolase, EC 3.2.2.5) is necessary for the development of diet-induced obesity. The FASEB Journal, 21(13), 3629–3639.PubMedCrossRefPubMedCentralGoogle Scholar
  14. Bar-Peled, L., Schweitzer, L. D., Zoncu, R., & Sabatini, D. M. (2012). Ragulator is a GEF for the rag GTPases that signal amino acid levels to mTORC1. Cell, 150(6), 1196–1208.PubMedPubMedCentralCrossRefGoogle Scholar
  15. Bates, S. H., Stearns, W. H., Dundon, T. A., Schubert, M., Tso, A. W. K., Wang, Y., Banks, A. S., Lavery, H. J., Haq, A. K., Maratos-Flier, E., Neel, B. G., Schwartz, M. W., & Myers, M. G., Jr. (2003). STAT3 signalling is required for leptin regulation of energy balance but not reproduction. Nature, 421(6925), 856–859.PubMedCrossRefPubMedCentralGoogle Scholar
  16. Baur, J. A., Pearson, K. J., Price, N. L., Jamieson, H. A., Lerin, C., Kalra, A., Prabhu, V. V., Allard, J. S., Lopez-Lluch, G., Lewis, K., Pistell, P. J., Poosala, S., Becker, K. G., Boss, O., Gwinn, D., Wang, M., Ramaswamy, S., Fishbein, K. W., Spencer, R. G., Lakatta, E. G., Le Couteur, D., Shaw, R. J., Navas, P., Puigserver, P., Ingram, D. K., de Cabo, R., & Sinclair, D. A. (2006). Resveratrol improves health and survival of mice on a high-calorie diet. Nature, 444(7117), 337–342.PubMedPubMedCentralCrossRefGoogle Scholar
  17. Beiroa, D., Imbernon, M., Gallego, R., Senra, A., Herranz, D., Villarroya, F., Serrano, M., Fernø, J., Salvador, J., Escalada, J., Dieguez, C., Lopez, M., Frühbeck, G., & Nogueiras, R. (2014). GLP-1 agonism stimulates brown adipose tissue thermogenesis and browning through hypothalamic AMPK. Diabetes, 63(10), 3346–3358.PubMedCrossRefPubMedCentralGoogle Scholar
  18. Belgardt, B. F., Husch, A., Rother, E., Ernst, M. B., Wunderlich, F. T., Hampel, B., Klöckener, T., Alessi, D., Kloppenburg, P., & Brüning, J. C. (2008). PDK1 deficiency in POMC-expressing cells reveals FOXO1-dependent and -independent pathways in control of energy homeostasis and stress response. Cell Metabolism, 7(4), 291–301.PubMedCrossRefPubMedCentralGoogle Scholar
  19. Benjannet, S., Rondeau, N., Day, R., Chrétien, M., & Seidah, N. G. (1991). PC1 and PC2 are proprotein convertases capable of cleaving proopiomelanocortin at distinct pairs of basic residues. Proceedings of the National Academy of Sciences of the United States of America, 88(9), 3564–3568.PubMedPubMedCentralCrossRefGoogle Scholar
  20. Benoit, S. C., Air, E. L., Coolen, L. M., Strauss, R., Jackman, A., Clegg, D. J., Seeley, R. J., & Woods, S. C. (2002). The catabolic action of insulin in the brain is mediated by melanocortins. The Journal of Neuroscience, 22(20), 9048–9052.PubMedCrossRefPubMedCentralGoogle Scholar
  21. Ben-Sahra, I., Howell, J. J., Asara, J. M., & Manning, B. D. (2013). Stimulation of de novo pyrimidine synthesis by growth signaling through mTOR and S6K1. Science, 339(6125), 1323–1328.PubMedPubMedCentralCrossRefGoogle Scholar
  22. Ben-Sahra, I., Hoxhaj, G., Ricoult, S. J. H., Asara, J. M., & Manning, B. D. (2016). mTORC1 induces purine synthesis through control of the mitochondrial tetrahydrofolate cycle. Science, 351(6274), 728–733.PubMedPubMedCentralCrossRefGoogle Scholar
  23. Blander, G., & Guarente, L. (2004). The Sir2 family of protein deacetylases. Annual Review of Biochemistry, 73, 417–435.PubMedCrossRefPubMedCentralGoogle Scholar
  24. Blouet, C., Ono, H., & Schwartz, G. J. (2008). Mediobasal hypothalamic p70 S6 kinase 1 modulates the control of energy homeostasis. Cell Metabolism, 8(6), 459–467.PubMedPubMedCentralCrossRefGoogle Scholar
  25. Bordone, L., & Guarente, L. (2005). Calorie restriction, SIRT1 and metabolism: Understanding longevity. Nature Reviews. Molecular Cell Biology, 6(4), 298–305.PubMedCrossRefPubMedCentralGoogle Scholar
  26. Bordone, L., Motta, M. C., Picard, F., Robinson, A., Jhala, U. S., Apfeld, J., McDonagh, T., Lemieux, M., McBurney, M., Szilvasi, A., Easlon, E. J., Lin, S.-J., & Guarente, L. (2006). Sirt1 regulates insulin secretion by repressing UCP2 in pancreatic beta cells. PLoS Biology, 4(2), e31.PubMedCrossRefPubMedCentralGoogle Scholar
  27. Bordone, L., Cohen, D., Robinson, A., Motta, M. C., van Veen, E., Czopik, A., Steele, A. D., Crowe, H., Marmor, S., Luo, J., Gu, W., & Guarente, L. (2007a). SIRT1 transgenic mice show phenotypes resembling calorie restriction. Aging Cell, 6(6), 759–767.PubMedCrossRefPubMedCentralGoogle Scholar
  28. Bordone, L., Guarente - Diabetes L., & Metabolism O. (2007b). Sirtuins and β‐cell function. Wiley Online Library 2007. Available at: http://onlinelibrary.wiley.com/doi/10.1111/j.1463-1326.2007.00769.x/full.
  29. Brakch, N., Galanopoulou, A. S., Patel, Y. C., Boileau, G., & Seidah, N. G. (1995). Comparative proteolytic processing of rat prosomatostatin by the convertases PC1, PC2, furin, PACE4 and PC5 in constitutive and regulated secretory pathways. FEBS Letters, 362(2), 143–146.PubMedCrossRefPubMedCentralGoogle Scholar
  30. Brar, B., Sanderson, T., Wang, N., & Lowry, P. J. (1997). Post-translational processing of human procorticotrophin-releasing factor in transfected mouse neuroblastoma and Chinese hamster ovary cell lines. The Journal of Endocrinology, 154(3), 431–440.PubMedCrossRefPubMedCentralGoogle Scholar
  31. Breslin, M. B., Lindberg, I., Benjannet, S., & Mathis - Journal of Biological … JP. (1993). Differential processing of proenkephalin by prohormone convertases 1 (3) and 2 and furin. ASBMB 1993. Available at: http://www.jbc.org/content/268/36/27084.short.
  32. Brooks, C. L., & Gu, W. (2009). How does SIRT1 affect metabolism, senescence and cancer? Nature Reviews. Cancer, 9(2), 123–128.PubMedCrossRefPubMedCentralGoogle Scholar
  33. Cakir, I., Perello, M., Lansari, O., Messier, N. J., Vaslet, C. A., & Nillni, E. A. (2009). Hypothalamic Sirt1 regulates food intake in a rodent model system. PLoS One, 4(12), e8322.PubMedPubMedCentralCrossRefGoogle Scholar
  34. Cakir, I., Cyr, N. E., Perello, M., Litvinov, B. P., Romero, A., Stuart, R. C., & Nillni, E. A. (2013). Obesity induces hypothalamic endoplasmic reticulum stress and impairs proopiomelanocortin (POMC) post-translational processing. The Journal of Biological Chemistry, 288(24), 17675–17688.PubMedPubMedCentralCrossRefGoogle Scholar
  35. Cantó, C., Gerhart-Hines, Z., Feige, J. N., Lagouge, M., Noriega, L., Milne, J. C., Elliott, P. J., Puigserver, P., & Auwerx, J. (2009). AMPK regulates energy expenditure by modulating NAD+ metabolism and SIRT1 activity. Nature, 458(7241), 1056–1060.PubMedPubMedCentralCrossRefGoogle Scholar
  36. Cantó, C., Houtkooper, R. H., Pirinen, E., Youn, D. Y., Oosterveer, M. H., Cen, Y., Fernandez-Marcos, P. J., Yamamoto, H., Andreux, P. A., Cettour-Rose, P., Gademann, K., Rinsch, C., Schoonjans, K., Sauve, A. A., & Auwerx, J. (2012). The NAD(+) precursor nicotinamide riboside enhances oxidative metabolism and protects against high-fat diet-induced obesity. Cell Metabolism, 15(6), 838–847.PubMedPubMedCentralCrossRefGoogle Scholar
  37. Cao, J., Papadopoulou, N., Kempuraj, D., Boucher, W. S., Sugimoto, K., Cetrulo, C. L., & Theoharides, T. C. (2005). Human mast cells express corticotropin-releasing hormone (CRH) receptors and CRH leads to selective secretion of vascular endothelial growth factor. Journal of Immunology, 174(12), 7665–7675.CrossRefGoogle Scholar
  38. Caron, A., Labbé, S. M., Lanfray, D., Blanchard, P.-G., Villot, R., Roy, C., Sabatini, D. M., Richard, D., & Laplante, M. (2016a). Mediobasal hypothalamic overexpression of DEPTOR protects against high-fat diet-induced obesity. Molecular Metabolism, 5(2), 102–112.PubMedCrossRefPubMedCentralGoogle Scholar
  39. Caron, A., Labbé, S. M., Mouchiroud, M., Huard, R., Lanfray, D., Richard, D., & Laplante, M. (2016b). DEPTOR in POMC neurons affects liver metabolism but is dispensable for the regulation of energy balance. American Journal of Physiology. Regulatory, Integrative and Comparative Physiology, 310(11), R1322–R1331.PubMedPubMedCentralCrossRefGoogle Scholar
  40. Castro, M., Lowenstein, P., Glynn, B., Hannah, M., Linton, E., & Lowry, P. (1991). Post-translational processing and regulated release of corticotropin-releasing hormone (CRH) in AtT20 cells expressing the human proCRH gene. Biochemical Society Transactions, 19(3), 246S.PubMedCrossRefPubMedCentralGoogle Scholar
  41. Chalkiadaki, A., & Guarente, L. (2012). High-fat diet triggers inflammation-induced cleavage of SIRT1 in adipose tissue to promote metabolic dysfunction. Cell Metabolism, 16(2), 180–188.PubMedPubMedCentralCrossRefGoogle Scholar
  42. Challis, B. G., Pritchard, L. E., & Creemers - Human molecular … J. (2002). A missense mutation disrupting a dibasic prohormone processing site in pro-opiomelanocortin (POMC) increases susceptibility to early-onset obesity through a novel …. academic.oup.com 2002. Available at: https://academic.oup.com/hmg/article-abstract/11/17/1997/589952.
  43. Chang, H.-C., & Guarente, L. (2013). SIRT1 mediates central circadian control in the SCN by a mechanism that decays with aging. Cell, 153(7), 1448–1460.PubMedPubMedCentralCrossRefGoogle Scholar
  44. Chang, H.-C., & Guarente, L. (2014). SIRT1 and other sirtuins in metabolism. Trends in Endocrinology and Metabolism, 25(3), 138–145.PubMedCrossRefPubMedCentralGoogle Scholar
  45. Chantranupong, L., Scaria, S. M., Saxton, R. A., Gygi, M. P., Shen, K., Wyant, G. A., Wang, T., Harper, J. W., Gygi, S. P., & Sabatini, D. M. (2016). The CASTOR proteins are arginine sensors for the mTORC1 pathway. Cell, 165(1), 153–164.PubMedPubMedCentralCrossRefGoogle Scholar
  46. Chen, Y., Wu, R., Chen, H.-Z., Xiao, Q., Wang, W.-J., He, J.-P., Li, X.-X., Yu, X.-W., Li, L., Wang, P., Wan, X.-C., Tian, X.-H., Li, S.-J., Yu, X., & Wu, Q. (2015). Enhancement of hypothalamic STAT3 acetylation by nuclear receptor Nur77 dictates leptin sensitivity. Diabetes, 64(6), 2069–2081.PubMedCrossRefPubMedCentralGoogle Scholar
  47. Cheng, X.-B., Wen, J.-P., Yang, J., Yang, Y., Ning, G., & Li, X.-Y. (2011). GnRH secretion is inhibited by adiponectin through activation of AMP-activated protein kinase and extracellular signal-regulated kinase. Endocrine, 39(1), 6–12.PubMedCrossRefPubMedCentralGoogle Scholar
  48. Chikahisa, S., Fujiki, N., Kitaoka, K., Shimizu, N., & Séi, H. (2009). Central AMPK contributes to sleep homeostasis in mice. Neuropharmacology, 57(4), 369–374.PubMedCrossRefPubMedCentralGoogle Scholar
  49. Choudhury, A. I., Heffron, H., Smith, M. A., Al-Qassab, H., Xu, A. W., Selman, C., Simmgen, M., Clements, M., Claret, M., Maccoll, G., Bedford, D. C., Hisadome, K., Diakonov, I., Moosajee, V., Bell, J. D., Speakman, J. R., Batterham, R. L., Barsh, G. S., Ashford, M. L. J., & Withers, D. J. (2005). The role of insulin receptor substrate 2 in hypothalamic and beta cell function. The Journal of Clinical Investigation, 115(4), 940–950.PubMedPubMedCentralCrossRefGoogle Scholar
  50. Chrousos, G. P. (1995). The hypothalamic-pituitary-adrenal axis and immune-mediated inflammation. The New England Journal of Medicine, 332(20), 1351–1362.PubMedCrossRefPubMedCentralGoogle Scholar
  51. Claret, M., Smith, M. A., Batterham, R. L., Selman, C., Choudhury, A. I., Fryer, L. G. D., Clements, M., Al-Qassab, H., Heffron, H., Xu, A. W., Speakman, J. R., Barsh, G. S., Viollet, B., Vaulont, S., Ashford, M. L. J., Carling, D., & Withers, D. J. (2007). AMPK is essential for energy homeostasis regulation and glucose sensing by POMC and AgRP neurons. The Journal of Clinical Investigation, 117(8), 2325–2336.PubMedPubMedCentralCrossRefGoogle Scholar
  52. Claret, M., Smith, M. A., Knauf, C., Al-Qassab, H., Woods, A., Heslegrave, A., Piipari, K., Emmanuel, J. J., Colom, A., Valet, P., Cani, P. D., Begum, G., White, A., Mucket, P., Peters, M., Mizuno, K., Batterham, R. L., Giese, K. P., Ashworth, A., Burcelin, R., Ashford, M. L., Carling, D., & Withers, D. J. (2011). Deletion of Lkb1 in pro-opiomelanocortin neurons impairs peripheral glucose homeostasis in mice. Diabetes, 60(3), 735–745.PubMedPubMedCentralCrossRefGoogle Scholar
  53. Cohen, H. Y., Miller, C., Bitterman, K. J., Wall, N. R., Hekking, B., Kessler, B., Howitz, K. T., Gorospe, M., de Cabo, R., & Sinclair, D. A. (2004). Calorie restriction promotes mammalian cell survival by inducing the SIRT1 deacetylase. Science, 305(5682), 390–392.PubMedCrossRefPubMedCentralGoogle Scholar
  54. Cohen, D. E., Supinski, A. M., Bonkowski, M. S., Donmez, G., & Guarente, L. P. (2009). Neuronal SIRT1 regulates endocrine and behavioral responses to calorie restriction. Genes & Development, 23(24), 2812–2817.CrossRefGoogle Scholar
  55. Cone, R. D. (2005). Anatomy and regulation of the central melanocortin system. Nature Neuroscience, 8(5), 571–578.PubMedCrossRefPubMedCentralGoogle Scholar
  56. Constam, D. B., Calfon, M., & Robertson, E. J. (1996). SPC4, SPC6, and the novel protease SPC7 are coexpressed with bone morphogenetic proteins at distinct sites during embryogenesis. The Journal of Cell Biology, 134(1), 181–191.PubMedCrossRefPubMedCentralGoogle Scholar
  57. Cota, D., Proulx, K., Smith, K. A. B., Kozma, S. C., Thomas, G., Woods, S. C., & Seeley, R. J. (2006). Hypothalamic mTOR signaling regulates food intake. Science, 312(5775), 927–930.PubMedCrossRefPubMedCentralGoogle Scholar
  58. Cota, D., Matter, E. K., Woods, S. C., & Seeley, R. J. (2008). The role of hypothalamic mammalian target of rapamycin complex 1 signaling in diet-induced obesity. The Journal of Neuroscience, 28(28), 7202–7208.PubMedPubMedCentralCrossRefGoogle Scholar
  59. Cottrell, E. C., & Ozanne, S. E. (2008). Early life programming of obesity and metabolic disease. Physiology & Behavior, 94(1), 17–28.CrossRefGoogle Scholar
  60. Coupé, B., Ishii, Y., Dietrich, M. O., Komatsu, M., Horvath, T. L., & Bouret, S. G. (2012). Loss of autophagy in pro-opiomelanocortin neurons perturbs axon growth and causes metabolic dysregulation. Cell Metabolism, 15(2), 247–255.PubMedPubMedCentralCrossRefGoogle Scholar
  61. Cowley, M. A., Smart, J. L., Rubinstein, M., Cerdán, M. G., Diano, S., Horvath, T. L., Cone, R. D., & Low, M. J. (2001). Leptin activates anorexigenic POMC neurons through a neural network in the arcuate nucleus. Nature, 411(6836), 480–484.PubMedCrossRefPubMedCentralGoogle Scholar
  62. Cummings, D. E., & Schwartz, M. W. (2000). Melanocortins and body weight: A tale of two receptors. Nature Genetics, 26(1), 8–9.PubMedCrossRefPubMedCentralGoogle Scholar
  63. Cunningham, J. T., Rodgers, J. T., Arlow, D. H., Vazquez, F., Mootha, V. K., & Puigserver, P. (2007). mTOR controls mitochondrial oxidative function through a YY1-PGC-1alpha transcriptional complex. Nature, 450(7170), 736–740.PubMedCrossRefPubMedCentralGoogle Scholar
  64. Cyr, N. E., Toorie, A. M., Steger, J. S., Sochat, M. M., Hyner, S., Perello, M., Stuart, R., & Nillni, E. A. (2013). Mechanisms by which the orexigen NPY regulates anorexigenic α-MSH and TRH. American Journal of Physiology. Endocrinology and Metabolism, 304(6), E640–E650.PubMedPubMedCentralCrossRefGoogle Scholar
  65. Cyr, N. E., Steger, J. S., Toorie, A. M., Yang, J. Z., & Stuart, R. (2014). Central Sirt1 regulates body weight and energy expenditure along with the POMC-derived peptide α-MSH and the processing enzyme CPE production in diet- …. press.endocrine.org 2014. Available at: http://press.endocrine.org/doi/pdf/10.1210/en.2013-1998.
  66. da Silva Xavier, G., Farhan, H., Kim, H., Caxaria, S., Johnson, P., Hughes, S., Bugliani, M., Marselli, L., Marchetti, P., Birzele, F., Sun, G., Scharfmann, R., Rutter, J., Siniakowicz, K., Weir, G., Parker, H., Reimann, F., Gribble, F. M., & Rutter, G. A. (2011). Per-arnt-Sim (PAS) domain-containing protein kinase is downregulated in human islets in type 2 diabetes and regulates glucagon secretion. Diabetologia, 54(4), 819–827.PubMedCrossRefPubMedCentralGoogle Scholar
  67. Dagon, Y., Hur, E., Zheng, B., Wellenstein, K., Cantley, L. C., & Kahn, B. B. (2012). p70S6 kinase phosphorylates AMPK on serine 491 to mediate leptin’s effect on food intake. Cell Metabolism, 16(1), 104–112.PubMedPubMedCentralCrossRefGoogle Scholar
  68. Dasgupta, M., Unal, H., Willard, B., Yang, J., Karnik, S. S., & Stark, G. R. (2014). Critical role for lysine 685 in gene expression mediated by transcription factor unphosphorylated STAT3. The Journal of Biological Chemistry, 289(44), 30763–30771.PubMedPubMedCentralCrossRefGoogle Scholar
  69. de Ruijter, A. J. M., van Gennip, A. H., Caron, H. N., Kemp, S., & van Kuilenburg, A. B. P. (2003). Histone deacetylases (HDACs): Characterization of the classical HDAC family. The Biochemical Journal, 370(Pt 3), 737–749.PubMedPubMedCentralCrossRefGoogle Scholar
  70. DeMille, D., & Grose, J. H. (2013). PAS kinase: A nutrient sensing regulator of glucose homeostasis. IUBMB Life, 65(11), 921–929.PubMedPubMedCentralCrossRefGoogle Scholar
  71. Deng, X.-Q., Chen, L.-L., & Li, N.-X. (2007). The expression of SIRT1 in nonalcoholic fatty liver disease induced by high-fat diet in rats. Liver International, 27(5), 708–715.PubMedCrossRefPubMedCentralGoogle Scholar
  72. Dey, A., Xhu, X., Carroll, R., Turck, C. W., Stein, J., & Steiner, D. F. (2003). Biological processing of the cocaine and amphetamine-regulated transcript precursors by prohormone convertases, PC2 and PC1/3. The Journal of Biological Chemistry, 278(17), 15007–15014.PubMedCrossRefPubMedCentralGoogle Scholar
  73. Dey, A., Norrbom, C., Zhu, X., Stein, J., Zhang, C., Ueda, K., & Steiner, D. F. (2004). Furin and prohormone convertase 1/3 are major convertases in the processing of mouse pro-growth hormone-releasing hormone. Endocrinology, 145(4), 1961–1971.PubMedCrossRefPubMedCentralGoogle Scholar
  74. Dietrich, M. O., Antunes, C., Geliang, G., Liu, Z.-W., Borok, E., Nie, Y., Xu, A. W., Souza, D. O., Gao, Q., Diano, S., Gao, X.-B., & Horvath, T. L. (2010). Agrp neurons mediate Sirt1’s action on the melanocortin system and energy balance: Roles for Sirt1 in neuronal firing and synaptic plasticity. The Journal of Neuroscience, 30(35), 11815–11825.PubMedPubMedCentralCrossRefGoogle Scholar
  75. Du, J., Zhou, Y., Su, X., Yu, J. J., Khan, S., Jiang, H., Kim, J., Woo, J., Kim, J. H., Choi, B. H., He, B., Chen, W., Zhang, S., Cerione, R. A., Auwerx, J., Hao, Q., & Lin, H. (2011). Sirt5 is a NAD-dependent protein lysine demalonylase and desuccinylase. Science, 334(6057), 806–809.PubMedPubMedCentralCrossRefGoogle Scholar
  76. Dong W1., Seidel B., Marcinkiewicz M., Chrétien M., Seidah NG., Day R. (1997). Cellular localization of the prohormone convertases in the hypothalamic paraventricular and supraoptic nuclei: selective regulation of PC1 in corticotrophin-releasing hormone parvocellular neurons mediated by glucocorticoids. J Neurosci. 15;17(2):563–75.PubMedCrossRefPubMedCentralGoogle Scholar
  77. Düvel, K., Yecies, J. L., Menon, S., Raman, P., Lipovsky, A. I., Souza, A. L., Triantafellow, E., Ma, Q., Gorski, R., Cleaver, S., Vander Heiden, M. G., MacKeigan, J. P., Finan, P. M., Clish, C. B., Murphy, L. O., & Manning, B. D. (2010). Activation of a metabolic gene regulatory network downstream of mTOR complex 1. Molecular Cell, 39(2), 171–183.PubMedPubMedCentralCrossRefGoogle Scholar
  78. Egan, D. F., Shackelford, D. B., Mihaylova, M. M., Gelino, S., Kohnz, R. A., Mair, W., Vasquez, D. S., Joshi, A., Gwinn, D. M., Taylor, R., Asara, J. M., Fitzpatrick, J., Dillin, A., Viollet, B., Kundu, M., Hansen, M., & Shaw, R. J. (2011). Phosphorylation of ULK1 (hATG1) by AMP-activated protein kinase connects energy sensing to mitophagy. Science, 331(6016), 456–461.PubMedCrossRefPubMedCentralGoogle Scholar
  79. Elson, A. E., & Simerly, R. B. (2015). Developmental specification of metabolic circuitry. Frontiers in Neuroendocrinology, 39, 38–51.PubMedPubMedCentralCrossRefGoogle Scholar
  80. Ernst, M. B., Wunderlich, C. M., Hess, S., Paehler, M., Mesaros, A., Koralov, S. B., Kleinridders, A., Husch, A., Münzberg, H., Hampel, B., Alber, J., Kloppenburg, P., Brüning, J. C., & Wunderlich, F. T. (2009). Enhanced Stat3 activation in POMC neurons provokes negative feedback inhibition of leptin and insulin signaling in obesity. The Journal of Neuroscience, 29(37), 11582–11593.PubMedCrossRefPubMedCentralGoogle Scholar
  81. Fox, D. L., & Good, D. J. (2008). Nescient helix-loop-helix 2 interacts with signal transducer and activator of transcription 3 to regulate transcription of prohormone convertase 1/3. Molecular Endocrinology, 22(6), 1438–1448.PubMedPubMedCentralCrossRefGoogle Scholar
  82. Frescas, D., Valenti, L., & Accili, D. (2005). Nuclear trapping of the forkhead transcription factor FoxO1 via Sirt-dependent deacetylation promotes expression of glucogenetic genes. The Journal of Biological Chemistry, 280(21), 20589–20595.PubMedCrossRefPubMedCentralGoogle Scholar
  83. Fricker, L. D., Berman, Y. L., Leiter, E. H., & Devi, L. A. (1996). Carboxypeptidase E activity is deficient in mice with the fat mutation: EFFECT ON PEPTIDE PROCESSING. The Journal of Biological Chemistry, 271(48), 30619–30624.PubMedCrossRefPubMedCentralGoogle Scholar
  84. Friedman, T. C., Loh, Y. P., Cawley, N. X., Birch, N. P., Huang, S. S., Jackson, I. M., & Nillni, E. A. (1995). Processing of prothyrotropin-releasing hormone (pro-TRH) by bovine intermediate lobe secretory vesicle membrane PC1 and PC2 enzymes. Endocrinology, 136(10), 4462–4472.PubMedCrossRefPubMedCentralGoogle Scholar
  85. Fryer, L. G. D., Foufelle, F., Barnes, K., Baldwin, S. A., Woods, A., & Carling, D. (2002). Characterization of the role of the AMP-activated protein kinase in the stimulation of glucose transport in skeletal muscle cells. The Biochemical Journal, 363(Pt 1), 167–174.PubMedPubMedCentralCrossRefGoogle Scholar
  86. Fulco, M., Schiltz, R. L., Iezzi, S., King, M. T., Zhao, P., Kashiwaya, Y., Hoffman, E., Veech, R. L., & Sartorelli, V. (2003). Sir2 regulates skeletal muscle differentiation as a potential sensor of the redox state. Molecular Cell, 12(1), 51–62.PubMedCrossRefPubMedCentralGoogle Scholar
  87. Funato, H., Tsai, A. L., Willie, J. T., Kisanuki, Y., Williams, S. C., Sakurai, T., & Yanagisawa, M. (2009). Enhanced orexin receptor-2 signaling prevents diet-induced obesity and improves leptin sensitivity. Cell Metabolism, 9(1), 64–76.PubMedPubMedCentralCrossRefGoogle Scholar
  88. Funato, H., Oda, S., Yokofujita, J., Igarashi, H., & Kuroda, M. (2011). Fasting and high-fat diet alter histone deacetylase expression in the medial hypothalamus. PLoS One, 6(4), e18950.PubMedPubMedCentralCrossRefGoogle Scholar
  89. Furuta, M., Yano, H., Zhou, A., Rouillé, Y., Holst, J. J., Carroll, R., Ravazzola, M., Orci, L., Furuta, H., & Steiner, D. F. (1997). Defective prohormone processing and altered pancreatic islet morphology in mice lacking active SPC2. Proceedings of the National Academy of Sciences of the United States of America, 94(13), 6646–6651.PubMedPubMedCentralCrossRefGoogle Scholar
  90. Füzesi, T., Wittmann, G., Liposits, Z., Lechan, R. M., & Fekete, C. (2007). Contribution of noradrenergic and adrenergic cell groups of the brainstem and agouti-related protein-synthesizing neurons of the arcuate nucleus to neuropeptide-y innervation of corticotropin-releasing hormone neurons in hypothalamic paraventricular nucleus of the rat. Endocrinology, 148(11), 5442–5450.PubMedCrossRefPubMedCentralGoogle Scholar
  91. Galanopoulou, A. S., Kent, G., Rabbani, S. N., Seidah, N. G., & Patel, Y. C. (1993). Heterologous processing of prosomatostatin in constitutive and regulated secretory pathways. Putative role of the endoproteases furin, PC1, and PC2. The Journal of Biological Chemistry, 268(8), 6041–6049.PubMedPubMedCentralGoogle Scholar
  92. Gan, X., Wang, J., Wang, C., Sommer, E., Kozasa, T., Srinivasula, S., Alessi, D., Offermanns, S., Simon, M. I., & Wu, D. (2012). PRR5L degradation promotes mTORC2-mediated PKC-δ phosphorylation and cell migration downstream of Gα12. Nature Cell Biology, 14(7), 686–696.PubMedPubMedCentralCrossRefGoogle Scholar
  93. Gao, Q., Wolfgang, M. J., Neschen, S., Morino, K., Horvath, T. L., Shulman, G. I., & Fu, X.-Y. (2004). Disruption of neural signal transducer and activator of transcription 3 causes obesity, diabetes, infertility, and thermal dysregulation. Proceedings of the National Academy of Sciences of the United States of America, 101(13), 4661–4666.PubMedPubMedCentralCrossRefGoogle Scholar
  94. Gao, S., Kinzig, K. P., Aja, S., Scott, K. A., Keung, W., Kelly, S., Strynadka, K., Chohnan, S., Smith, W. W., Tamashiro, K. L. K., Ladenheim, E. E., Ronnett, G. V., Tu, Y., Birnbaum, M. J., Lopaschuk, G. D., & Moran, T. H. (2007). Leptin activates hypothalamic acetyl-CoA carboxylase to inhibit food intake. Proceedings of the National Academy of Sciences of the United States of America, 104(44), 17358–17363.PubMedPubMedCentralCrossRefGoogle Scholar
  95. Garfield, A. S., Shah, B. P., Burgess, C. R., Li, M. M., Li, C., Steger, J. S., Madara, J. C., Campbell, J. N., Kroeger, D., Scammell, T. E., Tannous, B. A., Myers, M. G., Jr., Andermann, M. L., Krashes, M. J., & Lowell, B. B. (2016). Dynamic GABAergic afferent modulation of AgRP neurons. Nature Neuroscience, 19(12), 1628–1635.PubMedPubMedCentralCrossRefGoogle Scholar
  96. Ghosh, H. S., McBurney, M., & Robbins, P. D. (2010). SIRT1 negatively regulates the mammalian target of rapamycin. PLoS One, 5(2), e9199.PubMedPubMedCentralCrossRefGoogle Scholar
  97. Gill, J. F., Delezie, J., Santos, G., & Handschin, C. (2016). PGC-1α expression in murine AgRP neurons regulates food intake and energy balance. Molecular Metabolism, 5(7), 580–588.PubMedPubMedCentralCrossRefGoogle Scholar
  98. Gillum, M. P., Kotas, M. E., Erion, D. M., Kursawe, R., Chatterjee, P., Nead, K. T., Muise, E. S., Hsiao, J. J., Frederick, D. W., Yonemitsu, S., Banks, A. S., Qiang, L., Bhanot, S., Olefsky, J. M., Sears, D. D., Caprio, S., & Shulman, G. I. (2011). SirT1 regulates adipose tissue inflammation. Diabetes, 60(12), 3235–3245.PubMedPubMedCentralCrossRefGoogle Scholar
  99. Good, D. J., Li, M., & Deater-Deckard, K. (2015). A genetic basis for motivated exercise. Exercise and Sport Sciences Reviews, 43(4), 231–237.PubMedCrossRefPubMedCentralGoogle Scholar
  100. Gwinn, D. M., Shackelford, D. B., Egan, D. F., Mihaylova, M. M., Mery, A., Vasquez, D. S., Turk, B. E., & Shaw, R. J. (2008). AMPK phosphorylation of raptor mediates a metabolic checkpoint. Molecular Cell, 30(2), 214–226.PubMedPubMedCentralCrossRefGoogle Scholar
  101. Hagiwara, A., Cornu, M., Cybulski, N., Polak, P., Betz, C., Trapani, F., Terracciano, L., Heim, M. H., Rüegg, M. A., & Hall, M. N. (2012). Hepatic mTORC2 activates glycolysis and lipogenesis through Akt, glucokinase, and SREBP1c. Cell Metabolism, 15(5), 725–738.PubMedCrossRefPubMedCentralGoogle Scholar
  102. Hahn, T. M., Breininger, J. F., Baskin, D. G., & Schwartz, M. W. (1998). Coexpression of Agrp and NPY in fasting-activated hypothalamic neurons. Nature Neuroscience, 1(4), 271–272.PubMedCrossRefPubMedCentralGoogle Scholar
  103. Haigis, M. C., & Sinclair, D. A. (2010). Mammalian sirtuins: Biological insights and disease relevance. Annual Review of Pathology, 5, 253–295.PubMedPubMedCentralCrossRefGoogle Scholar
  104. Hao, H.-X., Cardon, C. M., Swiatek, W., Cooksey, R. C., Smith, T. L., Wilde, J., Boudina, S., Abel, E. D., McClain, D. A., & Rutter, J. (2007). PAS kinase is required for normal cellular energy balance. Proceedings of the National Academy of Sciences of the United States of America, 104(39), 15466–15471.PubMedPubMedCentralCrossRefGoogle Scholar
  105. Hardie, D. G., & Pan, D. A. (2002). Regulation of fatty acid synthesis and oxidation by the AMP-activated protein kinase. Biochemical Society Transactions, 30(Pt 6), 1064–1070.PubMedCrossRefPubMedCentralGoogle Scholar
  106. Harlan, S. M., Guo, D.-F., Morgan, D. A., Fernandes-Santos, C., & Rahmouni, K. (2013). Hypothalamic mTORC1 signaling controls sympathetic nerve activity and arterial pressure and mediates leptin effects. Cell Metabolism, 17(4), 599–606.PubMedPubMedCentralCrossRefGoogle Scholar
  107. Hasegawa, K., Kawahara, T., Fujiwara, K., Shimpuku, M., Sasaki, T., Kitamura, T., & Yoshikawa, K. (2012). Necdin controls Foxo1 acetylation in hypothalamic arcuate neurons to modulate the thyroid axis. The Journal of Neuroscience, 32(16), 5562–5572.PubMedCrossRefPubMedCentralGoogle Scholar
  108. Hawley, S. A., Boudeau, J., Reid, J. L., Mustard, K. J., Udd, L., Mäkelä, T. P., Alessi, D. R., & Hardie, D. G. (2003). Complexes between the LKB1 tumor suppressor, STRAD alpha/beta and MO25 alpha/beta are upstream kinases in the AMP-activated protein kinase cascade. Journal of Biology, 2(4), 28.PubMedPubMedCentralCrossRefGoogle Scholar
  109. Hawley, S. A., Pan, D. A., Mustard, K. J., Ross, L., Bain, J., Edelman, A. M., Frenguelli, B. G., & Hardie, D. G. (2005). Calmodulin-dependent protein kinase kinase-beta is an alternative upstream kinase for AMP-activated protein kinase. Cell Metabolism, 2(1), 9–19.PubMedCrossRefPubMedCentralGoogle Scholar
  110. Hawley, S. A., Ross, F. A., Gowans, G. J., Tibarewal, P., Leslie, N. R., & Hardie, D. G. (2014). Phosphorylation by Akt within the ST loop of AMPK-α1 down-regulates its activation in tumour cells. The Biochemical Journal, 459(2), 275–287.PubMedPubMedCentralCrossRefGoogle Scholar
  111. Heathcote, H. R., Mancini, S. J., Strembitska, A., Jamal, K., Reihill, J. A., Palmer, T. M., Gould, G. W., & Salt, I. P. (2016). Protein kinase C phosphorylates AMP-activated protein kinase α1 Ser487. The Biochemical Journal, 473(24), 4681–4697.PubMedPubMedCentralCrossRefGoogle Scholar
  112. Heinrichs, S. C., Menzaghi, F., Pich, E. M., Hauger, R. L., & Koob, G. F. (1993). Corticotropin-releasing factor in the paraventricular nucleus modulates feeding induced by neuropeptide Y. Brain Research, 611(1), 18–24.PubMedCrossRefPubMedCentralGoogle Scholar
  113. Henckens, M. J. A. G., Deussing, J. M., & Chen, A. (2016). Region-specific roles of the corticotropin-releasing factor-urocortin system in stress. Nature Reviews. Neuroscience, 17(10), 636–651.PubMedCrossRefPubMedCentralGoogle Scholar
  114. Heuer, H., Maier, M. K., Iden, S., Mittag, J., Friesema, E. C. H., Visser, T. J., & Bauer, K. (2005). The monocarboxylate transporter 8 linked to human psychomotor retardation is highly expressed in thyroid hormone-sensitive neuron populations. Endocrinology, 146(4), 1701–1706.PubMedCrossRefPubMedCentralGoogle Scholar
  115. Hill, J. W., Williams, K. W., Ye, C., Luo, J., Balthasar, N., Coppari, R., Cowley, M. A., Cantley, L. C., Lowell, B. B., & Elmquist, J. K. (2008). Acute effects of leptin require PI3K signaling in hypothalamic proopiomelanocortin neurons in mice. The Journal of Clinical Investigation, 118(5), 1796–1805.PubMedPubMedCentralCrossRefGoogle Scholar
  116. Hill, J. W., Xu, Y., Preitner, F., Fukuda, M., Cho, Y.-R., Luo, J., Balthasar, N., Coppari, R., Cantley, L. C., Kahn, B. B., Zhao, J. J., & Elmquist, J. K. (2009). Phosphatidyl inositol 3-kinase signaling in hypothalamic proopiomelanocortin neurons contributes to the regulation of glucose homeostasis. Endocrinology, 150(11), 4874–4882.PubMedPubMedCentralCrossRefGoogle Scholar
  117. Hisahara, S., Chiba, S., Matsumoto, H., Tanno, M., Yagi, H., Shimohama, S., Sato, M., & Horio, Y. (2008). Histone deacetylase SIRT1 modulates neuronal differentiation by its nuclear translocation. Proceedings of the National Academy of Sciences of the United States of America, 105(40), 15599–15604.PubMedPubMedCentralCrossRefGoogle Scholar
  118. Hou, X., Xu, S., Maitland-Toolan, K. A., Sato, K., Jiang, B., Ido, Y., Lan, F., Walsh, K., Wierzbicki, M., Verbeuren, T. J., Cohen, R. A., & Zang, M. (2008). SIRT1 regulates hepatocyte lipid metabolism through activating AMP-activated protein kinase. The Journal of Biological Chemistry, 283(29), 20015–20026.PubMedPubMedCentralCrossRefGoogle Scholar
  119. Houtkooper, R. H., Pirinen, E., & Auwerx, J. (2012). Sirtuins as regulators of metabolism and healthspan. Nature Reviews. Molecular Cell Biology, 13(4), 225–238.PubMedPubMedCentralCrossRefGoogle Scholar
  120. Hu, Z., Cha, S. H., Chohnan, S., & Lane, M. D. (2003). Hypothalamic malonyl-CoA as a mediator of feeding behavior. Proceedings of the National Academy of Sciences of the United States of America, 100(22), 12624–12629.PubMedPubMedCentralCrossRefGoogle Scholar
  121. Huang, H., & Tindall, D. J. (2007). Dynamic FoxO transcription factors. Journal of Cell Science, 120(Pt 15), 2479–2487.PubMedCrossRefPubMedCentralGoogle Scholar
  122. Hurtado-Carneiro, V., Roncero, I., Blazquez, E., Alvarez, E., & Sanz, C. (2013). PAS kinase as a nutrient sensor in neuroblastoma and hypothalamic cells required for the normal expression and activity of other cellular nutrient and energy sensors. Molecular Neurobiology, 48(3), 904–920.PubMedCrossRefPubMedCentralGoogle Scholar
  123. Hurtado-Carneiro, V., Roncero, I., Egger, S. S., Wenger, R. H., Blazquez, E., Sanz, C., & Alvarez, E. (2014). PAS kinase is a nutrient and energy sensor in hypothalamic areas required for the normal function of AMPK and mTOR/S6K1. Molecular Neurobiology, 50(2), 314–326.PubMedCrossRefPubMedCentralGoogle Scholar
  124. Ibrahim, N., Bosch, M. A., Smart, J. L., Qiu, J., Rubinstein, M., Rønnekleiv, O. K., Low, M. J., & Kelly, M. J. (2003). Hypothalamic proopiomelanocortin neurons are glucose responsive and express K(ATP) channels. Endocrinology, 144(4), 1331–1340.PubMedCrossRefPubMedCentralGoogle Scholar
  125. Inoki, K., Zhu, T., & Guan, K.-L. (2003). TSC2 mediates cellular energy response to control cell growth and survival. Cell, 115(5), 577–590.PubMedCrossRefPubMedCentralGoogle Scholar
  126. Iyer, A., Fairlie, D. P., & Brown, L. (2012). Lysine acetylation in obesity, diabetes and metabolic disease. Immunology and Cell Biology, 90(1), 39–46.PubMedCrossRefPubMedCentralGoogle Scholar
  127. Jacinto, E., Loewith, R., Schmidt, A., Lin, S., Rüegg, M. A., Hall, A., & Hall, M. N. (2004). Mammalian TOR complex 2 controls the actin cytoskeleton and is rapamycin insensitive. Nature Cell Biology, 6(11), 1122–1128.PubMedCrossRefPubMedCentralGoogle Scholar
  128. Jackson, R. S., Creemers, J. W., Ohagi, S., Raffin-Sanson, M. L., Sanders, L., Montague, C. T., Hutton, J. C., & O’Rahilly, S. (1997). Obesity and impaired prohormone processing associated with mutations in the human prohormone convertase 1 gene. Nature Genetics, 16(3), 303–306.PubMedCrossRefPubMedCentralGoogle Scholar
  129. Jäger, S., Handschin, C., St-Pierre, J., & Spiegelman, B. M. (2007). AMP-activated protein kinase (AMPK) action in skeletal muscle via direct phosphorylation of PGC-1alpha. Proceedings of the National Academy of Sciences of the United States of America, 104(29), 12017–12022.PubMedPubMedCentralCrossRefGoogle Scholar
  130. Jang, M., & Romsos, D. R. (1998). Neuropeptide Y and corticotropin-releasing hormone concentrations within specific hypothalamic regions of lean but not Ob/Ob mice respond to food-deprivation and refeeding. The Journal of Nutrition, 128(12), 2520–2525.PubMedCrossRefPubMedCentralGoogle Scholar
  131. Jay, P., Rougeulle, C., Massacrier, A., Moncla, A., Mattei, M. G., Malzac, P., Roëckel, N., Taviaux, S., Lefranc, J. L., Cau, P., Berta, P., Lalande, M., & Muscatelli, F. (1997). The human necdin gene, NDN, is maternally imprinted and located in the Prader-Willi syndrome chromosomal region. Nature Genetics, 17(3), 357–361.PubMedCrossRefPubMedCentralGoogle Scholar
  132. Jiang, H., Khan, S., Wang, Y., Charron, G., He, B., Sebastian, C., Du, J., Kim, R., Ge, E., Mostoslavsky, R., Hang, H. C., Hao, Q., & Lin, H. (2013). SIRT6 regulates TNF-α secretion through hydrolysis of long-chain fatty acyl lysine. Nature, 496(7443), 110–113.PubMedPubMedCentralCrossRefGoogle Scholar
  133. Jing, E., Nillni, E. A., Sanchez, V. C., Stuart, R. C., & Good, D. J. (2004). Deletion of the Nhlh2 transcription factor decreases the levels of the anorexigenic peptides alpha melanocyte-stimulating hormone and thyrotropin-releasing hormone and implicates prohormone convertases I and II in obesity. Endocrinology, 145(4), 1503–1513.PubMedCrossRefGoogle Scholar
  134. Jung, J., Genau, H. M., & Behrends, C. (2015). Amino acid-dependent mTORC1 regulation by the lysosomal membrane protein SLC38A9. Molecular and Cellular Biology, 35(14), 2479–2494.PubMedPubMedCentralCrossRefGoogle Scholar
  135. Kabra, D. G., Pfuhlmann, K., García-Cáceres, C., Schriever, S. C., Casquero García, V., Kebede, A. F., Fuente-Martin, E., Trivedi, C., Heppner, K., Uhlenhaut, N. H., Legutko, B., Kabra, U. D., Gao, Y., Yi, C.-X., Quarta, C., Clemmensen, C., Finan, B., Müller, T. D., Meyer, C. W., Paez-Pereda, M., Stemmer, K., Woods, S. C., Perez-Tilve, D., Schneider, R., Olson, E. N., Tschöp, M. H., & Pfluger, P. T. (2016). Hypothalamic leptin action is mediated by histone deacetylase 5. Nature Communications, 7, 10782.PubMedPubMedCentralCrossRefGoogle Scholar
  136. Kanfi, Y., Peshti, V., Gozlan, Y. M., Rathaus, M., Gil, R., & Cohen, H. Y. (2008). Regulation of SIRT1 protein levels by nutrient availability. FEBS Letters, 582(16), 2417–2423.PubMedCrossRefGoogle Scholar
  137. Kang, H., Jung, J.-W., Kim, M. K., & Chung, J. H. (2009). CK2 is the regulator of SIRT1 substrate-binding affinity, deacetylase activity and cellular response to DNA-damage. PLoS One, 4(8), e6611.PubMedPubMedCentralCrossRefGoogle Scholar
  138. Kaur, C., & Ling, E.-A. (2017). The circumventricular organs. Histology and Histopathology, 32(9), 879–892.PubMedPubMedCentralGoogle Scholar
  139. Kaushik, S., Rodriguez-Navarro, J. A., Arias, E., Kiffin, R., Sahu, S., Schwartz, G. J., Cuervo, A. M., & Singh, R. (2011). Autophagy in hypothalamic AgRP neurons regulates food intake and energy balance. Cell Metabolism, 14(2), 173–183.PubMedPubMedCentralCrossRefGoogle Scholar
  140. Kaushik, S., Arias, E., Kwon, H., Lopez, N. M., Athonvarangkul, D., Sahu, S., Schwartz, G. J., Pessin, J. E., & Singh, R. (2012). Loss of autophagy in hypothalamic POMC neurons impairs lipolysis. EMBO Reports, 13(3), 258–265.PubMedPubMedCentralCrossRefGoogle Scholar
  141. Kim, M.-S., Park, J.-Y., Namkoong, C., Jang, P.-G., Ryu, J.-W., Song, H.-S., Yun, J.-Y., Namgoong, I.-S., Ha, J., Park, I.-S., Lee, I.-K., Viollet, B., Youn, J. H., Lee, H.-K., & Lee, K.-U. (2004). Anti-obesity effects of alpha-lipoic acid mediated by suppression of hypothalamic AMP-activated protein kinase. Nature Medicine, 10(7), 727–733.PubMedCrossRefGoogle Scholar
  142. Kim, M.-S., Pak, Y. K., Jang, P.-G., Namkoong, C., Choi, Y.-S., Won, J.-C., Kim, K.-S., Kim, S.-W., Kim, H.-S., Park, J.-Y., Kim, Y.-B., & Lee, K.-U. (2006). Role of hypothalamic Foxo1 in the regulation of food intake and energy homeostasis. Nature Neuroscience, 9(7), 901–906.PubMedCrossRefPubMedCentralGoogle Scholar
  143. Kim, E.-J., Kho, J.-H., Kang, M.-R., & Um, S.-J. (2007a). Active regulator of SIRT1 cooperates with SIRT1 and facilitates suppression of p53 activity. Molecular Cell, 28(2), 277–290.PubMedCrossRefPubMedCentralGoogle Scholar
  144. Kim, D., Nguyen, M. D., Dobbin, M. M., Fischer, A., Sananbenesi, F., Rodgers, J. T., Delalle, I., Baur, J. A., Sui, G., Armour, S. M., Puigserver, P., Sinclair, D. A., & Tsai, L.-H. (2007b). SIRT1 deacetylase protects against neurodegeneration in models for Alzheimer’s disease and amyotrophic lateral sclerosis. The EMBO Journal, 26(13), 3169–3179.PubMedPubMedCentralCrossRefGoogle Scholar
  145. Kim, E., Goraksha-Hicks, P., Li, L., Neufeld, T. P., & Guan, K.-L. (2008a). Regulation of TORC1 by rag GTPases in nutrient response. Nature Cell Biology, 10(8), 935–945.PubMedPubMedCentralCrossRefGoogle Scholar
  146. Kim, J.-E., Chen, J., & Lou, Z. (2008b). DBC1 is a negative regulator of SIRT1. Nature, 451(7178), 583–586.PubMedCrossRefPubMedCentralGoogle Scholar
  147. Kim, J., Kundu, M., Viollet, B., & Guan, K.-L. (2011). AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nature Cell Biology, 13(2), 132–141.PubMedPubMedCentralCrossRefGoogle Scholar
  148. Kinote, A., Faria, J. A., Roman, E. A., Solon, C., Razolli, D. S., Ignacio-Souza, L. M., Sollon, C. S., Nascimento, L. F., de Araújo, T. M., Barbosa, A. P. L., Lellis-Santos, C., Velloso, L. A., Bordin, S., & Anhê, G. F. (2012). Fructose-induced hypothalamic AMPK activation stimulates hepatic PEPCK and gluconeogenesis due to increased corticosterone levels. Endocrinology, 153(8), 3633–3645.PubMedCrossRefPubMedCentralGoogle Scholar
  149. Kitamura, T., Feng, Y., Kitamura, Y. I., Chua, S. C., Jr., Xu, A. W., Barsh, G. S., Rossetti, L., & Accili, D. (2006). Forkhead protein FoxO1 mediates Agrp-dependent effects of leptin on food intake. Nature Medicine, 12(5), 534–540.PubMedCrossRefPubMedCentralGoogle Scholar
  150. Knight, C. M., Gutierrez-Juarez, R., Lam, T. K. T., Arrieta-Cruz, I., Huang, L., Schwartz, G., Barzilai, N., & Rossetti, L. (2011). Mediobasal hypothalamic SIRT1 is essential for resveratrol’s effects on insulin action in rats. Diabetes, 60(11), 2691–2700.PubMedPubMedCentralCrossRefGoogle Scholar
  151. Kocalis, H. E., Hagan, S. L., George, L., Turney, M. K., Siuta, M. A., Laryea, G. N., Morris, L. C., Muglia, L. J., Printz, R. L., Stanwood, G. D., & Niswender, K. D. (2014). Rictor/mTORC2 facilitates central regulation of energy and glucose homeostasis. Molecular Metabolism, 3(4), 394–407.PubMedPubMedCentralCrossRefGoogle Scholar
  152. Kolthur-Seetharam, U., Teerds, K., de Rooij, D. G., Wendling, O., McBurney, M., Sassone-Corsi, P., & Davidson, I. (2009). The histone deacetylase SIRT1 controls male fertility in mice through regulation of hypothalamic-pituitary gonadotropin signaling. Biology of Reproduction, 80(2), 384–391.PubMedCrossRefGoogle Scholar
  153. Kong, X., Yu, J., Bi, J., Qi, H., Di, W., Wu, L., Wang, L., Zha, J., Lv, S., Zhang, F., Li, Y., Hu, F., Liu, F., Zhou, H., Liu, J., & Ding, G. (2015). Glucocorticoids transcriptionally regulate miR-27b expression promoting body fat accumulation via suppressing the browning of white adipose tissue. Diabetes, 64(2), 393–404.PubMedCrossRefGoogle Scholar
  154. Korosi, A., & Baram, T. Z. (2008). The central corticotropin releasing factor system during development and adulthood. European Journal of Pharmacology, 583(2–3), 204–214.PubMedPubMedCentralCrossRefGoogle Scholar
  155. Kovács, K. J. (2013). CRH: The link between hormonal-, metabolic- and behavioral responses to stress. Journal of Chemical Neuroanatomy, 54, 25–33.PubMedCrossRefGoogle Scholar
  156. Kubota, N., Yano, W., Kubota, T., Yamauchi, T., Itoh, S., Kumagai, H., Kozono, H., Takamoto, I., Okamoto, S., Shiuchi, T., Suzuki, R., Satoh, H., Tsuchida, A., Moroi, M., Sugi, K., Noda, T., Ebinuma, H., Ueta, Y., Kondo, T., Araki, E., Ezaki, O., Nagai, R., Tobe, K., Terauchi, Y., Ueki, K., Minokoshi, Y., & Kadowaki, T. (2007). Adiponectin stimulates AMP-activated protein kinase in the hypothalamus and increases food intake. Cell Metabolism, 6(1), 55–68.PubMedCrossRefPubMedCentralGoogle Scholar
  157. Kumar, M. V., Shimokawa, T., Nagy, T. R., & Lane, M. D. (2002). Differential effects of a centrally acting fatty acid synthase inhibitor in lean and obese mice. Proceedings of the National Academy of Sciences of the United States of America, 99(4), 1921–1925.PubMedPubMedCentralCrossRefGoogle Scholar
  158. Kumar, A., Lawrence, J. C., Jr., Jung, D. Y., Ko, H. J., Keller, S. R., Kim, J. K., Magnuson, M. A., & Harris, T. E. (2010). Fat cell-specific ablation of rictor in mice impairs insulin-regulated fat cell and whole-body glucose and lipid metabolism. Diabetes, 59(6), 1397–1406.PubMedPubMedCentralCrossRefGoogle Scholar
  159. Kurth-Kraczek, E. J., Hirshman, M. F., Goodyear, L. J., & Winder, W. W. (1999). 5’ AMP-activated protein kinase activation causes GLUT4 translocation in skeletal muscle. Diabetes, 48(8), 1667–1671.PubMedCrossRefPubMedCentralGoogle Scholar
  160. Lafontaine-Lacasse, M., Richard, D., & Picard, F. (2010). Effects of age and gender on Sirt 1 mRNA expressions in the hypothalamus of the mouse. Neuroscience Letters, 480(1), 1–3.PubMedCrossRefPubMedCentralGoogle Scholar
  161. Lagerlöf, O., Slocomb, J. E., Hong, I., Aponte, Y., Blackshaw, S., Hart, G. W., & Huganir, R. L. (2016). The nutrient sensor OGT in PVN neurons regulates feeding. Science, 351(6279), 1293–1296.PubMedPubMedCentralCrossRefGoogle Scholar
  162. Lagouge, M., Argmann, C., Gerhart-Hines, Z., Meziane, H., Lerin, C., Daussin, F., Messadeq, N., Milne, J., Lambert, P., Elliott, P., Geny, B., Laakso, M., Puigserver, P., & Auwerx, J. (2006). Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1alpha. Cell, 127(6), 1109–1122.PubMedCrossRefPubMedCentralGoogle Scholar
  163. Lamming, D. W., & Sabatini, D. M. (2013). A central role for mTOR in lipid homeostasis. Cell Metabolism, 18(4), 465–469.PubMedCrossRefPubMedCentralGoogle Scholar
  164. Lan, F., Cacicedo, J. M., Ruderman, N., & Ido, Y. (2008). SIRT1 modulation of the acetylation status, cytosolic localization, and activity of LKB1. Possible role in AMP-activated protein kinase activation. The Journal of Biological Chemistry, 283(41), 27628–27635.PubMedPubMedCentralCrossRefGoogle Scholar
  165. Lane, M. D., Wolfgang, M., Cha, S.-H., & Dai, Y. (2008). Regulation of food intake and energy expenditure by hypothalamic malonyl-CoA. International Journal of Obesity, 32(Suppl 4), S49–S54.PubMedCrossRefGoogle Scholar
  166. Laplante, M., & Sabatini, D. M. (2012). mTOR signaling in growth control and disease. Cell, 149(2), 274–293.PubMedPubMedCentralCrossRefGoogle Scholar
  167. Laryea, G., Schütz, G., & Muglia, L. J. (2013). Disrupting hypothalamic glucocorticoid receptors causes HPA axis hyperactivity and excess adiposity. Molecular Endocrinology, 27(10), 1655–1665.PubMedPubMedCentralCrossRefGoogle Scholar
  168. Laurent, V., Kimble, A., Peng, B., Zhu, P., Pintar, J. E., Steiner, D. F., & Lindberg, I. (2002). Mortality in 7B2 null mice can be rescued by adrenalectomy: Involvement of dopamine in ACTH hypersecretion. Proceedings of the National Academy of Sciences of the United States of America, 99(5), 3087–3092.PubMedPubMedCentralCrossRefGoogle Scholar
  169. Laurent, G., German, N. J., Saha, A. K., de Boer, V. C. J., Davies, M., Koves, T. R., Dephoure, N., Fischer, F., Boanca, G., Vaitheesvaran, B., Lovitch, S. B., Sharpe, A. H., Kurland, I. J., Steegborn, C., Gygi, S. P., Muoio, D. M., Ruderman, N. B., & Haigis, M. C. (2013). SIRT4 coordinates the balance between lipid synthesis and catabolism by repressing malonyl CoA decarboxylase. Molecular Cell, 50(5), 686–698.PubMedPubMedCentralCrossRefGoogle Scholar
  170. Lee, K., Li, B., Xi, X., Suh, Y., & Martin, R. J. (2005). Role of neuronal energy status in the regulation of adenosine 5′-monophosphate-activated protein kinase, orexigenic neuropeptides expression, and feeding behavior. Endocrinology, 146(1), 3–10.PubMedCrossRefPubMedCentralGoogle Scholar
  171. Lee, J. W., Park, S., Takahashi, Y., & Wang, H.-G. (2010). The association of AMPK with ULK1 regulates autophagy. PLoS One, 5(11), e15394.PubMedPubMedCentralCrossRefGoogle Scholar
  172. Lembke, V., Goebel, M., Frommelt, L., Inhoff, T., Lommel, R., Stengel, A., Taché, Y., Grötzinger, C., Bannert, N., Wiedenmann, B., Klapp, B. F., & Kobelt, P. (2011). Sulfated cholecystokinin-8 activates phospho-mTOR immunoreactive neurons of the paraventricular nucleus in rats. Peptides, 32(1), 65–70.PubMedCrossRefPubMedCentralGoogle Scholar
  173. Levin, B. E., Dunn-Meynell, A. A., Balkan, B., & Keesey, R. E. (1997). Selective breeding for diet-induced obesity and resistance in Sprague-Dawley rats. The American Journal of Physiology, 273(2 Pt 2), R725–R730.PubMedPubMedCentralGoogle Scholar
  174. Lewis, C. A., Griffiths, B., Santos, C. R., Pende, M., & Schulze, A. (2011). Regulation of the SREBP transcription factors by mTORC1. Biochemical Society Transactions, 39(2), 495–499.PubMedCrossRefPubMedCentralGoogle Scholar
  175. Li, X., & Gao, T. (2014). mTORC2 phosphorylates protein kinase Cζ to regulate its stability and activity. EMBO Reports, 15(2), 191–198.PubMedPubMedCentralGoogle Scholar
  176. Libert, S., Pointer, K., Bell, E. L., Das, A., Cohen, D. E., Asara, J. M., Kapur, K., Bergmann, S., Preisig, M., Otowa, T., Kendler, K. S., Chen, X., Hettema, J. M., van den Oord, E. J., Rubio, J. P., & Guarente, L. (2011). SIRT1 activates MAO-A in the brain to mediate anxiety and exploratory drive. Cell, 147(7), 1459–1472.PubMedPubMedCentralCrossRefGoogle Scholar
  177. Liu, K., Paterson, A. J., Chin, E., & Kudlow, J. E. (2000). Glucose stimulates protein modification by O-linked GlcNAc in pancreatic beta cells: Linkage of O-linked GlcNAc to beta cell death. Proceedings of the National Academy of Sciences of the United States of America, 97(6), 2820–2825.PubMedPubMedCentralCrossRefGoogle Scholar
  178. Liu, Y., Dentin, R., Chen, D., Hedrick, S., Ravnskjaer, K., Schenk, S., Milne, J., Meyers, D. J., Cole, P., Yates, J., 3rd, Olefsky, J., Guarente, L., & Montminy, M. (2008). A fasting inducible switch modulates gluconeogenesis via activator/coactivator exchange. Nature, 456(7219), 269–273.PubMedPubMedCentralCrossRefGoogle Scholar
  179. Lizcano, J. M., Göransson, O., Toth, R., Deak, M., Morrice, N. A., Boudeau, J., Hawley, S. A., Udd, L., Mäkelä, T. P., Hardie, D. G., & Alessi, D. R. (2004). LKB1 is a master kinase that activates 13 kinases of the AMPK subfamily, including MARK/PAR-1. The EMBO Journal, 23(4), 833–843.PubMedPubMedCentralCrossRefGoogle Scholar
  180. Lloyd, D. J., Bohan, S., & Gekakis, N. (2006). Obesity, hyperphagia and increased metabolic efficiency in Pc1 mutant mice. Human Molecular Genetics, 15(11), 1884–1893.PubMedCrossRefPubMedCentralGoogle Scholar
  181. Löffler, A. S., Alers, S., Dieterle, A. M., Keppeler, H., Franz-Wachtel, M., Kundu, M., Campbell, D. G., Wesselborg, S., Alessi, D. R., & Stork, B. (2011). Ulk1-mediated phosphorylation of AMPK constitutes a negative regulatory feedback loop. Autophagy, 7(7), 696–706.PubMedCrossRefPubMedCentralGoogle Scholar
  182. Loftus, T. M., Jaworsky, D. E., Frehywot, G. L., Townsend, C. A., Ronnett, G. V., Lane, M. D., & Kuhajda, F. P. (2000). Reduced food intake and body weight in mice treated with fatty acid synthase inhibitors. Science, 288(5475), 2379–2381.PubMedCrossRefPubMedCentralGoogle Scholar
  183. López, M., Lage, R., Saha, A. K., Pérez-Tilve, D., Vázquez, M. J., Varela, L., Sangiao-Alvarellos, S., Tovar, S., Raghay, K., Rodríguez-Cuenca, S., Deoliveira, R. M., Castañeda, T., Datta, R., Dong, J. Z., Culler, M., Sleeman, M. W., Alvarez, C. V., Gallego, R., Lelliott, C. J., Carling, D., Tschöp, M. H., Diéguez, C., & Vidal-Puig, A. (2008). Hypothalamic fatty acid metabolism mediates the orexigenic action of ghrelin. Cell Metabolism, 7(5), 389–399.PubMedCrossRefPubMedCentralGoogle Scholar
  184. Lovejoy, D. A., Chang, B. S. W., Lovejoy, N. R., & del Castillo, J. (2014). Molecular evolution of GPCRs: CRH/CRH receptors. Journal of Molecular Endocrinology, 52(3), T43–T60.PubMedCrossRefPubMedCentralGoogle Scholar
  185. Lu, X.-Y., Barsh, G. S., Akil, H., & Watson, S. J. (2003). Interaction between alpha-melanocyte-stimulating hormone and corticotropin-releasing hormone in the regulation of feeding and hypothalamo-pituitary-adrenal responses. The Journal of Neuroscience, 23(21), 7863–7872.PubMedCrossRefPubMedCentralGoogle Scholar
  186. Lu, M., Sarruf, D. A., Li, P., Osborn, O., Sanchez-Alavez, M., Talukdar, S., Chen, A., Bandyopadhyay, G., Xu, J., Morinaga, H., Dines, K., Watkins, S., Kaiyala, K., Schwartz, M. W., & Olefsky, J. M. (2013). Neuronal Sirt1 deficiency increases insulin sensitivity in both brain and peripheral tissues. The Journal of Biological Chemistry, 288(15), 10722–10735.PubMedPubMedCentralCrossRefGoogle Scholar
  187. MacDonald, H. R., & Wevrick, R. (1997). The necdin gene is deleted in Prader-Willi syndrome and is imprinted in human and mouse. Human Molecular Genetics, 6(11), 1873–1878.PubMedCrossRefPubMedCentralGoogle Scholar
  188. Mao, Z., Hine, C., Tian, X., Van Meter, M., Au, M., Vaidya, A., Seluanov, A., & Gorbunova, V. (2011). SIRT6 promotes DNA repair under stress by activating PARP1. Science, 332(6036), 1443–1446.PubMedPubMedCentralCrossRefGoogle Scholar
  189. Marsin, A. S., Bertrand, L., Rider, M. H., Deprez, J., Beauloye, C., Vincent, M. F., Van den Berghe, G., Carling, D., & Hue, L. (2000). Phosphorylation and activation of heart PFK-2 by AMPK has a role in the stimulation of glycolysis during ischaemia. Current Biology, 10(20), 1247–1255.PubMedCrossRefPubMedCentralGoogle Scholar
  190. Marsin, A.-S., Bouzin, C., Bertrand, L., & Hue, L. (2002). The stimulation of glycolysis by hypoxia in activated monocytes is mediated by AMP-activated protein kinase and inducible 6-phosphofructo-2-kinase. The Journal of Biological Chemistry, 277(34), 30778–30783.PubMedCrossRefPubMedCentralGoogle Scholar
  191. Martin, T. L., Alquier, T., Asakura, K., Furukawa, N., Preitner, F., & Kahn, B. B. (2006). Diet-induced obesity alters AMP kinase activity in hypothalamus and skeletal muscle. The Journal of Biological Chemistry, 281(28), 18933–18941.PubMedCrossRefPubMedCentralGoogle Scholar
  192. Martínez de Morentin, P. B., González-García, I., Martins, L., Lage, R., Fernández-Mallo, D., Martínez-Sánchez, N., Ruíz-Pino, F., Liu, J., Morgan, D. A., Pinilla, L., Gallego, R., Saha, A. K., Kalsbeek, A., Fliers, E., Bisschop, P. H., Diéguez, C., Nogueiras, R., Rahmouni, K., Tena-Sempere, M., & López, M. (2014). Estradiol regulates brown adipose tissue thermogenesis via hypothalamic AMPK. Cell Metabolism, 20(1), 41–53.PubMedPubMedCentralCrossRefGoogle Scholar
  193. Martínez-Sánchez, N., Seoane-Collazo, P., Contreras, C., Varela, L., Villarroya, J., Rial-Pensado, E., Buqué, X., Aurrekoetxea, I., Delgado, T. C., Vázquez-Martínez, R., González-García, I., Roa, J., Whittle, A. J., Gomez-Santos, B., Velagapudi, V., YCL, T., Morgan, D. A., Voshol, P. J., Martínez de Morentin, P. B., López-González, T., Liñares-Pose, L., Gonzalez, F., Chatterjee, K., Sobrino, T., Medina-Gómez, G., Davis, R. J., Casals, N., Orešič, M., Coll, A. P., Vidal-Puig, A., Mittag, J., Tena-Sempere, M., Malagón, M. M., Diéguez, C., Martínez-Chantar, M. L., Aspichueta, P., Rahmouni, K., Nogueiras, R., Sabio, G., Villarroya, F., & López, M. (2017). Hypothalamic AMPK-ER stress-JNK1 Axis mediates the central actions of thyroid hormones on energy balance. Cell Metabolism, 26(1), 212–229.e12.PubMedPubMedCentralCrossRefGoogle Scholar
  194. Martins, L., Fernández-Mallo, D., Novelle, M. G., Vázquez, M. J., Tena-Sempere, M., Nogueiras, R., López, M., & Diéguez, C. (2012). Hypothalamic mTOR signaling mediates the orexigenic action of ghrelin. PLoS One, 7(10), e46923.PubMedPubMedCentralCrossRefGoogle Scholar
  195. Martins, L., Seoane-Collazo, P., Contreras, C., González-García, I., Martínez-Sánchez, N., González, F., Zalvide, J., Gallego, R., Diéguez, C., Nogueiras, R., Tena-Sempere, M., & López, M. (2016). A functional link between AMPK and orexin mediates the effect of BMP8B on energy balance. Cell Reports, 16(8), 2231–2242.PubMedPubMedCentralCrossRefGoogle Scholar
  196. Mastorakos, G., & Zapanti, E. (2004). The hypothalamic-pituitary-adrenal axis in the neuroendocrine regulation of food intake and obesity: The role of corticotropin releasing hormone. Nutritional Neuroscience, 7(5–6), 271–280.PubMedCrossRefPubMedCentralGoogle Scholar
  197. Meikle, L., Talos, D. M., Onda, H., Pollizzi, K., Rotenberg, A., Sahin, M., Jensen, F. E., & Kwiatkowski, D. J. (2007). A mouse model of tuberous sclerosis: Neuronal loss of Tsc1 causes dysplastic and ectopic neurons, reduced myelination, seizure activity, and limited survival. The Journal of Neuroscience, 27(21), 5546–5558.PubMedCrossRefPubMedCentralGoogle Scholar
  198. Menzies, K. J., Zhang, H., Katsyuba, E., & Auwerx, J. (2016). Protein acetylation in metabolism - metabolites and cofactors. Nature Reviews. Endocrinology, 12(1), 43–60.PubMedCrossRefPubMedCentralGoogle Scholar
  199. Merrill, G. F., Kurth, E. J., Hardie, D. G., & Winder, W. W. (1997). AICA riboside increases AMP-activated protein kinase, fatty acid oxidation, and glucose uptake in rat muscle. The American Journal of Physiology, 273(6 Pt 1), E1107–E1112.PubMedPubMedCentralGoogle Scholar
  200. Minokoshi, Y., Alquier, T., Furukawa, N., Kim, Y.-B., Lee, A., Xue, B., Mu, J., Foufelle, F., Ferré, P., Birnbaum, M. J., Stuck, B. J., & Kahn, B. B. (2004). AMP-kinase regulates food intake by responding to hormonal and nutrient signals in the hypothalamus. Nature, 428(6982), 569–574.PubMedCrossRefPubMedCentralGoogle Scholar
  201. Moloughney, J. G., Kim, P. K., Vega-Cotto, N. M., Wu, C.-C., Zhang, S., Adlam, M., Lynch, T., Chou, P.-C., Rabinowitz, J. D., Werlen, G., & Jacinto, E. (2016). mTORC2 responds to glutamine catabolite levels to modulate the Hexosamine biosynthesis enzyme GFAT1. Molecular Cell, 63(5), 811–826.PubMedPubMedCentralCrossRefGoogle Scholar
  202. Momcilovic, M., Hong, S.-P., & Carlson, M. (2006). Mammalian TAK1 activates Snf1 protein kinase in yeast and phosphorylates AMP-activated protein kinase in vitro. The Journal of Biological Chemistry, 281(35), 25336–25343.PubMedCrossRefPubMedCentralGoogle Scholar
  203. Mori, H., Inoki, K., Münzberg, H., Opland, D., Faouzi, M., Villanueva, E. C., Ikenoue, T., Kwiatkowski, D., MacDougald, O. A., Myers, M. G., Jr., & Guan, K.-L. (2009). Critical role for hypothalamic mTOR activity in energy balance. Cell Metabolism, 9(4), 362–374.PubMedPubMedCentralCrossRefGoogle Scholar
  204. Morton, G. J., Cummings, D. E., Baskin, D. G., Barsh, G. S., & Schwartz, M. W. (2006). Central nervous system control of food intake and body weight. Nature, 443(7109), 289–295.PubMedCrossRefPubMedCentralGoogle Scholar
  205. Moynihan, K. A., Grimm, A. A., Plueger, M. M., Bernal-Mizrachi, E., Ford, E., Cras-Méneur, C., Permutt, M. A., & Imai, S.-I. (2005). Increased dosage of mammalian Sir2 in pancreatic beta cells enhances glucose-stimulated insulin secretion in mice. Cell Metabolism, 2(2), 105–117.PubMedCrossRefPubMedCentralGoogle Scholar
  206. Muta, K., Morgan, D. A., & Rahmouni, K. (2015). The role of hypothalamic mTORC1 signaling in insulin regulation of food intake, body weight, and sympathetic nerve activity in male mice. Endocrinology, 156(4), 1398–1407.PubMedPubMedCentralCrossRefGoogle Scholar
  207. Naggert, J. K., Fricker, L. D., Varlamov, O., Nishina, P. M., Rouille, Y., Steiner, D. F., Carroll, R. J., Paigen, B. J., & Leiter, E. H. (1995). Hyperproinsulinaemia in obese fat/fat mice associated with a carboxypeptidase E mutation which reduces enzyme activity. Nature Genetics, 10(2), 135–142.PubMedCrossRefPubMedCentralGoogle Scholar
  208. Nakahata, Y., Kaluzova, M., Grimaldi, B., Sahar, S., Hirayama, J., Chen, D., Guarente, L. P., & Sassone-Corsi, P. (2008). The NAD+−dependent deacetylase SIRT1 modulates CLOCK-mediated chromatin remodeling and circadian control. Cell, 134(2), 329–340.PubMedPubMedCentralCrossRefGoogle Scholar
  209. Nakahata, Y., Sahar, S., Astarita, G., Kaluzova, M., & Sassone-Corsi, P. (2009). Circadian control of the NAD+ salvage pathway by CLOCK-SIRT1. Science, 324(5927), 654–657.PubMedCrossRefPubMedCentralGoogle Scholar
  210. Nasrin, N., Kaushik, V. K., Fortier, E., Wall, D., Pearson, K. J., de Cabo, R., & Bordone, L. (2009). JNK1 phosphorylates SIRT1 and promotes its enzymatic activity. PLoS One, 4(12), e8414.PubMedPubMedCentralCrossRefGoogle Scholar
  211. Nie, Y., Erion, D. M., Yuan, Z., Dietrich, M., Shulman, G. I., Horvath, T. L., & Gao, Q. (2009). STAT3 inhibition of gluconeogenesis is downregulated by SirT1. Nature Cell Biology, 11(4), 492–500.PubMedPubMedCentralCrossRefGoogle Scholar
  212. Nillni, E. A. (2010). Regulation of the hypothalamic thyrotropin releasing hormone (TRH) neuron by neuronal and peripheral inputs. Frontiers in Neuroendocrinology, 31(2), 134–156.PubMedPubMedCentralCrossRefGoogle Scholar
  213. Nillni - Endocrinology EA. (2007). Regulation of prohormone convertases in hypothalamic neurons: implications for prothyrotropin-releasing hormone and proopiomelanocortin. press.endocrine.org 2007. Available at: http://press.endocrine.org/doi/abs/10.1210/en.2007-0173.
  214. Nillni, E. A., Friedman, T. C., Todd, R. B., Birch, N. P., Loh, Y. P., & Jackson, I. M. (1995). Pro-thyrotropin-releasing hormone processing by recombinant PC1. Journal of Neurochemistry, 65(6), 2462–2472.PubMedCrossRefPubMedCentralGoogle Scholar
  215. Nillni, E. A., Xie, W., Mulcahy, L., Sanchez, V. C., & Wetsel, W. C. (2002). Deficiencies in pro-thyrotropin-releasing hormone processing and abnormalities in thermoregulation in Cpefat/fat mice. The Journal of Biological Chemistry, 277(50), 48587–48595.PubMedCrossRefPubMedCentralGoogle Scholar
  216. Oberdoerffer, P., Michan, S., McVay, M., Mostoslavsky, R., Vann, J., Park, S.-K., Hartlerode, A., Stegmuller, J., Hafner, A., Loerch, P., Wright, S. M., Mills, K. D., Bonni, A., Yankner, B. A., Scully, R., Prolla, T. A., Alt, F. W., & Sinclair, D. A. (2008). SIRT1 redistribution on chromatin promotes genomic stability but alters gene expression during aging. Cell, 135(5), 907–918.PubMedPubMedCentralCrossRefGoogle Scholar
  217. Obici, S., Feng, Z., Morgan, K., Stein, D., Karkanias, G., & Rossetti, L. (2002). Central administration of oleic acid inhibits glucose production and food intake. Diabetes, 51(2), 271–275.PubMedCrossRefPubMedCentralGoogle Scholar
  218. Oh, T. S., Cho, H., Cho, J. H., Yu, S.-W., & Kim, E.-K. (2016). Hypothalamic AMPK-induced autophagy increases food intake by regulating NPY and POMC expression. Autophagy, 12(11), 2009–2025.PubMedPubMedCentralCrossRefGoogle Scholar
  219. Orozco-Solis, R., & Sassone-Corsi, P. (2014). Epigenetic control and the circadian clock: Linking metabolism to neuronal responses. Neuroscience, 264, 76–87.PubMedCrossRefPubMedCentralGoogle Scholar
  220. Orozco-Solis, R., Ramadori, G., Coppari, R., & Sassone-Corsi, P. (2015). SIRT1 relays nutritional inputs to the circadian clock through the Sf1 neurons of the ventromedial hypothalamus. Endocrinology, 156(6), 2174–2184.PubMedPubMedCentralCrossRefGoogle Scholar
  221. Ortega-Molina, A., Lopez-Guadamillas, E., Mattison, J. A., Mitchell, S. J., Muñoz-Martin, M., Iglesias, G., Gutierrez, V. M., Vaughan, K. L., Szarowicz, M. D., González-García, I., López, M., Cebrián, D., Martinez, S., Pastor, J., de Cabo, R., & Serrano, M. (2015). Pharmacological inhibition of PI3K reduces adiposity and metabolic syndrome in obese mice and rhesus monkeys. Cell Metabolism, 21(4), 558–570.PubMedPubMedCentralCrossRefGoogle Scholar
  222. Paquet, L., Massie, B., & Mains, R. E. (1996). Proneuropeptide Y processing in large dense-core vesicles: Manipulation of prohormone convertase expression in sympathetic neurons using adenoviruses. The Journal of Neuroscience, 16(3), 964–973.PubMedCrossRefPubMedCentralGoogle Scholar
  223. Park, H.-K., & Ahima, R. S. (2014). Leptin signaling. F1000prime Reports, 6, 73.PubMedPubMedCentralGoogle Scholar
  224. Peek, C. B., Ramsey, K. M., Marcheva, B., & Bass, J. (2012). Nutrient sensing and the circadian clock. Trends in Endocrinology and Metabolism, 23(7), 312–318.PubMedPubMedCentralCrossRefGoogle Scholar
  225. Perello, M., Stuart, R. C., & Nillni, E. A. (2007). Differential effects of fasting and leptin on proopiomelanocortin peptides in the arcuate nucleus and in the nucleus of the solitary tract. American Journal of Physiology. Endocrinology and Metabolism, 292(5), E1348–E1357.PubMedCrossRefPubMedCentralGoogle Scholar
  226. Perone, M. J., Murray, C. A., Brown, O. A., Gibson, S., White, A., Linton, E. A., Perkins, A. V., Lowenstein, P. R., & Castro, M. G. (1998). Procorticotrophin-releasing hormone: Endoproteolytic processing and differential release of its derived peptides within AtT20 cells. Molecular and Cellular Endocrinology, 142(1–2), 191–202.PubMedCrossRefPubMedCentralGoogle Scholar
  227. Pfister, J. A., Ma, C., Morrison, B. E., & D’Mello, S. R. (2008). Opposing effects of sirtuins on neuronal survival: SIRT1-mediated neuroprotection is independent of its deacetylase activity. PLoS One, 3(12), e4090.PubMedPubMedCentralCrossRefGoogle Scholar
  228. Picard, F., Kurtev, M., Chung, N., Topark-Ngarm, A., Senawong, T., Machado De Oliveira, R., Leid, M., McBurney, M. W., & Guarente, L. (2004). Sirt1 promotes fat mobilization in white adipocytes by repressing PPAR-gamma. Nature, 429(6993), 771–776.PubMedPubMedCentralCrossRefGoogle Scholar
  229. Plum, L., Lin, H. V., Dutia, R., Tanaka, J., Aizawa, K. S., Matsumoto, M., Kim, A. J., Cawley, N. X., Paik, J.-H., Loh, Y. P., DePinho, R. A., Wardlaw, S. L., & Accili, D. (2009). The obesity susceptibility gene Cpe links FoxO1 signaling in hypothalamic pro-opiomelanocortin neurons with regulation of food intake. Nature Medicine, 15(10), 1195–1201.PubMedPubMedCentralCrossRefGoogle Scholar
  230. Posner, S. F., Vaslet, C. A., Jurofcik, M., Lee, A., Seidah, N. G., & Nillni, E. A. (2004). Stepwise posttranslational processing of progrowth hormone-releasing hormone (proGHRH) polypeptide by furin and PC1. Endocrine, 23(2–3), 199–213.PubMedCrossRefPubMedCentralGoogle Scholar
  231. Price, N. L., Gomes, A. P., Ling, A. J. Y., Duarte, F. V., Martin-Montalvo, A., North, B. J., Agarwal, B., Ye, L., Ramadori, G., Teodoro, J. S., Hubbard, B. P., Varela, A. T., Davis, J. G., Varamini, B., Hafner, A., Moaddel, R., Rolo, A. P., Coppari, R., Palmeira, C. M., de Cabo, R., Baur, J. A., & Sinclair, D. A. (2012). SIRT1 is required for AMPK activation and the beneficial effects of resveratrol on mitochondrial function. Cell Metabolism, 15(5), 675–690.PubMedPubMedCentralCrossRefGoogle Scholar
  232. Proulx, K., Cota, D., Woods, S. C., & Seeley, R. J. (2008). Fatty acid synthase inhibitors modulate energy balance via mammalian target of rapamycin complex 1 signaling in the central nervous system. Diabetes, 57(12), 3231–3238.PubMedPubMedCentralCrossRefGoogle Scholar
  233. Prozorovski, T., Schulze-Topphoff, U., Glumm, R., Baumgart, J., Schröter, F., Ninnemann, O., Siegert, E., Bendix, I., Brüstle, O., Nitsch, R., Zipp, F., & Aktas, O. (2008). Sirt1 contributes critically to the redox-dependent fate of neural progenitors. Nature Cell Biology, 10(4), 385–394.PubMedCrossRefPubMedCentralGoogle Scholar
  234. Pu, L. P., Ma, W., Barker, J. L., & Loh - Endocrinology YP. (1996). Differential coexpression of genes encoding prothyrotropin-releasing hormone (pro-TRH) and prohormone convertases (PC1 and PC2) in rat brain neurons: …. academic.oup.com 1996. Available at: https://academic.oup.com/endo/article-abstract/137/4/1233/3037181.
  235. Qin, W., Yang, T., Ho, L., Zhao, Z., Wang, J., Chen, L., Zhao, W., Thiyagarajan, M., MacGrogan, D., Rodgers, J. T., Puigserver, P., Sadoshima, J., Deng, H., Pedrini, S., Gandy, S., Sauve, A. A., & Pasinetti, G. M. (2006). Neuronal SIRT1 activation as a novel mechanism underlying the prevention of Alzheimer disease amyloid neuropathology by calorie restriction. The Journal of Biological Chemistry, 281(31), 21745–21754.PubMedCrossRefPubMedCentralGoogle Scholar
  236. Quan, W., Kim, H.-K., Moon, E.-Y., Kim, S. S., Choi, C. S., Komatsu, M., Jeong, Y. T., Lee, M.-K., Kim, K.-W., Kim, M.-S., & Lee, M.-S. (2012). Role of hypothalamic proopiomelanocortin neuron autophagy in the control of appetite and leptin response. Endocrinology, 153(4), 1817–1826.PubMedCrossRefPubMedCentralGoogle Scholar
  237. Quiñones, M., Al-Massadi, O., Gallego, R., Fernø, J., Diéguez, C., López, M., & Nogueiras, R. (2015). Hypothalamic CaMKKβ mediates glucagon anorectic effect and its diet-induced resistance. Molecular Metabolism, 4(12), 961–970.PubMedPubMedCentralCrossRefGoogle Scholar
  238. Raadsheer, F. C., Sluiter, A. A., Ravid, R., Tilders, F. J. H., & Swaab, D. F. (1993). Localization of corticotropin-releasing hormone (CRH) neurons in the paraventricular nucleus of the human hypothalamus; age-dependent colocalization with vasopressin. Brain Research, 615(1), 50–62.PubMedCrossRefPubMedCentralGoogle Scholar
  239. Rafalski, V. A., Ho, P. P., Brett, J. O., Ucar, D., Dugas, J. C., Pollina, E. A., Chow, L. M. L., Ibrahim, A., Baker, S. J., Barres, B. A., Steinman, L., & Brunet, A. (2013). Expansion of oligodendrocyte progenitor cells following SIRT1 inactivation in the adult brain. Nature Cell Biology, 15(6), 614–624.PubMedPubMedCentralCrossRefGoogle Scholar
  240. Ramadori, G., Lee, C. E., Bookout, A. L., Lee, S., Williams, K. W., Anderson, J., Elmquist, J. K., & Coppari, R. (2008). Brain SIRT1: Anatomical distribution and regulation by energy availability. The Journal of Neuroscience, 28(40), 9989–9996.PubMedPubMedCentralCrossRefGoogle Scholar
  241. Ramadori, G., Fujikawa, T., Fukuda, M., Anderson, J., Morgan, D. A., Mostoslavsky, R., Stuart, R. C., Perello, M., Vianna, C. R., Nillni, E. A., Rahmouni, K., & Coppari, R. (2010). SIRT1 deacetylase in POMC neurons is required for homeostatic defenses against diet-induced obesity. Cell Metabolism, 12(1), 78–87.PubMedPubMedCentralCrossRefGoogle Scholar
  242. Ramadori, G., Fujikawa, T., Anderson, J., Berglund, E. D., Frazao, R., Michán, S., Vianna, C. R., Sinclair, D. A., Elias, C. F., & Coppari, R. (2011). SIRT1 deacetylase in SF1 neurons protects against metabolic imbalance. Cell Metabolism, 14(3), 301–312.PubMedPubMedCentralCrossRefGoogle Scholar
  243. Ramsey, K. M., Yoshino, J., Brace, C. S., Abrassart, D., Kobayashi, Y., Marcheva, B., Hong, H.-K., Chong, J. L., Buhr, E. D., Lee, C., Takahashi, J. S., Imai, S.-I., & Bass, J. (2009). Circadian clock feedback cycle through NAMPT-mediated NAD+ biosynthesis. Science, 324(5927), 651–654.PubMedPubMedCentralCrossRefGoogle Scholar
  244. Rebsamen, M., Pochini, L., Stasyk, T., de Araújo, M. E. G., Galluccio, M., Kandasamy, R. K., Snijder, B., Fauster, A., Rudashevskaya, E. L., Bruckner, M., Scorzoni, S., Filipek, P. A., Huber, K. V. M., Bigenzahn, J. W., Heinz, L. X., Kraft, C., Bennett, K. L., Indiveri, C., Huber, L. A., & Superti-Furga, G. (2015). SLC38A9 is a component of the lysosomal amino acid sensing machinery that controls mTORC1. Nature, 519(7544), 477–481.PubMedPubMedCentralCrossRefGoogle Scholar
  245. Ren, H., Orozco, I. J., Su, Y., Suyama, S., Gutiérrez-Juárez, R., Horvath, T. L., Wardlaw, S. L., Plum, L., Arancio, O., & Accili, D. (2012). FoxO1 target Gpr17 activates AgRP neurons to regulate food intake. Cell, 149(6), 1314–1326.PubMedPubMedCentralCrossRefGoogle Scholar
  246. Revollo, J. R., Grimm, A. A., & Imai, S.-I. (2004). The NAD biosynthesis pathway mediated by nicotinamide phosphoribosyltransferase regulates Sir2 activity in mammalian cells. The Journal of Biological Chemistry, 279(49), 50754–50763.PubMedCrossRefPubMedCentralGoogle Scholar
  247. Rho, J. H., & Swanson, L. W. (1987). Neuroendocrine CRF motoneurons: Intrahypothalamic axon terminals shown with a new retrograde-Lucifer-immuno method. Brain Research, 436(1), 143–147.PubMedCrossRefPubMedCentralGoogle Scholar
  248. Richard, D., Huang, Q., & Timofeeva, E. (2000). The corticotropin-releasing hormone system in the regulation of energy balance in obesity. International Journal of Obesity, 24, S36–S39.PubMedCrossRefPubMedCentralGoogle Scholar
  249. Rivier, J., Rivier, C., Spiess, J., & Vale, W. (1983). High-performance liquid chromatographic purification of peptide hormones: Ovine hypothalamic Amunine (Corticotropin releasing factor)1. In M. T. W. Hearn, F. E. Regnier, & C. T. Wehr (Eds.), High-performance liquid chromatography of proteins and peptides (pp. 233–241). Academic Press. Cambridge, MassachusettsCrossRefGoogle Scholar
  250. Rodgers, J. T., Lerin, C., Haas, W., Gygi, S. P., Spiegelman, B. M., & Puigserver, P. (2005). Nutrient control of glucose homeostasis through a complex of PGC-1alpha and SIRT1. Nature, 434(7029), 113–118.PubMedCrossRefPubMedCentralGoogle Scholar
  251. Ropelle, E. R., Fernandes, M. F. A., Flores, M. B. S., Ueno, M., Rocco, S., Marin, R., Cintra, D. E., Velloso, L. A., Franchini, K. G., Saad, M. J. A., & Carvalheira, J. B. C. (2008). Central exercise action increases the AMPK and mTOR response to leptin. PLoS One, 3(12), e3856.PubMedPubMedCentralCrossRefGoogle Scholar
  252. Roth, S. Y., Denu, J. M., & Allis, C. D. (2001). Histone acetyltransferases. Annual Review of Biochemistry, 70, 81–120.PubMedCrossRefPubMedCentralGoogle Scholar
  253. Rougon, G., Nédélec, J., Malapert, P., Goridis, C., & Chesselet, M. F. (1990). Post-translation modifications of neural cell surface molecules. Acta Histochemica. Supplementband, 38, 51–57.PubMedPubMedCentralGoogle Scholar
  254. Rouillé, Y., Duguay, S. J., Lund, K., Furuta, M., Gong, Q., Lipkind, G., Oliva, A. A., Jr., Chan, S. J., & Steiner, D. F. (1995). Proteolytic processing mechanisms in the biosynthesis of neuroendocrine peptides: The subtilisin-like proprotein convertases. Frontiers in Neuroendocrinology, 16(4), 322–361.PubMedCrossRefGoogle Scholar
  255. Ruan, H.-B., Dietrich, M. O., Liu, Z.-W., Zimmer, M. R., Li, M.-D., Singh, J. P., Zhang, K., Yin, R., Wu, J., Horvath, T. L., & Yang, X. (2014). O-GlcNAc transferase enables AgRP neurons to suppress browning of white fat. Cell, 159(2), 306–317.PubMedPubMedCentralCrossRefGoogle Scholar
  256. Sakamoto, J., Miura, T., Shimamoto, K., & Horio, Y. (2004). Predominant expression of Sir2alpha, an NAD-dependent histone deacetylase, in the embryonic mouse heart and brain. FEBS Letters, 556(1–3), 281–286.PubMedCrossRefGoogle Scholar
  257. Sakurai, T., Amemiya, A., Ishii, M., Matsuzaki, I., Chemelli, R. M., Tanaka, H., Williams, S. C., Richardson, J. A., Kozlowski, G. P., Wilson, S., Arch, J. R., Buckingham, R. E., Haynes, A. C., Carr, S. A., Annan, R. S., McNulty, D. E., Liu, W. S., Terrett, J. A., Elshourbagy, N. A., Bergsma, D. J., & Yanagisawa, M. (1998). Orexins and orexin receptors: A family of hypothalamic neuropeptides and G protein-coupled receptors that regulate feeding behavior. Cell, 92(4), 573–585.PubMedCrossRefGoogle Scholar
  258. Sancak, Y., Thoreen, C. C., Peterson, T. R., Lindquist, R. A., Kang, S. A., Spooner, E., Carr, S. A., & Sabatini, D. M. (2007). PRAS40 is an insulin-regulated inhibitor of the mTORC1 protein kinase. Molecular Cell, 25(6), 903–915.PubMedCrossRefGoogle Scholar
  259. Sancak, Y., Peterson, T. R., Shaul, Y. D., Lindquist, R. A., Thoreen, C. C., Bar-Peled, L., & Sabatini, D. M. (2008). The rag GTPases bind raptor and mediate amino acid signaling to mTORC1. Science, 320(5882), 1496–1501.PubMedPubMedCentralCrossRefGoogle Scholar
  260. Sancak, Y., Bar-Peled, L., Zoncu, R., Markhard, A. L., Nada, S., & Sabatini, D. M. (2010). Ragulator-rag complex targets mTORC1 to the lysosomal surface and is necessary for its activation by amino acids. Cell, 141(2), 290–303.PubMedPubMedCentralCrossRefGoogle Scholar
  261. Sanders, M. J., Grondin, P. O., Hegarty, B. D., Snowden, M. A., & Carling, D. (2007). Investigating the mechanism for AMP activation of the AMP-activated protein kinase cascade. The Biochemical Journal, 403(1), 139–148.PubMedPubMedCentralCrossRefGoogle Scholar
  262. Sarbassov, D. D., Ali, S. M., Kim, D.-H., Guertin, D. A., Latek, R. R., Erdjument-Bromage, H., Tempst, P., & Sabatini, D. M. (2004). Rictor, a novel binding partner of mTOR, defines a rapamycin-insensitive and raptor-independent pathway that regulates the cytoskeleton. Current Biology, 14(14), 1296–1302.PubMedCrossRefGoogle Scholar
  263. Sarbassov, D. D., Guertin, D. A., Ali, S. M., & Sabatini, D. M. (2005). Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex. Science, 307(5712), 1098–1101.PubMedCrossRefGoogle Scholar
  264. Sasaki, T., Maier, B., Koclega, K. D., Chruszcz, M., Gluba, W., Stukenberg, P. T., Minor, W., & Scrable, H. (2008). Phosphorylation regulates SIRT1 function. PLoS One, 3(12), e4020.PubMedPubMedCentralCrossRefGoogle Scholar
  265. Sasaki, T., Kim, H.-J., Kobayashi, M., Kitamura, Y.-I., Yokota-Hashimoto, H., Shiuchi, T., Minokoshi, Y., & Kitamura, T. (2010). Induction of hypothalamic Sirt1 leads to cessation of feeding via agouti-related peptide. Endocrinology, 151(6), 2556–2566.PubMedCrossRefPubMedCentralGoogle Scholar
  266. Sasaki, T., Kikuchi, O., Shimpuku, M., Susanti, V. Y., Yokota-Hashimoto, H., Taguchi, R., Shibusawa, N., Sato, T., Tang, L., Amano, K., Kitazumi, T., Kuroko, M., Fujita, Y., Maruyama, J., Lee, Y.-S., Kobayashi, M., Nakagawa, T., Minokoshi, Y., Harada, A., Yamada, M., & Kitamura, T. (2014). Hypothalamic SIRT1 prevents age-associated weight gain by improving leptin sensitivity in mice. Diabetologia, 57(4), 819–831.PubMedCrossRefPubMedCentralGoogle Scholar
  267. Satoh, A., Brace, C. S., Ben-Josef, G., West, T., Wozniak, D. F., Holtzman, D. M., Herzog, E. D., & Imai, S.-I. (2010). SIRT1 promotes the central adaptive response to diet restriction through activation of the dorsomedial and lateral nuclei of the hypothalamus. The Journal of Neuroscience, 30(30), 10220–10232.PubMedPubMedCentralCrossRefGoogle Scholar
  268. Satoh, A., Brace, C. S., Rensing, N., Cliften, P., Wozniak, D. F., Herzog, E. D., Yamada, K. A., & Imai, S.-I. (2013). Sirt1 extends life span and delays aging in mice through the regulation of Nk2 homeobox 1 in the DMH and LH. Cell Metabolism, 18(3), 416–430.PubMedPubMedCentralCrossRefGoogle Scholar
  269. Saxton, R. A., & Sabatini, D. M. (2017). mTOR signaling in growth, metabolism, and disease. Cell, 168(6), 960–976.PubMedPubMedCentralCrossRefGoogle Scholar
  270. Schafer, M. K., Day, R., Cullinan, W. E., Chretien, M., Seidah, N. G., & Watson, S. J. (1993). Gene expression of prohormone and proprotein convertases in the rat CNS: A comparative in situ hybridization analysis. The Journal of Neuroscience, 13(3), 1258–1279.PubMedCrossRefPubMedCentralGoogle Scholar
  271. Schaner, P., Todd, R. B., Seidah, N. G., & Nillni, E. A. (1997). Processing of prothyrotropin-releasing hormone by the family of prohormone convertases. The Journal of Biological Chemistry, 272(32), 19958–19968.CrossRefPubMedGoogle Scholar
  272. Seidah, N. G., Gaspar, L., & Mion - DNA and cell … P. (1990). cDNA sequence of two distinct pituitary proteins homologous to Kex2 and furin gene products: tissue-specific mRNAs encoding candidates for pro-hormone …. online.liebertpub.com 1990. Available at: http://online.liebertpub.com/doi/abs/10.1089/dna.1990.9.415.
  273. Seidah, N. G., Marcinkiewicz, M., & Benjannet - Molecular … S. (1991). Cloning and primary sequence of a mouse candidate prohormone convertase PC1 homologous to PC2, Furin, and Kex2: distinct chromosomal localization and …. academic.oup.com 1991. Available at: https://academic.oup.com/mend/article-abstract/5/1/111/2714242.
  274. Seidah, N. G., Day, R., Hamelin, J., Gaspar, A., Collard, M. W., & Chrétien, M. (1992). Testicular expression of PC4 in the rat: Molecular diversity of a novel germ cell-specific Kex2/subtilisin-like proprotein convertase. Molecular Endocrinology, 6(10), 1559–1570.PubMedGoogle Scholar
  275. Seidah, N. G., Chrétien, M., & Day, R. (1994). The family of subtilisin/kexin like pro-protein and pro-hormone convertases: Divergent or shared functions. Biochimie, 76(3–4), 197–209.PubMedCrossRefPubMedCentralGoogle Scholar
  276. Seidah, N. G., Hamelin, J., Mamarbachi, M., Dong, W., Tardos, H., Mbikay, M., Chretien, M., & Day, R. (1996). cDNA structure, tissue distribution, and chromosomal localization of rat PC7, a novel mammalian proprotein convertase closest to yeast kexin-like proteinases. Proceedings of the National Academy of Sciences of the United States of America, 93(8), 3388–3393.PubMedPubMedCentralCrossRefGoogle Scholar
  277. Seimon, R. V., Hostland, N., Silveira, S. L., Gibson, A. A., & Sainsbury, A. (2013). Effects of energy restriction on activity of the hypothalamo-pituitary-adrenal axis in obese humans and rodents: Implications for diet-induced changes in body composition. |Hormone Molecular Biology and Clinical Investigation, 15(2), 71–80.PubMedPubMedCentralGoogle Scholar
  278. Seto, E., & Yoshida, M. (2014). Erasers of histone acetylation: The histone deacetylase enzymes. Cold Spring Harbor Perspectives in Biology, 6(4), a018713.PubMedPubMedCentralCrossRefGoogle Scholar
  279. Shah, Z. H., Ahmed, S. U., Ford, J. R., Allison, S. J., Knight, J. R. P., & Milner, J. (2012). A deacetylase-deficient SIRT1 variant opposes full-length SIRT1 in regulating tumor suppressor p53 and governs expression of cancer-related genes. Molecular and Cellular Biology, 32(3), 704–716.PubMedPubMedCentralCrossRefGoogle Scholar
  280. Shimizu, H., Arima, H., Ozawa, Y., Watanabe, M., Banno, R., Sugimura, Y., Ozaki, N., Nagasaki, H., & Oiso, Y. (2010). Glucocorticoids increase NPY gene expression in the arcuate nucleus by inhibiting mTOR signaling in rat hypothalamic organotypic cultures. Peptides, 31(1), 145–149.PubMedCrossRefPubMedCentralGoogle Scholar
  281. Sinclair, D. A., & Guarente, L. (2014). Small-molecule allosteric activators of sirtuins. Annual Review of Pharmacology and Toxicology, 54, 363–380.PubMedCrossRefPubMedCentralGoogle Scholar
  282. Smeekens, S. P., & Steiner, D. F. (1990). Identification of a human insulinoma cDNA encoding a novel mammalian protein structurally related to the yeast dibasic processing protease Kex2. The Journal of Biological Chemistry, 265(6), 2997–3000.PubMedPubMedCentralGoogle Scholar
  283. Smeekens, S. P., Avruch, A. S., LaMendola, J., Chan, S. J., & Steiner, D. F. (1991). Identification of a cDNA encoding a second putative prohormone convertase related to PC2 in AtT20 cells and islets of Langerhans. Proceedings of the National Academy of Sciences of the United States of America, 88(2), 340–344.PubMedPubMedCentralCrossRefGoogle Scholar
  284. Smeekens, S. P., Montag, A. G., Thomas, G., Albiges-Rizo, C., Carroll, R., Benig, M., Phillips, L. A., Martin, S., Ohagi, S., & Gardner, P. (1992). Proinsulin processing by the subtilisin-related proprotein convertases furin, PC2, and PC3. Proceedings of the National Academy of Sciences of the United States of America, 89(18), 8822–8826.PubMedPubMedCentralCrossRefGoogle Scholar
  285. Smith, T. L., & Rutter, J. (2007). Regulation of glucose partitioning by PAS kinase and Ugp1 phosphorylation. Molecular Cell, 26(4), 491–499.PubMedCrossRefPubMedCentralGoogle Scholar
  286. Sohn, J.-W., Oh, Y., Kim, K. W., Lee, S., Williams, K. W., & Elmquist, J. K. (2016). Leptin and insulin engage specific PI3K subunits in hypothalamic SF1 neurons. Molecular Metabolism, 5(8), 669–679.PubMedPubMedCentralCrossRefGoogle Scholar
  287. Solomon, S. (1999). POMC-derived peptides and their biological action. Annals of the New York Academy of Sciences, 885, 22–40.PubMedCrossRefGoogle Scholar
  288. Sominsky, L., & Spencer, S. J. (2014). Eating behavior and stress: A pathway to obesity. Frontiers in Psychology, 5, 434.PubMedPubMedCentralCrossRefGoogle Scholar
  289. Spencer, S. J., & Tilbrook, A. (2011). The glucocorticoid contribution to obesity. Stress, 14(3), 233–246.PubMedCrossRefGoogle Scholar
  290. Starheim, K. K., Gevaert, K., & Arnesen, T. (2012). Protein N-terminal acetyltransferases: When the start matters. Trends in Biochemical Sciences, 37(4), 152–161.PubMedCrossRefPubMedCentralGoogle Scholar
  291. Steinberg, G. R., Watt, M. J., Fam, B. C., Proietto, J., Andrikopoulos, S., Allen, A. M., Febbraio, M. A., & Kemp, B. E. (2006). Ciliary neurotrophic factor suppresses hypothalamic AMP-kinase signaling in leptin-resistant obese mice. Endocrinology, 147(8), 3906–3914.PubMedCrossRefPubMedCentralGoogle Scholar
  292. Steiner, D. F. (1998). The proprotein convertases. Current Opinion in Chemical Biology, 2(1), 31–39.PubMedCrossRefPubMedCentralGoogle Scholar
  293. Steiner, D. F., Smeekens, S. P., Ohagi, S., & Chan, S. J. (1992). The new enzymology of precursor processing endoproteases. The Journal of Biological Chemistry, 267(33), 23435–23438.PubMedPubMedCentralGoogle Scholar
  294. Stevanovic, D., Trajkovic, V., Müller-Lühlhoff, S., Brandt, E., Abplanalp, W., Bumke-Vogt, C., Liehl, B., Wiedmer, P., Janjetovic, K., Starcevic, V., Pfeiffer, A. F. H., Al-Hasani, H., Tschöp, M. H., & Castañeda, T. R. (2013). Ghrelin-induced food intake and adiposity depend on central mTORC1/S6K1 signaling. Molecular and Cellular Endocrinology, 381(1–2), 280–290.PubMedCrossRefPubMedCentralGoogle Scholar
  295. Stoppa, G. R., Cesquini, M., Roman, E. A., Prada, P. O., Torsoni, A. S., Romanatto, T., Saad, M. J., Velloso, L. A., & Torsoni, M. A. (2008). Intracerebroventricular injection of citrate inhibits hypothalamic AMPK and modulates feeding behavior and peripheral insulin signaling. The Journal of Endocrinology, 198(1), 157–168.PubMedCrossRefPubMedCentralGoogle Scholar
  296. Sullivan, J. E., Brocklehurst, K. J., Marley, A. E., Carey, F., Carling, D., & Beri, R. K. (1994). Inhibition of lipolysis and lipogenesis in isolated rat adipocytes with AICAR, a cell-permeable activator of AMP-activated protein kinase. FEBS Letters, 353(1), 33–36.PubMedCrossRefPubMedCentralGoogle Scholar
  297. Susanti, V. Y., Sasaki, T., Yokota-Hashimoto, H., Matsui, S., Lee, Y.-S., Kikuchi, O., Shimpuku, M., Kim, H.-J., Kobayashi, M., & Kitamura, T. (2014). Sirt1 rescues the obesity induced by insulin-resistant constitutively-nuclear FoxO1 in POMC neurons of male mice. Obesity, 22(10), 2115–2119.PubMedCrossRefPubMedCentralGoogle Scholar
  298. Suter, M., Riek, U., Tuerk, R., Schlattner, U., Wallimann, T., & Neumann, D. (2006). Dissecting the role of 5’-AMP for allosteric stimulation, activation, and deactivation of AMP-activated protein kinase. The Journal of Biological Chemistry, 281(43), 32207–32216.PubMedCrossRefPubMedCentralGoogle Scholar
  299. Taleux, N., De Potter, I., Deransart, C., Lacraz, G., Favier, R., Leverve, X. M., Hue, L., & Guigas, B. (2008). Lack of starvation-induced activation of AMP-activated protein kinase in the hypothalamus of the Lou/C rats resistant to obesity. International Journal of Obesity, 32(4), 639–647.PubMedCrossRefPubMedCentralGoogle Scholar
  300. Tan, M., Peng, C., Anderson, K. A., Chhoy, P., Xie, Z., Dai, L., Park, J., Chen, Y., Huang, H., Zhang, Y., Ro, J., Wagner, G. R., Green, M. F., Madsen, A. S., Schmiesing, J., Peterson, B. S., Xu, G., Ilkayeva, O. R., Muehlbauer, M. J., Braulke, T., Mühlhausen, C., Backos, D. S., Olsen, C. A., McGuire, P. J., Pletcher, S. D., Lombard, D. B., Hirschey, M. D., & Zhao, Y. (2014). Lysine glutarylation is a protein posttranslational modification regulated by SIRT5. Cell Metabolism, 19(4), 605–617.PubMedPubMedCentralCrossRefGoogle Scholar
  301. Tanida, M., Yamamoto, N., Shibamoto, T., & Rahmouni, K. (2013). Involvement of hypothalamic AMP-activated protein kinase in leptin-induced sympathetic nerve activation. PLoS One, 8(2), e56660.PubMedPubMedCentralCrossRefGoogle Scholar
  302. Tanida, M., Yamamoto, N., Morgan, D. A., Kurata, Y., Shibamoto, T., & Rahmouni, K. (2015). Leptin receptor signaling in the hypothalamus regulates hepatic autonomic nerve activity via phosphatidylinositol 3-kinase and AMP-activated protein kinase. The Journal of Neuroscience, 35(2), 474–484.PubMedPubMedCentralCrossRefGoogle Scholar
  303. Tanno, M., Sakamoto, J., Miura, T., Shimamoto, K., & Horio, Y. (2007). Nucleocytoplasmic shuttling of the NAD+−dependent histone deacetylase SIRT1. The Journal of Biological Chemistry, 282(9), 6823–6832.PubMedCrossRefPubMedCentralGoogle Scholar
  304. Tataranni, P. A., Larson, D. E., Snitker, S., Young, J. B., Flatt, J. P., & Ravussin, E. (1996). Effects of glucocorticoids on energy metabolism and food intake in humans. The American Journal of Physiology, 271(2 Pt 1), E317–E325.PubMedPubMedCentralGoogle Scholar
  305. Thomas, L., Leduc, R., & Thorne - Proceedings of the … BA. (1991). Kex2-like endoproteases PC2 and PC3 accurately cleave a model prohormone in mammalian cells: evidence for a common core of neuroendocrine processing …. National Acad Sciences 1991. Available at: http://www.pnas.org/content/88/12/5297.short.
  306. Tong, L., & Denu, J. M. (2010). Function and metabolism of sirtuin metabolite O-acetyl-ADP-ribose. Biochimica et Biophysica Acta, 1804(8), 1617–1625.PubMedPubMedCentralCrossRefGoogle Scholar
  307. Toorie, A. M., & Nillni, E. A. (2014). Minireview: Central Sirt1 regulates energy balance via the melanocortin system and alternate pathways. Molecular Endocrinology, 28(9), 1423–1434.PubMedPubMedCentralCrossRefGoogle Scholar
  308. Toorie, A. M., Cyr, N. E., Steger, J. S., Beckman, R., Farah, G., & Nillni, E. A. (2016). The nutrient and energy sensor Sirt1 regulates the hypothalamic-pituitary-adrenal (HPA) Axis by altering the production of the prohormone convertase 2 (PC2) essential in the maturation of Corticotropin-releasing hormone (CRH) from its prohormone in male rats. The Journal of Biological Chemistry, 291(11), 5844–5859.PubMedPubMedCentralCrossRefGoogle Scholar
  309. Toriya, M., Maekawa, F., Maejima, Y., Onaka, T., Fujiwara, K., Nakagawa, T., Nakata, M., & Yada, T. (2010). Long-term infusion of brain-derived neurotrophic factor reduces food intake and body weight via a corticotrophin-releasing hormone pathway in the paraventricular nucleus of the hypothalamus. Journal of Neuroendocrinology, 22(9), 987–995.PubMedCrossRefPubMedCentralGoogle Scholar
  310. Vale, W., Spiess, J., Rivier, C., & Rivier, J. (1981a). Characterization of a 41-residue ovine hypothalamic peptide that stimulates secretion of corticotropin and beta-endorphin. Science, 213(4514), 1394–1397.PubMedCrossRefPubMedCentralGoogle Scholar
  311. Vale, W., Spiess, J., Rivier, C., & Rivier, J. (1981b). Characterization of a 41-residue ovine hypothalamic peptide that stimulates secretion of Corticotropin and β-endorphin. Science, 213(4514), 1394–1397.PubMedCrossRefPubMedCentralGoogle Scholar
  312. Vander Haar, E., Lee, S.-I., Bandhakavi, S., Griffin, T. J., & Kim, D.-H. (2007). Insulin signalling to mTOR mediated by the Akt/PKB substrate PRAS40. Nature Cell Biology, 9(3), 316–323.PubMedCrossRefPubMedCentralGoogle Scholar
  313. Varela, L., Martínez-Sánchez, N., Gallego, R., Vázquez, M. J., Roa, J., Gándara, M., Schoenmakers, E., Nogueiras, R., Chatterjee, K., Tena-Sempere, M., Diéguez, C., & López, M. (2012). Hypothalamic mTOR pathway mediates thyroid hormone-induced hyperphagia in hyperthyroidism. The Journal of Pathology, 227(2), 209–222.PubMedCrossRefPubMedCentralGoogle Scholar
  314. Velásquez, D. A., Martínez, G., Romero, A., Vázquez, M. J., Boit, K. D., Dopeso-Reyes, I. G., López, M., Vidal, A., Nogueiras, R., & Diéguez, C. (2011). The central Sirtuin 1/p53 pathway is essential for the orexigenic action of ghrelin. Diabetes, 60(4), 1177–1185.PubMedPubMedCentralCrossRefGoogle Scholar
  315. Veo, K., Reinick, C., Liang, L., Moser, E., Angleson, J. K., & Dores, R. M. (2011). Observations on the ligand selectivity of the melanocortin 2 receptor. General and Comparative Endocrinology, 172(1), 3–9.PubMedCrossRefPubMedCentralGoogle Scholar
  316. Villanueva, E. C., Münzberg, H., Cota, D., Leshan, R. L., Kopp, K., Ishida-Takahashi, R., Jones, J. C., Fingar, D. C., Seeley, R. J., & Myers, M. G., Jr. (2009). Complex regulation of mammalian target of rapamycin complex 1 in the basomedial hypothalamus by leptin and nutritional status. Endocrinology, 150(10), 4541–4551.PubMedPubMedCentralCrossRefGoogle Scholar
  317. Villeneuve, P., Seidah, N. G., & Beaudet, A. (2000). Immunohistochemical evidence for the implication of PCI in the processing of proneurotensin in rat brain. Neuroreport, 11(16), 3443.PubMedCrossRefPubMedCentralGoogle Scholar
  318. Wang, R., Cherukuri, P., & Luo, J. (2005). Activation of Stat3 sequence-specific DNA binding and transcription by p300/CREB-binding protein-mediated acetylation. The Journal of Biological Chemistry, 280(12), 11528–11534.PubMedCrossRefPubMedCentralGoogle Scholar
  319. Wang, L., Harris, T. E., Roth, R. A., & Lawrence, J. C., Jr. (2007). PRAS40 regulates mTORC1 kinase activity by functioning as a direct inhibitor of substrate binding. The Journal of Biological Chemistry, 282(27), 20036–20044.PubMedCrossRefPubMedCentralGoogle Scholar
  320. Wang, S., Tsun, Z.-Y., Wolfson, R. L., Shen, K., Wyant, G. A., Plovanich, M. E., Yuan, E. D., Jones, T. D., Chantranupong, L., Comb, W., Wang, T., Bar-Peled, L., Zoncu, R., Straub, C., Kim, C., Park, J., Sabatini, B. L., & Sabatini, D. M. (2015). Metabolism. Lysosomal amino acid transporter SLC38A9 signals arginine sufficiency to mTORC1. Science, 347(6218), 188–194.PubMedPubMedCentralCrossRefGoogle Scholar
  321. Wardlaw, S. L. (2011). Hypothalamic proopiomelanocortin processing and the regulation of energy balance. European Journal of Pharmacology, 660(1), 213–219.PubMedPubMedCentralCrossRefGoogle Scholar
  322. Wellen, K. E., Hatzivassiliou, G., Sachdeva, U. M., Bui, T. V., Cross, J. R., & Thompson, C. B. (2009). ATP-citrate lyase links cellular metabolism to histone acetylation. Science, 324(5930), 1076–1080.PubMedPubMedCentralCrossRefGoogle Scholar
  323. Westphal, C. H., Muller, L., Zhou, A., Zhu, X., Bonner-Weir, S., Schambelan, M., Steiner, D. F., Lindberg, I., & Leder, P. (1999). The neuroendocrine protein 7B2 is required for peptide hormone processing in vivo and provides a novel mechanism for pituitary Cushing’s disease. Cell, 96(5), 689–700.PubMedCrossRefPubMedCentralGoogle Scholar
  324. Williams, G., Bing, C., Cai, X. J., Harrold, J. A., King, P. J., & Liu, X. H. (2001). The hypothalamus and the control of energy homeostasis: Different circuits, different purposes. Physiology & Behavior, 74(4–5), 683–701.CrossRefGoogle Scholar
  325. Williams, K. W., Sohn, J.-W., Donato, J., Jr., Lee, C. E., Zhao, J. J., Elmquist, J. K., & Elias, C. F. (2011). The acute effects of leptin require PI3K signaling in the hypothalamic ventral premammillary nucleus. The Journal of Neuroscience, 31(37), 13147–13156.PubMedPubMedCentralCrossRefGoogle Scholar
  326. Winder, W. W., & Hardie, D. G. (1996). Inactivation of acetyl-CoA carboxylase and activation of AMP-activated protein kinase in muscle during exercise. The American Journal of Physiology, 270(2 Pt 1), E299–E304.PubMedPubMedCentralGoogle Scholar
  327. Winsky-Sommerer, R., Benjannet, S., Rovère, C., Barbero, P., Seidah, N. G., Epelbaum, J., & Dournaud, P. (2000). Regional and cellular localization of the neuroendocrine prohormone convertases PC1 and PC2 in the rat central nervous system. The Journal of Comparative Neurology, 424(3), 439–460.PubMedCrossRefPubMedCentralGoogle Scholar
  328. Witters, L. A., Nordlund, A. C., & Marshall, L. (1991). Regulation of intracellular acetyl-CoA carboxylase by ATP depletors mimics the action of the 5’-AMP-activated protein kinase. Biochemical and Biophysical Research Communications, 181(3), 1486–1492.PubMedCrossRefPubMedCentralGoogle Scholar
  329. Wittmann, G., Lechan, R. M., Liposits, Z., & Fekete, C. (2005). Glutamatergic innervation of corticotropin-releasing hormone- and thyrotropin-releasing hormone-synthesizing neurons in the hypothalamic paraventricular nucleus of the rat. Brain Research, 1039(1–2), 53–62.PubMedCrossRefPubMedCentralGoogle Scholar
  330. Woods, A., Dickerson, K., Heath, R., Hong, S.-P., Momcilovic, M., Johnstone, S. R., Carlson, M., & Carling, D. (2005). Ca2+/calmodulin-dependent protein kinase kinase-beta acts upstream of AMP-activated protein kinase in mammalian cells. Cell Metabolism, 2(1), 21–33.PubMedCrossRefPubMedCentralGoogle Scholar
  331. Wu, D., Qiu, Y., Gao, X., Yuan, X.-B., & Zhai, Q. (2011). Overexpression of SIRT1 in mouse forebrain impairs lipid/glucose metabolism and motor function. PLoS One, 6(6), e21759.PubMedPubMedCentralCrossRefGoogle Scholar
  332. Wu, N., Zheng, B., Shaywitz, A., Dagon, Y., Tower, C., Bellinger, G., Shen, C.-H., Wen, J., Asara, J., McGraw, T. E., Kahn, B. B., & Cantley, L. C. (2013a). AMPK-dependent degradation of TXNIP upon energy stress leads to enhanced glucose uptake via GLUT1. Molecular Cell, 49(6), 1167–1175.PubMedPubMedCentralCrossRefGoogle Scholar
  333. Wu, W.-N., Wu, P.-F., Zhou, J., Guan, X.-L., Zhang, Z., Yang, Y.-J., Long, L.-H., Xie, N., Chen, J.-G., & Wang, F. (2013b). Orexin-a activates hypothalamic AMP-activated protein kinase signaling through a Ca2+−dependent mechanism involving voltage-gated L-type calcium channel. Molecular Pharmacology, 84(6), 876–887.PubMedCrossRefPubMedCentralGoogle Scholar
  334. Xia, N., Strand, S., Schlufter, F., Siuda, D., Reifenberg, G., Kleinert, H., Förstermann, U., & Li, H. (2013). Role of SIRT1 and FOXO factors in eNOS transcriptional activation by resveratrol. Nitric Oxide, 32, 29–35.PubMedCrossRefPubMedCentralGoogle Scholar
  335. Xiao, B., Sanders, M. J., Underwood, E., Heath, R., Mayer, F. V., Carmena, D., Jing, C., Walker, P. A., Eccleston, J. F., Haire, L. F., Saiu, P., Howell, S. A., Aasland, R., Martin, S. R., Carling, D., & Gamblin, S. J. (2011). Structure of mammalian AMPK and its regulation by ADP. Nature, 472(7342), 230–233.PubMedPubMedCentralCrossRefGoogle Scholar
  336. Xin, X., Varlamov, O., Day, R., Dong, W., Bridgett, M. M., Leiter, E. H., & Fricker, L. D. (1997). Cloning and sequence analysis of cDNA encoding rat carboxypeptidase D. DNA and Cell Biology, 16(7), 897–909.PubMedCrossRefPubMedCentralGoogle Scholar
  337. Xiong, S., Salazar, G., Patrushev, N., & Alexander, R. W. (2011). FoxO1 mediates an autofeedback loop regulating SIRT1 expression. The Journal of Biological Chemistry, 286(7), 5289–5299.PubMedCrossRefPubMedCentralGoogle Scholar
  338. Xu, Y., Elmquist, J. K., & Fukuda, M. (2011). Central nervous control of energy and glucose balance: Focus on the central melanocortin system. Annals of the New York Academy of Sciences, 1243, 1–14.PubMedPubMedCentralCrossRefGoogle Scholar
  339. Yamada, E., Pessin, J. E., Kurland, I. J., Schwartz, G. J., & Bastie, C. C. (2010). Fyn-dependent regulation of energy expenditure and body weight is mediated by tyrosine phosphorylation of LKB1. Cell Metabolism, 11(2), 113–124.PubMedPubMedCentralCrossRefGoogle Scholar
  340. Yamada, E., Okada, S., Bastie, C. C., Vatish, M., Nakajima, Y., Shibusawa, R., Ozawa, A., Pessin, J. E., & Yamada, M. (2016). Fyn phosphorylates AMPK to inhibit AMPK activity and AMP-dependent activation of autophagy. Oncotarget, 7(46), 74612–74629.PubMedPubMedCentralCrossRefGoogle Scholar
  341. Yang, X., & Qian, K. (2017). Protein O-GlcNAcylation: Emerging mechanisms and functions. Nature Reviews. Molecular Cell Biology, 18(7), 452–465.PubMedPubMedCentralCrossRefGoogle Scholar
  342. Yang, G., Lim, C.-Y., Li, C., Xiao, X., Radda, G. K., Li, C., Cao, X., & Han, W. (2009). FoxO1 inhibits leptin regulation of pro-opiomelanocortin promoter activity by blocking STAT3 interaction with specificity protein 1. The Journal of Biological Chemistry, 284(6), 3719–3727.PubMedCrossRefPubMedCentralGoogle Scholar
  343. Yang, C. S., Lam, C. K. L., Chari, M., Cheung, G. W. C., Kokorovic, A., Gao, S., Leclerc, I., Rutter, G. A., & Lam, T. K. T. (2010). Hypothalamic AMP-activated protein kinase regulates glucose production. Diabetes, 59(10), 2435–2443.PubMedPubMedCentralCrossRefGoogle Scholar
  344. Yang, S.-B., Tien, A.-C., Boddupalli, G., Xu, A. W., Jan, Y. N., & Jan, L. Y. (2012). Rapamycin ameliorates age-dependent obesity associated with increased mTOR signaling in hypothalamic POMC neurons. Neuron, 75(3), 425–436.PubMedPubMedCentralCrossRefGoogle Scholar
  345. Yuan, Z.-L., Guan, Y.-J., Chatterjee, D., & Chin, Y. E. (2005). Stat3 dimerization regulated by reversible acetylation of a single lysine residue. Science, 307(5707), 269–273.PubMedCrossRefPubMedCentralGoogle Scholar
  346. Yuan, M., Pino, E., Wu, L., Kacergis, M., & Soukas, A. A. (2012). Identification of Akt-independent regulation of hepatic lipogenesis by mammalian target of rapamycin (mTOR) complex 2. The Journal of Biological Chemistry, 287(35), 29579–29588.PubMedPubMedCentralCrossRefGoogle Scholar
  347. Zakhary, S. M., Ayubcha, D., Dileo, J. N., Jose, R., Leheste, J. R., Horowitz, J. M., & Torres, G. (2010). Distribution analysis of deacetylase SIRT1 in rodent and human nervous systems. The Anatomical Record, 293(6), 1024–1032.PubMedCrossRefPubMedCentralGoogle Scholar
  348. Zhang, T., Berrocal, J. G., Frizzell, K. M., Gamble, M. J., DuMond, M. E., Krishnakumar, R., Yang, T., Sauve, A. A., & Kraus, W. L. (2009). Enzymes in the NAD+ salvage pathway regulate SIRT1 activity at target gene promoters. The Journal of Biological Chemistry, 284(30), 20408–20417.PubMedPubMedCentralCrossRefGoogle Scholar
  349. Zhao, M., & Klionsky, D. J. (2011). AMPK-dependent phosphorylation of ULK1 induces autophagy. Cell Metabolism, 13(2), 119–120.PubMedPubMedCentralCrossRefGoogle Scholar
  350. Zhu, X., Zhou, A., Dey, A., Norrbom, C., Carroll, R., Zhang, C., Laurent, V., Lindberg, I., Ugleholdt, R., Holst, J. J., & Steiner, D. F. (2002). Disruption of PC1/3 expression in mice causes dwarfism and multiple neuroendocrine peptide processing defects. Proceedings of the National Academy of Sciences of the United States of America, 99(16), 10293–10298.PubMedPubMedCentralCrossRefGoogle Scholar
  351. Ziegler, C. G., Krug, A. W., Zouboulis, C. C., & Bornstein, S. R. (2007). Corticotropin releasing hormone and its function in the skin. Hormone and Metabolic Research, 39(2), 106–109.PubMedCrossRefPubMedCentralGoogle Scholar
  352. Zoncu, R., Bar-Peled, L., Efeyan, A., Wang, S., Sancak, Y., & Sabatini, D. M. (2011). mTORC1 senses lysosomal amino acids through an inside-out mechanism that requires the vacuolar H(+)-ATPase. Science, 334(6056), 678–683.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Life Sciences Institute and Department of Molecular and Integrative PhysiologyUniversity of MichiganAnn ArborUSA
  2. 2.Emeritus Professor of Medicine, Molecular Biology, Cell Biology & Biochemistry, Department of Medicine, Molecular Biology, Cell Biology & BiochemistryThe Warren Alpert Medical School of Brown UniversityProvidenceUSA

Personalised recommendations