The Cell Biology Neuropeptide Hormones

  • Eduardo A. NillniEmail author


To understand peptide hormone biosynthesis and their action at a distant target cell, we need first to comprehend the cell biology of these molecules, their origin, and the mechanism by which they became biologically active. Today we know that all peptide hormones and many nonhormonal proteins derived from larger inactive precursor proteins, which are posttranslationally modified to produce an array of different peptides with specific biological function and secretion patterns. The biosynthesis of neuropeptide hormones from their larger inactive precursor proteins and their traffic to the regulated secretory pathway (RSP) for cellular release is one of the paramount cellular processes in hormone action. In early times of peptide discovery, the “peptidergic neuron” name was reserved for those neurosecretory cells within the hypothalamus that released oxytocin and vasopressin directly into the circulation from their nerve terminals in the posterior pituitary. The idea of neurosecretion in the hypothalamus can be traced back to the work of Scharrer and Scharrer (Scharrer and Scharrer 1940) as early as the late 1920s. Later work by Harris and colleagues specified that the hypothalamic substances secreted into the portal vessels were pituitary specific and led to the concept of “releasing factors” whose purpose was to initiate a cascade of events resulting in the release of peripherally active hormones (Fink 1976). The discovery and chemical characterization of the first identified hypothalamic releasing factor, thyrotropin-releasing hormone (pyroGlu-His-ProNH2, also known as thyroliberin, and herein referred to as TRH), by Guillemin and colleagues (Burgus et al. 1969) and Schally and colleagues (Boler et al. 1969) provided ultimate confirmation for the founding principles of neuroendocrinology which resulted later in the discovery of other releasing factor peptides (Guillemin 1978; Schally 1978). Recent progress over the last decades in genetics and molecular biology provided considerable information about the expression of brain neuropeptide hormone genes and their tissue-specific regulation. From multiple studies conducted in many laboratories including ours, it has become clear that neuropeptides acting as neurotransmitters or hormones play a significant modulatory roles in the control of the central nervous system and neuroendocrine function. Even more remarkable was the discovery that multiple neuropeptides derived from posttranslational processing of its single gene- polypeptide precursor has distinct physiological functions (Nillni and Sevarino 1999; Eipper and Mains 1980; Nillni et al. 1996; Liston et al. 1984; Hall and Stewart 1983; Nillni 2007, 2010; Wardlaw 2011). Therefore, to fully understand the biology of neuropeptide hormones controlling energy balance, it is essential to uncover the mechanisms by which a specific prohormone is posttranslationally modified to its active form under normal and pathological conditions, a process that happens in a tissue-specific manner. This topic will be discussed in this chapter putting emphasis on three prohormones, pro-thyrotropin-releasing hormone (pro-TRH), pro-opiomelanocortin (POMC), and pro-corticotropin-releasing hormone (pro-CRH).


  1. Aguilera, G., Subburaju, S., Young, S., & Chen, J. (2008). The parvocellular vasopressinergic system and responsiveness of the hypothalamic pituitary adrenal axis during chronic stress. Progress in Brain Research, 170, 29–39.
  2. Arvan, P., & Castle, D. (1998). Sorting and storage during secretory granule biogenesis: Looking backward and looking forward. The Biochemical Journal, 15, 593–610.PubMedPubMedCentralCrossRefGoogle Scholar
  3. Ayoubi, T. A., & Van De Ven, W. J. (1996). Regulation of gene expression by alternative promoters. The FASEB Journal, 10, 453–460.PubMedCrossRefGoogle Scholar
  4. Bacova, Z., Najvirtova, M., Krizanova, O., Hudecova, S., Zorad, S., Strbak, V., & Benicky, J. (2005). Effect of neonatal streptozotocin and thyrotropin-releasing hormone treatments on insulin secretion in adult rats. General Physiology and Biophysics, 24, 181–197.Google Scholar
  5. Barnea, A., Cho, G., & Porter, J. C. (1982). A reduction in the concentration of immunoreactive corticotropin, melanotropin and lipotropin in the brain of the aging rat. Brain Research, 232, 345–353.PubMedCrossRefGoogle Scholar
  6. Benjannet, S., Rondeau, N., Day, R., Chretien, M., & Seidah, N. G. (1991). PC1 and PC2 are proprotein convertases capable of cleaving proopiomelanocortin at distinct pairs of basic residues. Proceedings of the National Academy of Sciences of the United States of America, 88, 3564–3568.CrossRefGoogle Scholar
  7. Bertagna, X., Lenne, F., Comar, D., Massias, J. F., Wajcman, H., Baudin, V., Luton, J. P., & Girard, F. (1986). Human beta-melanocyte-stimulating hormone revisited. Proceedings of the National Academy of Sciences of the United States of America, 83, 9719–9723.CrossRefGoogle Scholar
  8. Bertagna, X., Camus, F., Lenne, F., Girard, F., & Luton, J. P. (1988). Human joining peptide: A proopiomelanocortin product secreted as a homodimer. Molecular Endocrinology, 2, 1108–1114.PubMedCrossRefGoogle Scholar
  9. Bianco, A. C., Sheng, X. Y., & Silva, J. E. (1988). Triiodothyronine amplifies norepinephrine stimulation of uncoupling protein gene transcription by a mechanism not requiring protein synthesis. The Journal of Biological Chemistry, 263, 18168–18175.Google Scholar
  10. Biebermann H, Castañeda TR, van Landeghem F, von Deimling A, Escher F, Brabant G, Hebebrand J, Hinney A, Tschöp MH, Grüters A, Krude H (2006) Cell Metab 3(2):141–146. PMID:16459315.Google Scholar
  11. Boler, J., Enzmann, F., Folkers, K., Bowers, Y., & Shally, V. (1969). The identity of chemical and hormonal properties of the thyrotropin releasing hormone and pyro-glutamyl-histidil-proline amide. Biochemical and Biophysical Research Communications, 705.PubMedCrossRefGoogle Scholar
  12. Bonnemaison, M. L., Eipper, B. A., & Mains, R. E. (2013). Role of adaptor proteins in secretory granule biogenesis and maturation. Frontiers in Endocrinology, 4, 101.
  13. Brakch, N., Cohen, P., & Boileau, G. (1994). Processing of human prosomatostatin in AtT-20 cells: S-28 and S-14 are generated in different secretory pathways. Biochemical and Biophysical Research Communications, 205, 221–229.PubMedCrossRefGoogle Scholar
  14. Brakch, N., Galanopoulou, A. S., Patel, Y. C., Boileau, G., & Seidah, N. G. (1995). Comparative proteolytic processing of rat prosomatostatin by the convertases PC1, PC2, furin, PACE4, and PC5 in constitutive and regulated secretory pathways. FEBS Letters, 362, 143–146.PubMedPubMedCentralCrossRefGoogle Scholar
  15. Brar, B., Sanderson, T., Wang, N., & Lowry, P. J. (1997). Post-translational processing of human procorticotrophin-releasing factor in transfected mouse neuroblastoma and Chinese hamster ovary cell lines. The Journal of Endocrinology, 154, 431–440PubMedCrossRefGoogle Scholar
  16. Brechler, V., Chu, W. N., Baxter, J. D., Thibault, G., & Reudelhuber, T. L. (1996). The Journal of Biological Chemistry , 271(34), 20636–20640..PubMedCrossRefGoogle Scholar
  17. Breslin, M. B., Lindberg, I., Benjannet, S., Mathis, J. P., Lazure, C., & Seidah, N. G. (1993). Differential processing of proenkephalin by prohormone convertases 1(3) and 2 and furin. The Journal of Biological Chemistry, 268, 27084–27093.Google Scholar
  18. Burgess, T. L., & Kelly, R. B. (1987). Constitutive and regulated secretion of proteins. Annual Review of Cell Biology, 3, 243–293. Scholar
  19. Burgess, T. L., Craik, C. S., Matsuuchi, L., & Kelly, R. B. (1987). In vitro mutagenesis of trypsinogen: Role of the amino terminus in intracellular protein targeting to secretory granules. The Journal of Cell Biology, 105, 659–668.PubMedCrossRefGoogle Scholar
  20. Burgus, R., Dunn, T. F., Desiderio, D., Vale, W., & Guillemin, R. (1969). Derives polypeptidiques de syntheses doues d’activite hypophysiotropic. Nouvelles observations. Comptes Rendus. Académie des Sciences, 1870.Google Scholar
  21. Castro, M., Lowenstein, P., Glynn, B., Hannah, M., Linton, E., & Lowry, P. (1991). Post-translational processing and regulated release of corticotropin-releasing hormone (CRH) in AtT20 cells expressing the human proCRH gene. Biochemical Society Transactions, 19, 246S.PubMedCrossRefGoogle Scholar
  22. Cawley, N. X., Li, Z., & Loh, Y. P. (2016a). 60 YEARS OF POMC: Biosynthesis, trafficking, and secretion of pro-opiomelanocortin-derived peptides. Journal of Molecular Endocrinology, T77–T97. Scholar
  23. Cawley, N. X., Rathod, T., Young, S., Lou, H., Birch, N., & Loh, Y. P. (2016b). Carboxypeptidase E and Secretogranin III coordinately facilitate efficient sorting of proopiomelanocortin to the regulated secretory pathway in AtT20 cells. Molecular Endocrinology, 37–47. Scholar
  24. Challis, B. G., Pritchard, L. E., Creemers, J. W., Delplanque, J., Keogh, J. M., Luan, J., Wareham, N. J., Yeo, G. S., Bhattacharyya, S., Froguel, P., White, A., Farooqi, I. S., & O'Rahilly, S. (2002). A missense mutation disrupting a dibasic prohormone processing site in pro-opiomelanocortin (POMC) increases susceptibility to early-onset obesity through a novel molecular mechanism. Human Molecular Genetics, 11, 1997–2004.PubMedCrossRefGoogle Scholar
  25. Chanat, E. (1993). Mechanism of sorting of secretory proteins and formation of secretory granules in neuroendocrine cells. Comptes Rendus des Seances de la Societe de Biologie et de Ses Filiales, 187, 697–725.Google Scholar
  26. Chretien, M. (2011). The prohormone theory and the proprotein convertases: It is all about serendipity. Methods in Molecular Biology, 13–19.
  27. Chretien, M., & Li, C. H. (1967). Isolation, purification, and characterization of gamma-lipotropic hormone from sheep pituitary glands. Canadian Journal of Biochemistry, 45, 1163.PubMedCrossRefGoogle Scholar
  28. Chretien, M., Benjannet, S., & Gossard, F. (1979). From beta-lipotropin to beta-endorphin and ‘proopiomelanocortin’. Canadian Journal of Biochemistry, 57, 1111–1121.PubMedCrossRefGoogle Scholar
  29. Chrousos, G. P. (1995). The hypothalamic-pituitary-adrenal axis and immune-mediated inflammation. The New England Journal of Medicine, 1351–1362. Scholar
  30. Chun, J. Y., Korner, J., Kreiner, T., Scheller, R. H., & Axel, R. (1994). The function and differential sorting of a family of Aplysia prohormone processing enzymes. Neuron, 831–834.PubMedCrossRefGoogle Scholar
  31. Cone, R. D., Lu, D., Koppula, S., Vage, D. I., Klungland, H., Boston, B., Chen, W., Orth, D. N., Pouton, C., & Kesterson, R. A. (1996). The melanocortin receptors: Agonists, antagonists, and the hormonal control of pigmentation. Recent Progress in Hormone Research, 287–317. discussion 318.Google Scholar
  32. Constam, D. B., Calfon, M., & Robertson, E. J. (1996). SPC4, SPC6 and the novel protease SPC7 are coexpressed with bone morphogenic proteins at distinct sites during embryogenesis. The Journal of Cell Biology, 181–191.PubMedPubMedCentralCrossRefGoogle Scholar
  33. Cool, D. R., & Loh, Y. P. (1998). Carboxypeptidase E is a sorting receptor for prohormones: Binding and kinetic studies. Molecular and Cellular Endocrinology, 7–13.PubMedCrossRefGoogle Scholar
  34. Cool, D. R., Fenger, M., Snell, C. R., & Loh, P. Y. (1995). Identification of the sorting signal motif within the pro-opiomelanocortin for the regulated secretory pathway. The Journal of Biological Chemistry, 8723–8729.PubMedCrossRefGoogle Scholar
  35. Dannies, P. S. (1999). Protein hormone storage in secretory granules: Mechanisms for concentration and sorting. Endocrine Reviews, 3–21.PubMedGoogle Scholar
  36. De Jonghe, B. C., Hayes, M. R., Zimmer, D. J., Kanoski, S. E., Grill, H. J., & Bence, K. K. (2012). Food intake reductions and increases in energetic responses by hindbrain leptin and melanotan II are enhanced in mice with POMC-specific PTP1B deficiency. American Journal of Physiology. Endocrinology and Metabolism, E644–E651.
  37. Dey, A., Xhu, X., Carroll, R., Turck, C. W., Stein, J., & Steiner, D. F. (2003). Biological processing of the cocaine and amphetamine-regulated transcript precursors by prohormone convertases, PC2 and PC1/3. The Journal of Biological Chemistry, 15007–15014.PubMedCrossRefGoogle Scholar
  38. Dey, A., Norrbom, C., Zhu, X., Stein, J., Zhang, C., Ueda, K., & Steiner, D. F. (2004). Furin and prohormone convertase 1/3 are major convertases in the processing of mouse pro-growth hormone-releasing hormone. Endocrinology, 1961–1971.PubMedPubMedCentralCrossRefGoogle Scholar
  39. Dhanvantari, S., Arnaoutova, I., Snell, C. R., Steinbach, P. J., Hammond, K., Caputo, G. A., London, E., & Loh, Y. P. (2002). Carboxypeptidase E, a prohormone sorting receptor, is anchored to secretory granules via a C-terminal transmembrane insertion. Biochemistry, 52–60.PubMedCrossRefGoogle Scholar
  40. Dikeakos, J. D., & Reudelhuber, T. L. (2007). Sending proteins to dense core secretory granules: Still a lot to sort out. The Journal of Cell Biology, 191–196.PubMedPubMedCentralCrossRefGoogle Scholar
  41. Eipper, B. A., & Mains, R. E. (1980). Structure and biosynthesis of pro-adrenocorticotropin/endorphin and related peptides. Endocrine Reviews, 1–27.PubMedCrossRefGoogle Scholar
  42. Eipper, B. A., Stoffers, D. A., & Mains, R. E. (1992). The biosynthesis of neuropeptides: Peptide α-amidation. Annual Review of Neuroscience, 57–85.PubMedCrossRefGoogle Scholar
  43. Eipper, B. A., Milgram, S. L., Husten, E. J., Yun, H. Y., & Mains, R. E. (1993). Peptidylglycine alpha-amidating monooxygenase: A multifunctional protein with catalytic, processing, and routing domains. Protein Science, 489–497.
  44. Ellacott, K. L., & Cone, R. D. (2006). The role of the central melanocortin system in the regulation of food intake and energy homeostasis: Lessons from mouse models. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 1265–1274.CrossRefGoogle Scholar
  45. Ellacott, K. L., Halatchev, I. G., & Cone, R. D. (2006). Characterization of leptin-responsive neurons in the caudal brainstem. Endocrinology, 3190–3195.PubMedCrossRefGoogle Scholar
  46. Emeson, R. B., & Eipper, B. A. (1986). Characterization of pro-ACTH/endorphin-derived peptides in rat hypothalamus. The Journal of Neuroscience, 837–849.PubMedCrossRefGoogle Scholar
  47. Ezkurdia, I., Juan, D., Rodriguez, J. M., Frankish, A., Diekhans, M., Harrow, J., Vazquez, J., Valencia, A., & Tress, M. L. (2014). Multiple evidence strands suggest that there may be as few as 19,000 human protein-coding genes. Human Molecular Genetics, 5866–5878. Scholar
  48. Farooqi, I. S., Matarese, G., Lord, G. M., Keogh, J. M., Lawrence, E., Agwu, C., Sanna, V., Jebb, S. A., Perna, F., Fontana, S., Lechler, R. I., DePaoli, A. M., & O'Rahilly, S. (2002). Beneficial effects of leptin on obesity, T cell hyporesponsiveness, and neuroendocrine/metabolic dysfunction of human congenital leptin deficiency. The Journal of Clinical Investigation, 1093–1103.PubMedCrossRefGoogle Scholar
  49. Fekete, C., Sarkar, S., Rand, W. M., Harney, J. W., Emerson, C. H., Bianco, A. C., & Lechan, R. M. (2002). Agouti-related protein (AGRP) has a central inhibitory action on the hypothalamic-pituitary-thyroid (HPT) axis; comparisons between the effect of AGRP and neuropeptide Y on energy homeostasis and the HPT axis. Endocrinology, 3846–3853.CrossRefPubMedGoogle Scholar
  50. Fink, G. (1976). The development of the releasing factor concept. Clinical Endocrinology, 245–260.Google Scholar
  51. Fortenberry, Y., Liu, J., & Lindberg, I. (1999). The role of the 7B2 CT peptide in the inhibition of prohormone convertase 2 in endocrine cell lines. Journal of Neurochemistry, 994–1003.CrossRefGoogle Scholar
  52. Fricker, L. (1988). Carboxypeptidase E. Annual Review of Physiology, 309–321.PubMedCrossRefGoogle Scholar
  53. Fricker, L. D. (2007). Neuropeptidomics to study peptide processing in animal models of obesity. Endocrinology, 4185–4190.PubMedCrossRefGoogle Scholar
  54. Fricker, L. D., Berman, Y. L., Leiter, E. H., & Devi, L. A. (1996). Carboxypeptidase E activity is deficient in mice with the fat mutation. Effect on peptide processing. The Journal of Biological Chemistry, 30619–30624.PubMedCrossRefGoogle Scholar
  55. Friedman, T. C., Loh, Y. P., Cawley, N. X., Birch, N. P., Huang, S. S., Jackson, I. M., & Nillni, E. A. (1995). Processing of prothyrotropin-releasing hormone (pro-TRH) by bovine intermediate lobe secretory vesicle membrane PC1 and PC2 enzymes. Endocrinology, 4462–4472.PubMedPubMedCentralCrossRefGoogle Scholar
  56. Furuta, M., Yano, H., Zhou, A., Rouille, Y., Holst, J. J., Carroll, R., Ravazzola, M., Orci, L., Furuta, H., & Steiner, D. F. (1997). Defective prohormone processing and altered pancreatic islet morphology in mice lacking active SPC2. Proceedings of the National Academy of Sciences of the United States of America, 6646–6651.CrossRefGoogle Scholar
  57. Galanopoulou, A. S., Kent, G., Rabbani, S. N., Seidah, N. G., & Patel, Y. C. (1993). Heterologous processing of Prosomatostatin in consecutive and regulated secretory pathways. The Journal of Biological Chemistry, 6041–6049.Google Scholar
  58. Genomes Project, C., Abecasis, G. R., Auton, A., Brooks, L. D., DePristo, M. A., Durbin, R. M., Handsaker, R. E., Kang, H. M., Marth, G. T., & McVean, G. A. (2012). An integrated map of genetic variation from 1,092 human genomes. Nature, 56–65.
  59. Glombik, M. M., & Gerdes, H. H. (2000). Signal-mediated sorting of neuropeptides and prohormones: Secretory granule biogenesis revisited. Biochimie, 315–326.PubMedCrossRefGoogle Scholar
  60. Glombik, M. M., Kromer, A., Salm, T., Huttner, W. B., & Gerdes, H. H. (1999). The disulfide-bonded loop of chromogranin B mediates membrane binding and directs sorting from the trans-Golgi network to secretory granules. The EMBO Journal, 1059–1070.PubMedPubMedCentralCrossRefGoogle Scholar
  61. Gorr, S. U., Jain, R. K., Kuehn, U., Joyce, P. B., & Cowley, D. J. (2001). Comparative sorting of neuroendocrine secretory proteins: A search for common ground in a mosaic of sorting models and mechanisms. Molecular and Cellular Endocrinology, 1–6.PubMedCrossRefGoogle Scholar
  62. Gramsch, C., Kleber, G., Hollt, V., Pasi, A., Mehraein, P., & Herz, A. (1980). Pro-opiocortin fragments in human and rat brain: Beta-endorphin and alpha-MSH are the predominant peptides. Brain Research, 109–119.PubMedCrossRefGoogle Scholar
  63. Greenwood, H. C., Bloom, S. R., & Murphy, K. G. (2011). Peptides and their potential role in the treatment of diabetes and obesity. The Review of Diabetic Studies, 355–368. Scholar
  64. Grill, H. J., & Kaplan, J. M. (2002). The neuroanatomical axis for control of energy balance. Frontiers in Neuroendocrinology, 2–40.PubMedCrossRefGoogle Scholar
  65. Grill, H. J., Schwartz, M. W., Kaplan, J. M., Foxhall, J. S., Breininger, J., & Baskin, D. G. (2002). Evidence that the caudal brainstem is a target for the inhibitory effect of leptin on food intake. Endocrinology, 239–246.PubMedCrossRefGoogle Scholar
  66. Guillemin, R. (1978). Peptides in the brain: The new endocrinology of the neuron. Science, 390–402.PubMedCrossRefGoogle Scholar
  67. Guo, L., Munzberg, H., Stuart, R. C., Nillni, E. A., & Bjorbaek, C. (2004). N-acetylation of hypothalamic alpha-melanocyte-stimulating hormone and regulation by leptin. Proceedings of the National Academy of Sciences of the United States of America, 11797–11802.CrossRefGoogle Scholar
  68. Hall, M. E., & Stewart, J. M. (1983). Substance P and behavior: Opposite effects of N-terminal and C-terminal fragments. Peptides, 763–766.PubMedCrossRefGoogle Scholar
  69. Harrold, J. A., Williams, G., & Widdowson, P. S. (1999). Changes in hypothalamic agouti-related protein (AGRP), but not alpha-MSH or pro-opiomelanocortin concentrations in dietary-obese and food-restricted rats. Biochemical and Biophysical Research Communications, 574–577.PubMedCrossRefGoogle Scholar
  70. Haynes, W. G., Morgan, D. A., Djalali, A., Sivitz, W. I., & Mark, A. L. (1999). Interactions between the melanocortin system and leptin in control of sympathetic nerve traffic. Hypertension, 542–547.CrossRefPubMedGoogle Scholar
  71. Hedstrom, L. (2002). Serine protease mechanism and specificity. Chemical Reviews, 4501–4524.PubMedCrossRefGoogle Scholar
  72. Helwig, M., Khorooshi, R. M., Tups, A., Barrett, P., Archer, Z. A., Exner, C., Rozman, J., Braulke, L. J., Mercer, J. G., & Klingenspor, M. (2006). PC1/3 and PC2 gene expression and post-translational endoproteolytic pro-opiomelanocortin processing is regulated by photoperiod in the seasonal Siberian hamster (Phodopus sungorus). Journal of Neuroendocrinology, 413–425.PubMedCrossRefGoogle Scholar
  73. Hook, V., Azaryan, A., Hwong, S., & Tezapsidis, N. (1994). Proteases and the emerging role of protease inhibitors in prohormone processing. FASEB, 1269–1278.Google Scholar
  74. Hosoi, T., Kawagishi, T., Okuma, Y., Tanaka, J., & Nomura, Y. (2002). Brain stem is a direct target for leptin's action in the central nervous system. Endocrinology, 3498–3504.PubMedCrossRefGoogle Scholar
  75. Hou, J. C., Min, L., & Pessin, J. E. (2009). Insulin granule biogenesis, trafficking and exocytosis. Vitamins and Hormones, 473–506.
  76. Howell, S. L., & Taylor, K. W. (1967). The secretion of newly synthesized insulin in vitro. The Biochemical Journal, 922–930.PubMedPubMedCentralCrossRefGoogle Scholar
  77. Huo, L., Grill, H. J., & Bjorbaek, C. (2006). Divergent regulation of proopiomelanocortin neurons by leptin in the nucleus of the solitary tract and in the arcuate hypothalamic nucleus. Diabetes, 567–573.PubMedCrossRefGoogle Scholar
  78. Jackson, R., Creemers, J. W. M., Ohagi, S., Raffin-Sanson, M. L., Sanders, L., Montague, C. T., Hutton, J. C., & O'Rahilly, S. (1997). Obesity and impaired prohormone processing associated with mutations in the human convertase 1 gene. Nature Genetics, 303–306.PubMedPubMedCentralCrossRefGoogle Scholar
  79. Jansen, E., Ayoubi, T. A., Meulemans, S. M., & Van de Ven, W. J. (1995). Neuroendocrine-specific expression of the human prohormone convertase 1 gene. Hormonal regulation of transcription through distinct cAMP response elements. The Journal of Biological Chemistry, 15391–15397.PubMedCrossRefGoogle Scholar
  80. Jensen, O. N. (2004). Modification-specific proteomics: Characterization of post-translational modifications by mass spectrometry. Current Opinion in Chemical Biology, 33–41.
  81. Jing, E., Nillni, E. A., Sanchez, V. C., Stuart, R. C., & Good, D. J. (2004). Deletion of the Nhlh2 transcription factor decreases the levels of the anorexigenic peptides alpha melanocyte-stimulating hormone and thyrotropin-releasing hormone and implicates prohormone convertases I and II in obesity. Endocrinology, 1503–1513.CrossRefPubMedGoogle Scholar
  82. Joseph, S. A., & Michael, G. J. (1988). Efferent ACTH-IR opiocortin projections from nucleus tractus solitarius: A hypothalamic deafferentation study. Peptides, 193–201.CrossRefPubMedGoogle Scholar
  83. Kishi, T., Aschkenasi, C. J., Lee, C. E., Mountjoy, K. G., Saper, C. B., & Elmquist, J. K. (2003). Expression of melanocortin 4 receptor mRNA in the central nervous system of the rat. The Journal of Comparative Neurology, 213–235.PubMedCrossRefGoogle Scholar
  84. Kong, X., Yu, J., Bi, J., Qi, H., Di, W., Wu, L., Wang, L., Zha, J., Lv, S., Zhang, F., Li, Y., Hu, F., Liu, F., Zhou, H., Liu, J., & Ding, G. (2014). Glucocorticoids transcriptionally regulate miR-27b expression promoting body fat accumulation via suppressing the browning of white adipose tissue. Diabetes.
  85. Korosi, A., & Baram, T. Z. (2008). The central corticotropin releasing factor system during development and adulthood. European Journal of Pharmacology, 204–214. Scholar
  86. Kovacs, K. J. (2013). CRH: The link between hormonal-, metabolic- and behavioral responses to stress. Journal of Chemical Neuroanatomy, 25–33. Scholar
  87. Laryea, G., Schutz, G., & Muglia, L. J. (2013). Disrupting hypothalamic glucocorticoid receptors causes HPA axis hyperactivity and excess adiposity. Molecular Endocrinology, 1655–1665. Scholar
  88. Laurent, V., Kimble, A., Peng, B., Zhu, P., Pintar, J. E., Steiner, D. F., & Lindber, I. (2002). Mortality in 7B2 null mice can be rescued by adrenalectomy: Involvement of dopamine in ACTH hypersecretion. Proceedings of the National Academy of Sciences of the United States of America, 3087–3092.CrossRefGoogle Scholar
  89. Lechan, R. M., Wu, P., Jackson, I. M. D., Wolfe, H., Cooperman, S., Mandel, G., & Goodman, R. H. (1986a). Thyrotropin-releasing hormone precursor: Characterization in rat brain. Science, 159–161.PubMedCrossRefGoogle Scholar
  90. Lechan, R. M., Wu, P., & Jackson, I. M. D. (1986b). Immunolocalization of the thyrotropin-releasing hormone prohormone in the rat central nervous system. Endocrinology, 1210–1216.PubMedCrossRefGoogle Scholar
  91. Lee, S. L., Stewart, K., & Goodman, R. H. (1988). Structure of the gene encoding rat thyrotropin releasing hormone. The Journal of Biological Chemistry, 16604–16609.Google Scholar
  92. Legradi, G., Rand, W. M., Hitz, S., Nillni, E. A., Jackson, I. M., & Lechan, R. M. (1996). Opiate withdrawal increases ProTRH gene expression in the ventrolateral column of the midbrain periaqueductal gray. Brain Research, 10–19.Google Scholar
  93. Li, Q. L., Jansen, E., & Friedman, T. C. (1999). Regulation of prohormone convertase 1 (PC1) by gp130-related cytokines. Molecular and Cellular Endocrinology, 143–152.PubMedCrossRefGoogle Scholar
  94. Li, Q. L., Jansen, E., Brent, G. A., Naqvi, S., Wilber, J. F., & Friedman, T. C. (2000). Interactions between the prohormone convertase 2 promoter and the thyroid hormone receptor. Endocrinology, 3256–3266.PubMedCrossRefGoogle Scholar
  95. Li, Q. L., Jansen, E., Brent, G. A., & Friedman, T. C. (2001). Regulation of prohormone convertase 1 (PC1) by thyroid hormone. American Journal of Physiology. Endocrinology and Metabolism, E160–E170.PubMedCrossRefGoogle Scholar
  96. Liotta, A. S., Houghten, R., & Krieger, D. T. (1982). Identification of a beta-endorphin-like peptide in cultured human placental cells. Nature, 593–595.PubMedCrossRefGoogle Scholar
  97. Liston, D., Patey, G., Rossier, J., Verbanck, P., & Vanderhaeghen, J. J. (1984). Processing of proenkephalin is tissue-specific. Science, 734–736.PubMedCrossRefGoogle Scholar
  98. Lloyd, D. J., Bohan, S., & Gekakis, N. (2006). Obesity, hyperphagia and increased metabolic efficiency in Pc1 mutant mice. Human Molecular Genetics, 1884–1893.PubMedPubMedCentralCrossRefGoogle Scholar
  99. Loh, Y. P., Maldonado, A., Zhang, C., Tam, W. H., & Cawley, N. (2002). Mechanism of sorting proopiomelanocortin and proenkephalin to the regulated secretory pathway of neuroendocrine cells. Annals of the New York Academy of Sciences, 416–425.PubMedCrossRefGoogle Scholar
  100. Lovejoy, D. A., Chang, B. S., Lovejoy, N. R., & del Castillo, J. (2014). Molecular evolution of GPCRs: CRH/CRH receptors. Journal of Molecular Endocrinology, T43–T60. Scholar
  101. Luo, L., Luo, J. Z., & Jackson, I. M. (2008). Thyrotropin-releasing hormone (TRH) reverses hyperglycemia in rat. Biochemical and Biophysical Research Communications, 69–73.PubMedCrossRefGoogle Scholar
  102. Madala, P. K., Tyndall, J. D., Nall, T., & Fairlie, D. P. (2010). Update 1 of: Proteases universally recognize beta strands in their active sites. Chemical Reviews, PR1–P31. Scholar
  103. Masanobu, Y., Radovick, S., Wondisford, F. E., Nakayama, Y., Weintraub, B. D., & Wilber, J. F. (1990). Cloning and structure of human genomic and hypothalamic cDNA and encoding human preprothyrotropin-releasing hormone. Molecular Endocrinology, 551–556.Google Scholar
  104. Mastorakos, G., & Zapanti, E. (2004). The hypothalamic-pituitary-adrenal axis in the neuroendocrine regulation of food intake and obesity: The role of corticotropin releasing hormone. Nutritional Neuroscience, 271–280. Scholar
  105. Matsuuchi, L., & Kelly, R. B. (1991). Constitutive and basal secretion from the endocrine cell line, AtT-20. The Journal of Cell Biology, 843–852.PubMedCrossRefGoogle Scholar
  106. Morvan, J., & Tooze, S. A. (2008). Discovery and progress in our understanding of the regulated secretory pathway in neuroendocrine cells. Histochemistry and Cell Biology, 243–252. Scholar
  107. Mulcahy, L. R., Vaslet, C. A., & Nillni, E. A. (2005). Prohormone-convertase 1 processing enhances post-Golgi sorting of prothyrotropin-releasing hormone-derived peptides. The Journal of Biological Chemistry, 39818–39826.PubMedCrossRefGoogle Scholar
  108. Mulcahy, L. R., Barker, A. J., & Nillni, E. A. (2006). Disruption of disulfide bond formation alters the trafficking of prothyrotropin releasing hormone (proTRH)-derived peptides. Regulatory Peptides, 123–133.PubMedCrossRefGoogle Scholar
  109. Muller, L., & Lindberg, I. (1999). The cell biology of the prohormone convertases PC1 and PC2. Progress in Nucleic Acid Research and Molecular Biology, 69–108.Google Scholar
  110. Munzberg, H., Huo, L., Nillni, E. A., Hollenberg, A. N., & Bjorbaek, C. (2003). Role of signal transducer and activator of transcription 3 in regulation of hypothalamic proopiomelanocortin gene expression by leptin. Endocrinology, 2121–2131.CrossRefPubMedGoogle Scholar
  111. Naggert, J. K., Fricker, L. D., Varlamov, D., Nishina, P. M., Rouillie, Y., Steiner, D. F., Carroll, R. J., Paigen, B. J., & Leiter, E. H. (1995). Hyperinsulinemia in obese fat/fat mice associated with a carboxypeptidase E mutation which reduces enzyme activity. Nature Genetics, 135–142.PubMedPubMedCentralCrossRefGoogle Scholar
  112. Nie, Y., Nakashima, M., Brubaker, P. L., Li, Q. L., Perfetti, R., Jansen, E., Zambre, Y., Pipeleers, D., & Friedman, T. C. (2000). Regulation of pancreatic PC1 and PC2 associated with increased glucagon-like peptide 1 in diabetic rats. The Journal of Clinical Investigation, 955–965.PubMedPubMedCentralCrossRefGoogle Scholar
  113. Nillni, E. A. (2007). Regulation of prohormone convertases in hypothalamic neurons: Implications for prothyrotropin-releasing hormone and proopiomelanocortin. Endocrinology, 4191–4200.PubMedCrossRefGoogle Scholar
  114. Nillni, E. A. (2010). Regulation of the hypothalamic thyrotropin releasing hormone (TRH) neuron by neuronal and peripheral inputs. Frontiers in Neuroendocrinology, 31(2), 134–156. S0091-3022(10)00002-6 [pii] Scholar
  115. Nillni, E. A. (2016). The metabolic sensor Sirt1 and the hypothalamus: Interplay between peptide hormones and pro-hormone convertases. Molecular and Cellular Endocrinology, 77–88. Scholar
  116. Nillni, E. A., & Sevarino, K. A. (1999). The biology of pro-thyrotropin-releasing hormone-derived peptides. Endocrine Reviews, 599–648.PubMedPubMedCentralGoogle Scholar
  117. Nillni, E. A., Sevarino, K. A., & Jackson, I. M. (1993a). Processing of proTRH to its intermediate products occurs before the packing into secretory granules of transfected AtT20 cells. Endocrinology, 1271–1277.PubMedCrossRefGoogle Scholar
  118. Nillni, E. A., Sevarino, K. A., & Jackson, I. M. (1993b). Identification of the thyrotropin-releasing hormone-prohormone and its posttranslational processing in a transfected AtT20 tumoral cell line. Endocrinology, 1260–1270.PubMedCrossRefGoogle Scholar
  119. Nillni, E. A., Friedman, T. C., Todd, R. B., Birch, N. P., Loh, Y. P., & Jackson, I. M. (1995). Pro-thyrotropin-releasing hormone processing by recombinant PC1. Journal of Neurochemistry, 2462–2472.CrossRefGoogle Scholar
  120. Nillni, E. A., Luo, L. G., Jackson, I. M., & McMillan, P. (1996). Identification of the thyrotropin-releasing hormone precursor, its processing products, and its coexpression with convertase 1 in primary cultures of hypothalamic neurons: Anatomic distribution of PC1 and PC2. Endocrinology, 5651–5661.Google Scholar
  121. Nillni, E. A., Aird, F., Seidah, N. G., Todd, R. B., & Koenig, J. I. (2001). PreproTRH(178-199) and two novel peptides (pFQ7 and pSE14) derived from its processing, which are produced in the paraventricular nucleus of the rat hypothalamus, are regulated during suckling. Endocrinology, 896–906.PubMedCrossRefGoogle Scholar
  122. Nillni, E. A., Xie, W., Mulcahy, L., Sanchez, V. C., & Wetsel, W. C. (2002a). Deficiencies in pro-thyrotropin-releasing hormone processing and abnormalities in thermoregulation in Cpefat/fat mice. The Journal of Biological Chemistry, 48587–48595.PubMedCrossRefGoogle Scholar
  123. Nillni, E. A., Lee, A., Legradi, G., & Lechan, R. M. (2002b). Effect of precipitated morphine withdrawal on post-translational processing of prothyrotropin releasing hormone (proTRH) in the ventrolateral column of the midbrain periaqueductal gray. Journal of Neurochemistry, 874–884.PubMedCrossRefGoogle Scholar
  124. O'Rahilly, S., Farooqi, I. S., Yeo, G. S., & Challis, B. G. (2003). Minireview: Human obesity-lessons from monogenic disorders. Endocrinology, 3757–3764.PubMedCrossRefGoogle Scholar
  125. Orwoll, E., Kendall, J. W., Lamorena, L., & McGilvra, R. (1979). Adrenocorticotropin and melanocyte-stimulating hormone in the brain. Endocrinology, 1845–1852.PubMedCrossRefGoogle Scholar
  126. Palkovits, M., & Eskay, R. L. (1987). Distribution and possible origin of beta-endorphin and ACTH in discrete brainstem nuclei of rats. Neuropeptides, 123–137.CrossRefPubMedGoogle Scholar
  127. Palkovits, M., Mezey, E., & Eskay, R. L. (1987). Pro-opiomelanocortin-derived peptides (ACTH/beta-endorphin/alpha-MSH) in brainstem baroreceptor areas of the rat. Brain Research, 323–338.CrossRefPubMedGoogle Scholar
  128. Paquet, L., Massie, B., & Mains, R. E. (1996). Proneuropeptide Y processing in large dense-core vesicles: Manipulation of prohormone convertase expression in sympathetic neurons using adenoviruses. The Journal of Neuroscience, 964–973.PubMedPubMedCentralCrossRefGoogle Scholar
  129. Perello, M., & Nillni, E. A. (2007). The biosynthesis and processing of neuropeptides: Lessons from prothyrotropin releasing hormone (proTRH). Frontiers in Bioscience, 3554–3565.CrossRefPubMedGoogle Scholar
  130. Perello, M., Friedman, T., Paez-Espinosa, V., Shen, X., Stuart, R. C., & Nillni, E. A. (2006a). Thyroid hormones selectively regulate the posttranslational processing of prothyrotropin-releasing hormone in the paraventricular nucleus of the hypothalamus. Endocrinology, 2705–2716.CrossRefPubMedGoogle Scholar
  131. Perello, M., Stuart, R. C., & Nillni, E. A. (2006b). The role of intracerebroventricular administration of leptin in the stimulation of prothyrotropin releasing hormone neurons in the hypothalamic paraventricular nucleus. Endocrinology, 3296–3306. Epub 2007 Jun 21.PubMedPubMedCentralCrossRefGoogle Scholar
  132. Perello, M., Stuart, R. C., Varslet, C. A., & Nillni, E. A. (2007a). Cold exposure increases the biosynthesis and proteolytic processing of Prothyrotropin releasing hormone in the hypothalamic paraventricular nucleus via Beta-adrenoreceptors. Endocrinology 148(10):4952–4964.PubMedCrossRefGoogle Scholar
  133. Perello, M., Stuart, R. C., & Nillni, E. A. (2007b). Differential effects of fasting and leptin on pro-opiomelanocortin peptides in the arcuate nucleus and in the nucleus of the solitary tract. American Journal of Physiology. Endocrinology and Metabolism 292(5):E1348–1357. Epub 2007 Jan 16.CrossRefPubMedGoogle Scholar
  134. Perello, M., Stuart, R., & Nillni, E. A. (2008). Prothyrotropin-releasing hormone targets its processing products to different vesicles of the secretory pathway. The Journal of Biological Chemistry, 19936–19947.CrossRefPubMedGoogle Scholar
  135. Perez de la Cruz, I., & Nillni, E. A. (1996). Intracellular sites of prothyrotropin-releasing hormone processing. The Journal of Biological Chemistry, 22736–22745.Google Scholar
  136. Perone, M. J., Murray, C. A., Brown, O. A., Gibson, S., White, A., Linton, E. A., Perkins, A. V., Lowenstein, P. R., & Castro, M. G. (1998). Procorticotrophin-releasing hormone: Endoproteolytic processing and differential release of its derived peptides within AtT20 cells. Molecular and Cellular Endocrinology, 191–202.PubMedPubMedCentralCrossRefGoogle Scholar
  137. Pilcher, W. H., & Joseph, S. A. (1986). Differential sensitivity of hypothalamic and medullary opiocortin and tyrosine hydroxylase neurons to the neurotoxic effects of monosodium glutamate (MSG). Peptides, 783–789.CrossRefPubMedGoogle Scholar
  138. Posner, S. F., Vaslet, C. A., Jurofcik, M., Lee, A., Seidah, N. G., & Nillni, E. A. (2004). Stepwise posttranslational processing of progrowth hormone-releasing hormone (proGHRH) polypeptide by furin and PC1. Endocrine, 199–213.Google Scholar
  139. Prigge, S. T., Kolhekar, A. S., Eipper, B. A., Mains, R. E., & Amzel, L. M. (1997). Amidation of bioactive peptides: The structure of peptidylglycine alpha-hydroxylating monooxygenase. Science, 1300–1305.PubMedCrossRefGoogle Scholar
  140. Pritchard, L. E., Turnbull, A. V., & White, A. (2002). Pro-opiomelanocortin processing in the hypothalamus: Impact on melanocortin signalling and obesity. The Journal of Endocrinology, 411–421.CrossRefPubMedGoogle Scholar
  141. Pu, L. P., Ma, W., Barker, J., & Loh, Y. P. (1996). Differential expression of genes encoding proThyrotropin-releasing hormone (proTRH) and prohormone convertases (PC1 and PC2) in rat brain neurons: Implications for differential processing of proTRH. Endocrinology, 1233–1241.PubMedCrossRefGoogle Scholar
  142. Raadsheer, F. C., Sluiter, A. A., Ravid, R., Tilders, F. J., & Swaab, D. F. (1993). Localization of corticotropin-releasing hormone (CRH) neurons in the paraventricular nucleus of the human hypothalamus; age-dependent colocalization with vasopressin. Brain Research, 50–62.PubMedPubMedCentralCrossRefGoogle Scholar
  143. Rho, J. H., & Swanson, L. W. (1987). Neuroendocrine CRF motoneurons: Intrahypothalamic axon terminals shown with a new retrograde-Lucifer-immuno method. Brain Research, 143–147.PubMedPubMedCentralCrossRefGoogle Scholar
  144. Richard, D., Huang, Q., & Timofeeva, E. (2000). The corticotropin-releasing hormone system in the regulation of energy balance in obesity. International Journal of Obesity, S36–S39.PubMedPubMedCentralCrossRefGoogle Scholar
  145. Rivier, J., Spiess, J., & Vale, W. (1983). Characterization of rat hypothalamic corticotropin-releasing factor. Proceedings of the National Academy of Sciences of the United States of America, 4851–4855.CrossRefGoogle Scholar
  146. Rodgers, R. J., Tschop, M. H., & Wilding, J. P. (2012). Anti-obesity drugs: Past, present and future. Disease Models & Mechanisms, 621–626. Scholar
  147. Romero, A., Cakir, I., Vaslet, C. A., Stuart, R. C., Lansari, O., Lucero, H. A., & Nillni, E. A. (2008). Role of a pro-sequence in the secretory pathway of prothyrotropin-releasing hormone. The Journal of Biological Chemistry, 31438–31448.PubMedCrossRefGoogle Scholar
  148. Rouille, Y., Duguay, S. J., Lund, K., Furutua, M., Gong, Q., Lipkind, G., Olive, A. A., Chan, S. J., & Steiner, D. F. (1995). Proteolytic processing mechanisms in the biosynthesis of neuroendocrine peptides: The subtilisin-like proprotein convertases. Frontiers in Neuroendocrinology, 332–361.Google Scholar
  149. Rovere, C., Luis, J., Lissitzky, J. C., Basak, A., Marvaldi, J., Chretien, M., & Seidah, N. G. (1999). The RGD motif and the C-terminal segment of proprotein convertase 1 are critical for its cellular trafficking but not for its intracellular binding to integrin alpha5beta1. The Journal of Biological Chemistry, 12461–12467.PubMedCrossRefGoogle Scholar
  150. Sachs, H., & Takabatake, Y. (1964). Evidence for a precursor in vasopressin biosynthesis. Endocrinology, 943–952.PubMedCrossRefGoogle Scholar
  151. Sanchez, V. C., Goldstein, J., Stuart, R. C., Hovanesian, V., Huo, L., Munzberg, H., Friedman, T. C., Bjorbaek, C., & Nillni, E. A. (2004). Regulation of hypothalamic prohormone convertases 1 and 2 and effects on processing of prothyrotropin-releasing hormone. The Journal of Clinical Investigation, 357–369.PubMedPubMedCentralCrossRefGoogle Scholar
  152. Sanger, F. (1959). Chemistry of insulin. Science, 1340–1345.PubMedCrossRefGoogle Scholar
  153. Scamuffa, N., Calvo, F., Chretien, M., Seidah, N. G., & Khatib, A. M. (2006). Proprotein convertases: Lessons from knockouts. The FASEB Journal, 1954–1963.PubMedCrossRefGoogle Scholar
  154. Schafer, M.-H., Day, R., Cullinan, W. E., Chretien, M., Seidah, N., & Watson, S. (1993). Gene expression of prohormone and proprotein convertases in the rat CNS: A comparative in situ hybridization analysis. The Journal of Neuroscience, 1258–1279.PubMedPubMedCentralCrossRefGoogle Scholar
  155. Schally, A. (1978). Aspects of hypothalamic regulation of the pituitary gland: Its implications for the control of reproductive processes. Science, 18–28.PubMedCrossRefGoogle Scholar
  156. Schaner, P., Todd, R. B., Seidah, N. G., & Nillni, E. A. (1997). Processing of prothyrotropin-releasing hormone by the family of prohormone convertases. The Journal of Biological Chemistry, 19958–19968.PubMedCrossRefGoogle Scholar
  157. Scharrer, E., & Scharrer, B. (1940). Secretory cells within the hypothalamus. New York: Hafner Publishing.Google Scholar
  158. Seidah, N. G. (1995). The mammalian family of subtilisin/kexin-like proprotein convertases. In U. Shinde & M. Inouye (Eds.), Intramolecular chaperones and protein folding (pp. 181–203). Austin: R.G. Landes Cie.Google Scholar
  159. Seidah, N. G., & Chretien, M. (1992). Proprotein and prohormone convertases of the subtilisin family recent developments and future perspectives. Trends in Endocrinology and Metabolism, 133–140.CrossRefGoogle Scholar
  160. Seidah, N. G., & Chretien, M. (1994). Pro-protein convertases of subtilisin/kexin family. Methods in Enzymology, 175–188.Google Scholar
  161. Seidah, N. G., & Chretien, M. (1997). Eukaryotic protein processing: Endoproteolysis of precursor proteins. Current Opinion in Biotechnology, 602–607.PubMedCrossRefGoogle Scholar
  162. Seidah, N. G., & Prat, A. (2012). The biology and therapeutic targeting of the proprotein convertases. Nature Reviews, 11, 367–383.PubMedGoogle Scholar
  163. Seidah, N. G., Gaspar, L., Mion, P., Marcinkiewicz, M., Mbikay, M., & Chretien, M. (1990). cDNA sequence of two distinct pituitary proteins homologous to Kex2 and furin gene products: Tissue-specific mRNAs encoding candidates for pro-hormone processing proteinases. DNA, 415–424.Google Scholar
  164. Seidah, N., Marcinkiewicz, M., Benjannet, S., Gaspar, L., Beaubien, G., Mattei, M., Lazure, C., Mbikay, M., & Chretien, M. (1991). Cloning and primary sequence of a mouse candidate prohormone convertase PC1 homologous to PC2, furin, and Kex2: Distinct chromosomal localization and messenger RNA distribution in brain and pituitary compared to PC2. Molecular Endocrinology, 111–122.Google Scholar
  165. Seidah, N. G., Day, R., Benjannet, S., Rondeau, N., Boudreault, A., Reudelhuber, T., Schafer, M. K., Watson, S. J., & Chretien, M. (1992a). The prohormone and proprotein processing enzymes PC1 and PC2: Structure, selective cleavage of mouse POMC and human renin at pairs of basic residues, cellular expression, tissue distribution, and mRNA regulation. NIDA Research Monograph, 132–150.Google Scholar
  166. Seidah, N. G., Day, R., Hamelin, J., Gaspar, A., Collard, M. W., & Chretien, M. (1992b). Testicular expression of PC4 in the rat: Molecular diversity of a novel germ cell-specific Kex2/subtilisin-like proprotein convertase. Molecular Endocrinology, 1559–1570.PubMedGoogle Scholar
  167. Seidah, N. G., Day, R., Marcinkiewicz, M., & Chretien, M. (1993). Mammalian paired basic amino acid convertases of prohormones and proproteins. Annals of the New York Academy of Sciences, 135–146.PubMedCrossRefGoogle Scholar
  168. NG Seidah, M Chretien and R Day (1994) The family of subtilisin/kexin like pro-protein and pro-hormone convertases: Divergent or shared functions. Biochimie:197–209. doi: 0300-9084(94)90147-3 [pii].Google Scholar
  169. Seidah, N. G., Hamelin, J., Mamarbachi, M., Dong, W., Tadros, H., Mbikay, M., Chrétien, M., & Day, R. (1996). cDNA structure, tissue distribution, and chromosomal localization of rat PC7, a novel mammalian proprotein convertase closest to yeast kexin-like proteinases. Proceedings of the National Academy of Sciences of the United States of America, 3388–3393.CrossRefGoogle Scholar
  170. Seimon, R. V., Hostland, N., Silveira, S. L., Gibson, A. A., & Sainsbury, A. (2013). Effects of energy restriction on activity of the hypothalamo-pituitary-adrenal axis in obese humans and rodents: Implications for diet-induced changes in body composition. Hormone Molecular Biology and Clinical Investigation, 71–80.
  171. Shen, X., Li, Q. L., Brent, G. A., & Friedman, T. C. (2004). Thyroid hormone regulation of prohormone convertase 1 (PC1): Regional expression in rat brain and in vitro characterization of negative thyroid hormone response elements. Journal of Molecular Endocrinology, 33, 21.PubMedCrossRefGoogle Scholar
  172. Shen, X., Li, Q. L., Brent, G. A., & Friedman, T. C. (2005). Regulation of regional expression in rat brain PC2 by thyroid hormone/characterization of novel negative thyroid hormone response elements in the PC2 promoter. American Journal of Physiology. Endocrinology and Metabolism, E236–E245.PubMedCrossRefGoogle Scholar
  173. Shioda, S., Funahashi, H., Nakajo, S., Yada, T., Maruta, O., & Nakai, Y. (1998). Immunohistochemical localization of leptin receptor in the rat brain. Neuroscience Letters, 41–44.PubMedCrossRefGoogle Scholar
  174. Silva, J. E. (2005). Thyroid hormone and the energetic cost of keeping body temperature. Bioscience Reports, 129–148.PubMedCrossRefGoogle Scholar
  175. Smeekens, S. P., & Steiner, D. F. (1990). Identification of a human insulinoma cDNA encoding a novel mammalian protein structurally related to the yeast dibasic processing protease Kex2. The Journal of Biological Chemistry, 2997–3000.Google Scholar
  176. Smeekens, S. P., Avruch, A. S., LaMendola, J., Chan, S. J., & Steiner, D. F. (1991). Identification of a cDNA encoding a second putative prohormone convertase related to PC2 in AtT20 cells and islets of Langerhans. Proceedings of the National Academy of Sciences of the United States of America, 340–344.CrossRefGoogle Scholar
  177. Smeekens, S. P., Montag, A. G., Thomas, G., Albiges-Rizo, C., Carroll, R., Benig, M., Phillips, L. A., Martin, S., Ohagi, S., Gardner, P., Swift, H. H., & Steiner, D. F. (1992). Proinsulin processing by the subtilisin-related proprotein convertases furin, PC2, and PC3. Proceedings of the National Academy of Sciences, 8822–8826.CrossRefGoogle Scholar
  178. Solomon, S. (1999). POMC-derived peptides and their biological action. Annals of the New York Academy of Sciences, 22–40.CrossRefGoogle Scholar
  179. Sominsky, L., & Spencer, S. J. (2014). Eating behavior and stress: A pathway to obesity. Frontiers in Psychology, 434.
  180. Spencer, S. J., & Tilbrook, A. (2011). The glucocorticoid contribution to obesity. Stress, 233–246. Scholar
  181. Spiess, J., Rivier, J., Rivier, C., & Vale, W. (1981). Primary structure of corticotropin-releasing factor from ovine hypothalamus. Proceedings of the National Academy of Sciences of the United States of America, 6517–6521.CrossRefGoogle Scholar
  182. Steiner, D. F. (1998). The proprotein convertases. Current Opinion in Chemical Biology, 31–39.PubMedPubMedCentralCrossRefGoogle Scholar
  183. Steiner, D. F., & Oyer, P. E. (1967). The biosynthesis of insulin and a probable precursor of insulin by a human islet cell adenoma. Proceedings of the National Academy of Sciences of the United States of America, 473–480.CrossRefGoogle Scholar
  184. Steiner, D. F., Cunningham, D., Spiegelman, L., & Aten, B. (1967). Insulin biosynthesis: Evidence for a precursor. Science, 697–700.PubMedCrossRefGoogle Scholar
  185. Steiner, D. F., Clark, J. L., Nolan, C., Rubenstein, A. H., Margoliash, E., Aten, B., & Oyer, P. E. (1969). Proinsulin and the biosynthesis of insulin. Recent Progress in Hormone Research, 207–215.Google Scholar
  186. Steiner, D. F., Smeekens, S. P., Ohag, S., & Chan, S. J. (1992). The new enzymology of precursor processing endoproteases. The Journal of Biological Chemistry, 23435–23438.Google Scholar
  187. Sun, M., Watanabe, T., Bochimoto, H., Sakai, Y., Torii, S., Takeuchi, T., & Hosaka, M. (2013). Multiple sorting systems for secretory granules ensure the regulated secretion of peptide hormones. Traffic, 205–218. Scholar
  188. Tataranni, P. A., Larson, D. E., Snitker, S., Young, J. B., Flatt, J. P., & Ravussin, E. (1996). Effects of glucocorticoids on energy metabolism and food intake in humans. The American Journal of Physiology, E317–E325.CrossRefGoogle Scholar
  189. Thomas, L., Leduc, R., Thorne, B. A., Smeekens, S. P., Steiner, D. F., & Thomas, G. (1991). Kex2-like endoproteases PC2 and PC3 accurately cleave a model prohormone in mammalian cells: Evidence for a common core of neuroendocrine processing enzymes. Proceedings of the National Academy of Sciences of the United States of America, 5297–5301.CrossRefGoogle Scholar
  190. Toorie, A. M., & Nillni, E. A. (2014). Minireview: Central Sirt1 regulates energy balance via the melanocortin system and alternate pathways. Molecular Endocrinology, 1423–1434. Scholar
  191. Toorie, A. M., Cyr, N. E., Steger, J. S., Beckman, R., Farah, G., & Nillni, E. A. (2016). The nutrient and energy sensor Sirt1 regulates the hypothalamic-pituitary-adrenal (HPA) axis by altering the production of the prohormone convertase 2 (PC2) essential in the maturation of corticotropin releasing hormone (CRH) from its prohormone in male rats. The Journal of Biological Chemistry.
  192. Tooze, S. A., Chanat, E., Tooze, J., & Huttner, W. B. (1993). Secretory granule formation. In Y. P. Loh (Ed.), Mechanisms of intracellular trafficking and processing of Proproteins (pp. 158–177). Boca Raton: CRC Press.Google Scholar
  193. Toriya, M., Maekawa, F., Maejima, Y., Onaka, T., Fujiwara, K., Nakagawa, T., Nakata, M., & Yada, T. (2010). Long-term infusion of brain-derived neurotrophic factor reduces food intake and body weight via a corticotrophin-releasing hormone pathway in the paraventricular nucleus of the hypothalamus. Journal of Neuroendocrinology, 987–995. Scholar
  194. Vale, W., Spiess, J., Rivier, C., & Rivier, J. (1981). Characterization of a 41-residue ovine hypothalamic peptide that stimulates secretion of corticotropin and beta-endorphin. Science, 1394–1397.PubMedPubMedCentralCrossRefGoogle Scholar
  195. van Heumen, W. R., & Roubos, E. W. (1991). Immuno-electron microscopy of sorting and release of neuropeptides in Lymnaea stagnalis. Cell and Tissue Research, 185–195.Google Scholar
  196. Varlamov, O., Wu, F., Shields, D., & Fricker, L. D. (1999). Biosynthesis and packaging of carboxypeptidase D into nascent secretory vesicles in pituitary cell lines. The Journal of Biological Chemistry, 14040–14045.PubMedCrossRefGoogle Scholar
  197. Veo, K., Reinick, C., Liang, L., Moser, E., Angleson, J. K., & Dores, R. M. (2011). Observations on the ligand selectivity of the melanocortin 2 receptor. General and Comparative Endocrinology, 3–9. Scholar
  198. Villeneuve, P., Seidah, N. G., & Beaudet, A. (2000). Immunohistochemical evidence for the implication of PC1 in the processing of proneurotensin in rat brain. Neuroreport, 3443-3447.PubMedCrossRefGoogle Scholar
  199. Voss-Andreae, A., Murphy, J. G., Ellacott, K. L., Stuart, R. C., Nillni, E. A., Cone, R. D., & Fan, W. (2007). Role of the central melanocortin circuitry in adaptive thermogenesis of brown adipose tissue. Endocrinology, 1550–1560.PubMedCrossRefGoogle Scholar
  200. Wardlaw, S. L. (2011). Hypothalamic proopiomelanocortin processing and the regulation of energy balance. European Journal of Pharmacology, 213–219. Scholar
  201. Webb, G. C., Dey, A., Wang, J., Stein, J., Milewski, M., & Steiner, D. F. (2004). Altered proglucagon processing in an alpha-cell line derived from prohormone convertase 2 null mouse islets. The Journal of Biological Chemistry, 31068–31075.PubMedCrossRefGoogle Scholar
  202. Westphal, C. H., Muller, L., Zhou, A., Zhu, X., Bonner-Weir, S., Schambelan, M., Steiner, D. F., Lindberg, I., & Leder, P. (1999). The neuroendocrine protein 7B2 is required for peptide hormone processing in vivo and provides a novel mechanism for pituitary Cushing's disease. Cell, 689–700.PubMedPubMedCentralCrossRefGoogle Scholar
  203. Wilkinson, C. W. (2006). Roles of acetylation and other post-translational modifications in melanocortin function and interactions with endorphins. Peptides, 453–471.PubMedCrossRefGoogle Scholar
  204. Williams, D. L., Kaplan, J. M., & Grill, H. J. (2000). The role of the dorsal vagal complex and the vagus nerve in feeding effects of melanocortin-3/4 receptor stimulation. Endocrinology, 1332–1337.CrossRefPubMedGoogle Scholar
  205. Williams, D. L., Bowers, R. R., Bartness, T. J., Kaplan, J. M., & Grill, H. J. (2003). Brainstem melanocortin 3/4 receptor stimulation increases uncoupling protein gene expression in brown fat. Endocrinology, 4692–4697.PubMedCrossRefGoogle Scholar
  206. Winsky-Sommerer, R., Benjannet, S., Rovere, C., Barbero, P., Seidah, N. G., Epelbaum, J., & Dournaud, P. (2000). Regional and cellular localization of the neuroendocrine prohormone convertases PC1 and PC2 in the rat central nervous system. The Journal of Comparative Neurology, 439–460.PubMedCrossRefGoogle Scholar
  207. Xin, X., Varlamov, O., Day, R., Dong, W., Bridgett, M. M., Leiter, E. H., & Fricker, L. D. (1997). Cloning and sequencing analysis of cDNA encoding rat carboxypeptidase D. DNA and Cell Biology, 897–909.PubMedCrossRefGoogle Scholar
  208. Xiong, Q. Y., Yu, C., Zhang, Y., Ling, L., Wang, L., & Gao, J. L. (2017). Key proteins involved in insulin vesicle exocytosis and secretion. Biomedical Reports, 134–139. Scholar
  209. Xu, H., & Shields, D. (1993). Prohormone processing in the trans-Golgi network: Endoproteolytic cleavage of prosomatostatin and formation of nascent secretory vesicles in permeabilized cells. The Journal of Cell Biology, 1169–1184.PubMedCrossRefGoogle Scholar
  210. Yamada, M., Saga, Y., Shibusawa, N., Hirato, J., Murakami, M., Iwasaki, T., Hashimoto, K., Satoh, T., Wakabayashi, K., Taketo, M. M., & Mori, M. (1997). Tertiary hypothyroidism and hyperglycemia in mice with targeted disruption of the thyrotropin-releasing hormone gene. Proceedings of the National Academy of Sciences of the United States of America, 10862–10867.CrossRefGoogle Scholar
  211. Zhang, C. F., Snell, C. R., & Loh, Y. P. (1999). Identification of a novel prohormone sorting signal-binding site on carboxypeptidase E, a regulated secretory pathway-sorting receptor. Molecular Endocrinology, 527–536. Scholar
  212. Zhang, X., Bao, L., & Ma, G. Q. (2010). Sorting of neuropeptides and neuropeptide receptors into secretory pathways. Progress in Neurobiology, 276–283. Scholar
  213. Zhou, A., Bloomquist, B. T., & Mains, R. E. (1993). The prohormone convertases PC1 and PC2 mediate distinct endoproteolytic cleavages in a strict temporal order during proopiomelanocortin biosynthetic processing. The Journal of Biological Chemistry, 1763–1769.Google Scholar
  214. Zhu, X., Zhou, A., Dey, A., Norrbom, C., Carroll, R., Zhang, C., Laurent, V., Lindberg, I., Ugleholdt, R., Holst, J. J., & Steiner, D. F. (2002a). Disruption of PC1/3 expression in mice causes dwarfism and multiple neuroendocrine peptide processing defects. Proceedings of the National Academy of Sciences of the United States of America, 10293–10298.CrossRefGoogle Scholar
  215. Zhu, X., Orci, L., Carroll, R., Norrbom, C., Ravazzola, M., & Steiner, D. F. (2002b). Severe block in processing of proinsulin to insulin accompanied by elevation of des-64,65 proinsulin intermediates in islets of mice lacking prohormone convertase 1/3. Proceedings of the National Academy of Sciences of the United States of America, 10299–10304.CrossRefGoogle Scholar
  216. Ziegler, C. G., Krug, A. W., Zouboulis, C. C., & Bornstein, S. R. (2007). Corticotropin releasing hormone and its function in the skin. Hormone and metabolic research = Hormon- und Stoffwechselforschung = Hormones et metabolisme, 106–109. Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Emeritus Professor of Medicine, Molecular Biology, Cell Biology & Biochemistry, Department of Medicine, Molecular Biology, Cell Biology & BiochemistryThe Warren Alpert Medical School of Brown UniversityProvidenceUSA

Personalised recommendations