Advertisement

Brain, Environment, Hormone-Based Appetite, Ingestive Behavior, and Body Weight

  • Kyle S. Burger
  • Grace E. Shearrer
  • Jennifer R. Gilbert
Chapter

Abstract

Energy balance and appetite regulation are a complex process that integrates signals from homeostatic, hedonic, and environmental sources directing eating behavior. In addition to integrating homeostatic signals from the endocrine axis, the brain also drives eating behavior base on learned consummatory habits, sensory cues regarding the energy content and palatability of food, self-regulation, and the environment in which individuals live. This chapter will focus on how different internal and external factors influence central control of appetite, energy intake, and weight status, as well as how eating patterns may alter the brain’s response to food stimuli.

Keywords

Fat Sugar Reward Gustatory Somatosensory fMRI 

References

  1. Abdelaal, M., le Roux, C. W., & Docherty, N. G. (2017). Morbidity and mortality associated with obesity. Annals of Translational Medicine, 5(7), 161. https://doi.org/10.21037/atm.2017.03.107.CrossRefPubMedPubMedCentralGoogle Scholar
  2. Anschutz, D. J., Engels, R. C. M. E., van der Zwaluw, C. S., & Van Strien, T. (2011). Sex differences in young adults’ snack food intake after food commercial exposure. Appetite, 56(2), 255–260.CrossRefPubMedGoogle Scholar
  3. Anthony, K., Reed, L. J., Dunn, J. T., Bingham, E., Hopkins, D., Marsden, P. K., & Amiel, S. A. (2006). Attenuation of insulin-evoked responses in brain networks controlling appetite and reward in insulin resistance the cerebral basis for impaired control of food intake in metabolic syndrome? Diabetes, 55(11), 2986–2992.CrossRefPubMedGoogle Scholar
  4. Appelhans, B. M., Woolf, K., Pagoto, S. L., Schneider, K. L., Whited, M. C., & Liebman, R. (2011). Inhibiting food reward: Delay discounting, food reward sensitivity, and palatable food intake in overweight and obese women. Obesity, 19(11), 2175–2182.CrossRefPubMedGoogle Scholar
  5. Babbs, R. K., Sun, X., Felsted, J., Chouinard-Decorte, F., Veldhuizen, M. G., & Small, D. (2013). Decreased caudate response to milkshake is associated with higher body mass index and greater impulsivity. Physiology & Behavior. CrossRefGoogle Scholar
  6. Baicy, K., London, E. D., Monterosso, J., Wong, M.-L., Delibasi, T., Sharma, A., & Licinio, J. (2007). Leptin replacement alters brain response to food cues in genetically leptin-deficient adults. Proceedings of the National Academy of Sciences, 104(46), 18276–18279. Retrieved from http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2084333/pdf/zpq18276.pdf.CrossRefGoogle Scholar
  7. Balleine, B. W., Delgado, M. R., & Hikosaka, O. (2007). The role of the dorsal striatum in reward and decision-making. Journal of Neuroscience, 27(31), 8161–8165. https://doi.org/10.1523/JNEUROSCI.1554-07.2007.CrossRefPubMedGoogle Scholar
  8. Barnard, N. D., Noble, E. P., Ritchie, T., Cohen, J., Jenkins, D. J. A., Turner-McGrievy, G., et al. (2009). D2 dopamine receptor Taq1A polymorphism, body weight, and dietary intake in type 2 diabetes. Nutrition, 25(1), 58–65. https://doi.org/10.1016/j.nut.2008.07.012.CrossRefPubMedGoogle Scholar
  9. Barthes, R. (1997). Toward a psychosociology of contemporary food consumption. Food and Culture: A Reader, 2, 28–35.Google Scholar
  10. Beaver, J. D., Lawrence, A. D., van Ditzhuijzen, J., Davis, M. H., Woods, A., & Calder, A. J. (2006). Individual differences in reward drive predict neural responses to images of food. Journal of Neuroscience, 26(19), 5160–5166. https://doi.org/10.1523/jneurosci.0350-06.2006.CrossRefPubMedGoogle Scholar
  11. Berridge, K. C. (2012). From prediction error to incentive salience: Mesolimbic computation of reward motivation. The European Journal of Neuroscience, 35(7), 1124–1143. https://doi.org/10.1111/j.1460-9568.2012.07990.x.CrossRefPubMedPubMedCentralGoogle Scholar
  12. Berridge, K. C., Ho, C.-Y., Richard, J. M., & DiFeliceantonio, A. G. (2010). The tempted brain eats: Pleasure and desire circuits in obesity and eating disorders. Brain Research, 1350, 43–64.CrossRefPubMedPubMedCentralGoogle Scholar
  13. Birch, L. L., & Fisher, J. A. (1995). Appetite and eating behavior in children. Pediatric Clinics of North America, 42(4), 931–953.CrossRefPubMedGoogle Scholar
  14. van Bloemendaal, L., Veltman, D. J., ten Kulve, J. S., Groot, P. F. C., Ruhé, H. G., Barkhof, F., et al. (2015). Brain reward-system activation in response to anticipation and consumption of palatable food is altered by glucagon-like peptide-1 receptor activation in humans. Diabetes, Obesity and Metabolism, 17(9), 878–886. https://doi.org/10.1111/dom.12506.CrossRefPubMedGoogle Scholar
  15. Blum, K., Braverman, E. R., Wood, R. C., Gill, J., Li, C., Chen, T. J., et al. (1996). Increased prevalence of the Taq I A1 allele of the dopamine receptor gene (DRD2) in obesity with comorbid substance use disorder: A preliminary report. Pharmacogenetics.Google Scholar
  16. Blundell, J. E., Goodson, S., & Halford, J. C. (2001). Regulation of appetite: Role of leptin in signalling systems for drive and satiety. International Journal of Obesity and Related Metabolic Disorders: Journal of the International Association for the Study of Obesity, 25(Suppl 1), S29–S34. https://doi.org/10.1038/sj.ijo.0801693.CrossRefGoogle Scholar
  17. Boyland, E. J., & Whalen, R. (2015). Food advertising to children and its effects on diet: Review of recent prevalence and impact data. Pediatric Diabetes, 16(5), 331–337.CrossRefPubMedGoogle Scholar
  18. Boyland, E. J., Nolan, S., Kelly, B., Tudur-Smith, C., Jones, A., Halford, J. C. G., & Robinson, E. (2016). Advertising as a cue to consume: A systematic review and meta-analysis of the effects of acute exposure to unhealthy food and nonalcoholic beverage advertising on intake in children and adults. The American Journal of Clinical Nutrition, ajcn120022.Google Scholar
  19. Bruce, A. S., Holsen, L. M., Chambers, R. J., Martin, L. E., Brooks, W. M., Zarcone, J. R., et al. (2010). Obese children show hyperactivation to food pictures in brain networks linked to motivation, reward and cognitive control. International Journal of Obesity, 34(10), 1494–1500. Retrieved from http://www.nature.com/ijo/journal/v34/n10/pdf/ijo201084a.pdf.CrossRefPubMedGoogle Scholar
  20. Brüning, J. C., Gautam, D., Burks, D. J., Gillette, J., Schubert, M., Orban, P. C., et al. (2000). Role of brain insulin receptor in control of body weight and reproduction. Science (New York, N.Y.), 289(5487), 2122–2125.CrossRefGoogle Scholar
  21. Burger, K. S. (2017). Frontostriatal and behavioral adaptations to daily sugar-sweetened beverage intake: A randomized controlled trial. The American Journal of Clinical Nutrition, 105(3), 555–563.CrossRefPubMedPubMedCentralGoogle Scholar
  22. Burger, K. S., & Stice, E. (2011). Variability in reward responsivity and obesity: Evidence from brain imaging studies. Current Drug Abuse Reviews, 4(3), 182.CrossRefPubMedPubMedCentralGoogle Scholar
  23. Burger, K. S., & Stice, E. (2012). Frequent ice cream consumption is associated with reduced striatal response to receipt of an ice cream-based milkshake. The American Journal of Clinical Nutrition, 95(4), 810–817. https://doi.org/10.3945/ajcn.111.027003.CrossRefPubMedPubMedCentralGoogle Scholar
  24. Burger, K. S., & Stice, E. (2013a). Elevated energy intake is correlated with hyperresponsivity in attentional, gustatory, and reward brain regions while anticipating palatable food receipt. The American Journal of Clinical Nutrition, 97(6), 1188–1194.CrossRefPubMedPubMedCentralGoogle Scholar
  25. Burger, K. S., & Stice, E. (2013b). Neural responsivity during soft drink intake, anticipation, and advertisement exposure in habitually consuming youth. Obesity, 22(2), 441–450. https://doi.org/10.1002/oby.20563.CrossRefPubMedGoogle Scholar
  26. Burger, K. S., Cornier, M. A., Ingebrigtsen, J., & Johnson, S. L. (2011). Assessing food appeal and desire to eat: The effects of portion size & energy density. The International Journal of Behavioral Nutrition and Physical Activity, 8(1), 101. https://doi.org/10.1186/1479-5868-8-101.CrossRefPubMedPubMedCentralGoogle Scholar
  27. Burger, K. S., Sanders, A. J., & Gilbert, J. R. (2016). Hedonic hunger is related to increased neural and perceptual responses to cues of palatable food and motivation to consume: Evidence from 3 independent investigations. The Journal of Nutrition, 146(9), 1807–1812.CrossRefPubMedPubMedCentralGoogle Scholar
  28. Burton, P., Smit, H. J., & Lightowler, H. J. (2007). The influence of restrained and external eating patterns on overeating. Appetite, 49(1), 191–197.CrossRefPubMedGoogle Scholar
  29. Caravaggio, F., Borlido, C., Hahn, M., Feng, Z., Fervaha, G., Gerretsen, P., et al. (2015). Reduced insulin sensitivity is related to less endogenous dopamine at d2/3 receptors in the ventral striatum of healthy nonobese humans. The International Journal of Neuropsychopharmacology / Official Scientific Journal of the Collegium Internationale Neuropsychopharmacologicum (CINP), 18(7), pyv014. https://doi.org/10.1093/ijnp/pyv014.CrossRefGoogle Scholar
  30. Chen, Y.-C., Jiao, Y., Cui, Y., Shang, S.-A., Ding, J., Feng, Y., et al. (2014). Aberrant brain functional connectivity related to insulin resistance in type 2 diabetes: A resting-state fMRI study. Diabetes Care, 37(6), 1689–1696. https://doi.org/10.2337/dc13-2127.CrossRefPubMedGoogle Scholar
  31. Contreras-Rodríguez, O., Martín-Pérez, C., Vilar-López, R., & Verdejo-Garcia, A. (2015). Ventral and dorsal striatum networks in obesity: Link to food craving and weight gain. Biological Psychiatry.Google Scholar
  32. Coppin, G., Nolan-Poupart, S., Jones-Gotman, M., & Small, D. M. (2014). Working memory and reward association learning impairments in obesity. Neuropsychologia, 65, 146–155. https://doi.org/10.1016/j.neuropsychologia.2014.10.004.CrossRefPubMedPubMedCentralGoogle Scholar
  33. Cornell, C. E., Rodin, J., & Weingarten, H. (1989). Stimulus-induced eating when satiated. Physiology & Behavior, 45(4), 695–704.CrossRefGoogle Scholar
  34. Cosgrove, K. P., Veldhuizen, M. G., Sandiego, C. M., Morris, E. D., & Small, D. M. (2015). Opposing relationships of BMI with BOLD and dopamine D2/3 receptor binding potential in the dorsal striatum. Synapse (New York, N.Y.), 69(4), 195–202. https://doi.org/10.1002/syn.21809.CrossRefGoogle Scholar
  35. Davis, C., & Claridge, G. (1998). The eating disorders as addiction: A psychobiological perspective. Addictive Behaviors, 23(4), 463–475.CrossRefPubMedGoogle Scholar
  36. Davis, C., Strachan, S., & Berkson, M. (2004). Sensitivity to reward: Implications for overeating and overweight. Appetite, 42(2), 131–138. https://doi.org/10.1016/j.appet.2003.07.004.CrossRefPubMedGoogle Scholar
  37. Dawe, S., & Loxton, N. J. (2004). The role of impulsivity in the development of substance use and eating disorders. Neuroscience and Biobehavioral Reviews, 28(3), 343–351. https://doi.org/10.1016/j.neubiorev.2004.03.007.CrossRefPubMedGoogle Scholar
  38. Demos, K. E., Heatherton, T. F., & Kelley, W. M. (2012). Individual differences in nucleus accumbens activity to food and sexual images predict weight gain and sexual behavior. The Journal of Neuroscience, 32(16), 5549–5552. https://doi.org/10.1523/JNEUROSCI.5958-11.2012.CrossRefPubMedPubMedCentralGoogle Scholar
  39. Diliberti, N., Bordi, P. L., Conklin, M. T., Roe, L. S., & Rolls, B. J. (2004). Increased portion size leads to increased energy intake in a restaurant meal. Obesity, 12(3), 562–568.CrossRefGoogle Scholar
  40. Dimitropoulos, A., Tkach, J., Ho, A., & Kennedy, J. (2012). Greater corticolimbic activation to high-calorie food cues after eating in obese vs. normal-weight adults. Appetite, 58(1), 303–312. https://doi.org/10.1016/j.appet.2011.10.014.CrossRefPubMedGoogle Scholar
  41. Dovey, T. M., Taylor, L., Stow, R., Boyland, E. J., & Halford, J. C. G. (2011). Responsiveness to healthy television (TV) food advertisements/commercials is only evident in children under the age of seven with low food neophobia. Appetite, 56(2), 440–446.CrossRefPubMedGoogle Scholar
  42. Dunn, J. P., Kessler, R. M., Feurer, I. D., Volkow, N. D., Patterson, B. W., Ansari, M. S., et al. (2012). Relationship of dopamine type 2 receptor binding potential with fasting neuroendocrine hormones and insulin sensitivity in human obesity. Diabetes Care, 35(5), 1105–1111. https://doi.org/10.2337/dc11-2250.CrossRefPubMedPubMedCentralGoogle Scholar
  43. Elfhag, K., & Rossner, S. (2005). Who succeeds in maintaining weight loss? A conceptual review of factors associated with weight loss maintenance and weight regain. Obesity Reviews, 6(1), 67–85. https://doi.org/10.1111/j.1467-789X.2005.00170.x.CrossRefPubMedGoogle Scholar
  44. Elfhag, K., Tynelius, P., & Rasmussen, F. (2007). Sugar-sweetened and artificially sweetened soft drinks in association to restrained, external and emotional eating. Physiology & Behavior, 91(2), 191–195.CrossRefGoogle Scholar
  45. Elks, C. E., den Hoed, M., Zhao, J. H., Sharp, S. J., Wareham, N. J., Loos, R. J. F., & Ong, K. K. (2012). Variability in the heritability of body mass index: A systematic review and meta-regression. Frontiers in Endocrinology, 3, 29. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/22645519.CrossRefPubMedPubMedCentralGoogle Scholar
  46. Ello-Martin, J. A., Ledikwe, J. H., & Rolls, B. J. (2005). The influence of food portion size and energy density on energy intake: Implications for weight management. The American Journal of Clinical Nutrition, 82(1), 236S–241S.CrossRefPubMedGoogle Scholar
  47. Ello-Martin, J. A., Roe, L. S., Ledikwe, J. H., Beach, A. M., & Rolls, B. J. (2007). Dietary energy density in the treatment of obesity: A year-long trial comparing 2 weight-loss diets. The American Journal of Clinical Nutrition, 85(6), 1465–1477.CrossRefPubMedPubMedCentralGoogle Scholar
  48. Ely, A. V., Howard, J., & Lowe, M. R. (2015). Delayed discounting and hedonic hunger in the prediction of lab-based eating behavior. Eating Behaviors, 19, 72–75.CrossRefPubMedGoogle Scholar
  49. English, P. J., Ghatei, M. A., Malik, I. A., Bloom, S. R., & Wilding, J. P. H. (2002). Food fails to suppress ghrelin levels in obese humans. Journal of Clinical Endocrinology & Metabolism, 87(6), 2984.CrossRefGoogle Scholar
  50. Epstein, L. H., Temple, J. L., Neaderhiser, B. J., Salis, R. J., Erbe, R. W., & Leddy, J. J. (2007). Food reinforcement, the dopamine D2 receptor genotype, and energy intake in obese and nonobese humans. Behavioral Neuroscience, 121(5), 877–886. https://doi.org/10.1037/0735-7044.121.5.877.CrossRefPubMedPubMedCentralGoogle Scholar
  51. Faith, M. S., Berkowitz, R. I., Stallings, V. A., Kerns, J., Storey, M., & Stunkard, A. J. (2006). Eating in the absence of hunger: A genetic marker for childhood obesity in prepubertal boys? Obesity, 14(1), 131–138.CrossRefPubMedGoogle Scholar
  52. Farooqi, I. S., Bullmore, E., Keogh, J., Gillard, J., O’Rahilly, S., & Fletcher, P. C. (2007). Leptin regulates striatal regions and human eating behavior. Science, 317(5843), 1355. https://doi.org/10.1126/science.1144599.CrossRefPubMedGoogle Scholar
  53. Farr, O. M., Sofopoulos, M., Tsoukas, M. A., Dincer, F., Thakkar, B., Sahin-Efe, A., et al. (2016a). GLP-1 receptors exist in the parietal cortex, hypothalamus and medulla of human brains and the GLP-1 analogue liraglutide alters brain activity related to highly desirable food cues in individuals with diabetes: A crossover, randomised, placebo-controlled. Diabetologia, 59(5), 954–965. https://doi.org/10.1007/s00125-016-3874-y.CrossRefPubMedPubMedCentralGoogle Scholar
  54. Farr, O. M., Tsoukas, M. A., Triantafyllou, G., Dincer, F., Filippaios, A., Ko, B.-J., & Mantzoros, C. S. (2016b). Short-term administration of the GLP-1 analog liraglutide decreases circulating leptin and increases GIP levels and these changes are associated with alterations in CNS responses to food cues: A randomized, placebo-controlled, crossover study. Metabolism, 65(7), 945–953. https://doi.org/10.1016/j.metabol.2016.03.009.CrossRefPubMedPubMedCentralGoogle Scholar
  55. Feldstein Ewing, S. W., Claus, E. D., Hudson, K. A., Filbey, F. M., Yakes Jimenez, E., Lisdahl, K. M., & Kong, A. S. (2016). Overweight adolescents’ brain response to sweetened beverages mirrors addiction pathways. Brain Imaging and Behavior. https://doi.org/10.1007/s11682-016-9564-z.
  56. Felsted, J. A., Ren, X., Chouinard-Decorte, F., & Small, D. M. (2010). Genetically determined differences in brain response to a primary food reward. Journal of Neuroscience, 30(7), 2428–2432. https://doi.org/10.1523/jneurosci.5483-09.2010.CrossRefPubMedGoogle Scholar
  57. Fetissov, S. O., Meguid, M. M., Sato, T., & Zhang, L.-H. (2002). Expression of dopaminergic receptors in the hypothalamus of lean and obese Zucker rats and food intake. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 283(4), R905–R910. Retrieved from http://ajpregu.physiology.org/content/ajpregu/283/4/R905.full.pdf.CrossRefPubMedGoogle Scholar
  58. Figlewicz, D. P., Szot, P., Chavez, M., Woods, S. C., & Veith, R. C. (1994). Intraventricular insulin increases dopamine transporter mRNA in rat VTA/substantia nigra. Brain Research, 644(2), 331–334.CrossRefPubMedGoogle Scholar
  59. Fisher, J. O., & Kral, T. V. E. (2008). Super-size me: Portion size effects on young children’s eating. Physiology & Behavior, 94(1), 39–47.CrossRefGoogle Scholar
  60. Fisher, J. O., Rolls, B. J., & Birch, L. L. (2003). Children’s bite size and intake of an entree are greater with large portions than with age-appropriate or self-selected portions. The American Journal of Clinical Nutrition, 77(5), 1164–1170.CrossRefPubMedCentralGoogle Scholar
  61. Flegal, K. M., Carroll, M. D., Kit, B. K., & Ogden, C. L. (2012). Prevalence of obesity and trends in the distribution of body mass index among US adults, 1999-2010. Jama-Journal of the American Medical Association, 307(5), 491–497. https://doi.org/10.1001/jama.2012.39.CrossRefGoogle Scholar
  62. Flegal, K. M., Kruszon-Moran, D., Carroll, M. D., Fryar, C. D., & Ogden, C. L. (2016). Trends in obesity among adults in the United States, 2005 to 2014. JAMA, 315(21), 2284. https://doi.org/10.1001/jama.2016.6458.CrossRefPubMedGoogle Scholar
  63. Frank, M. J., Moustafa, A. A., Haughey, H. M., Curran, T., & Hutchison, K. E. (2007). Genetic triple dissociation reveals multiple roles for dopamine in reinforcement learning. Proceedings of the National Academy of Sciences of the United States of America, 104(41), 16311–16316. https://doi.org/10.1073/pnas.0706111104.CrossRefPubMedPubMedCentralGoogle Scholar
  64. Frank, G. K. W., Reynolds, J. R., Shott, M. E., Jappe, L., Yang, T. T., Tregellas, J. R., & O’Reilly, R. C. (2012). Anorexia nervosa and obesity are associated with opposite brain reward response. Neuropsychopharmacology, 37(9), 2031–2046. Retrieved from http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3398719/pdf/npp201251a.pdf.CrossRefPubMedPubMedCentralGoogle Scholar
  65. Frankort, A., Roefs, A., Siep, N., Roebroeck, A., Havermans, R., & Jansen, A. (2012). Reward activity in satiated overweight women is decreased during unbiased viewing but increased when imagining taste: An event-related fMRI study. International Journal of Obesity, 36(5), 627–637. https://doi.org/10.1038/ijo.2011.213.CrossRefPubMedGoogle Scholar
  66. Gallwitz, B. (2012). Anorexigenic effects of GLP-1 and its analogues. In Handbook of experimental pharmacology (pp. 185–207). https://doi.org/10.1007/978-3-642-24716-3_8.Google Scholar
  67. Geha, P. Y., Aschenbrenner, K., Felsted, J., O’Malley, S. S., & Small, D. M. (2013). Altered hypothalamic response to food in smokers. The American Journal of Clinical Nutrition, 97(1), 15–22. Retrieved from http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3522134/pdf/ajcn97115.pdf.CrossRefPubMedGoogle Scholar
  68. Gilbert, J. R., & Burger, K. S. (2016). Neuroadaptive processes associated with palatable food intake: Present data and future directions. Current Opinion in Behavioral Sciences, 9, 91–96.CrossRefGoogle Scholar
  69. Goldstone, A. P., Prechtl, C. G., Scholtz, S., Miras, A. D., Chhina, N., Durighel, G., et al. (2014). Ghrelin mimics fasting to enhance human hedonic, orbitofrontal cortex, and hippocampal responses to food. The American Journal of Clinical Nutrition, 99(6), 1319–1330. https://doi.org/10.3945/ajcn.113.075291.CrossRefPubMedGoogle Scholar
  70. Green, E., & Murphy, C. (2012). Altered processing of sweet taste in the brain of diet soda drinkers. Physiology & Behavior, 107(4), 560–567.CrossRefGoogle Scholar
  71. Green, E., Jacobson, A., Haase, L., & Murphy, C. (2011). Reduced nucleus accumbens and caudate nucleus activation to a pleasant taste is associated with obesity in older adults. Brain Research, 1386, 109–117. Retrieved from http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3086067/pdf/nihms284828.pdf.CrossRefPubMedPubMedCentralGoogle Scholar
  72. de Groot, C., Felius, A., Trompet, S., de Craen, A. J. M., Blauw, G. J., van Buchem, M. A., et al. (2015). Association of the fat mass and obesity-associated gene risk allele, rs9939609A, and reward-related brain structures. Obesity, 23(10), 2118–2122. https://doi.org/10.1002/oby.21191.CrossRefPubMedGoogle Scholar
  73. Grosshans, M., Vollmert, C., Vollstädt-Klein, S., Tost, H., Leber, S., Bach, P., et al. (2012). Association of leptin with food cue-induced activation in human reward pathways. Archives of General Psychiatry, 69(5), 529–537. https://doi.org/10.1001/archgenpsychiatry.2011.1586.CrossRefPubMedGoogle Scholar
  74. Haan, M. N. (2006). Therapy insight: Type 2 diabetes mellitus and the risk of late-onset Alzheimer’s disease. Nature Clinical Practice. Neurology, 2(3), 159–166. https://doi.org/10.1038/ncpneuro0124.CrossRefPubMedGoogle Scholar
  75. Halford, J. C. G., Boyland, E. J., Hughes, G., Oliveira, L. P., & Dovey, T. M. (2007). Beyond-brand effect of television (TV) food advertisements/commercials on caloric intake and food choice of 5–7-year-old children. Appetite, 49(1), 263–267.CrossRefPubMedGoogle Scholar
  76. Hallschmid, M., Higgs, S., Thienel, M., Ott, V., & Lehnert, H. (2012). Postprandial administration of intranasal insulin intensifies satiety and reduces intake of palatable snacks in women. Diabetes, 61(4), 782–789. https://doi.org/10.2337/db11-1390.CrossRefPubMedPubMedCentralGoogle Scholar
  77. Harris, R. B. (1990). Role of set-point theory in regulation of body weight. The FASEB Journal, 4(15), 3310–3318.CrossRefPubMedGoogle Scholar
  78. Harris, J. L., Bargh, J. A., & Brownell, K. D. (2009). Priming Effects of Television Food Advertising on Eating Behavior, 28(4), 404–413. https://doi.org/10.1037/a0014399.CrossRefGoogle Scholar
  79. Heni, M., Kullmann, S., Ketterer, C., Guthoff, M., Bayer, M., Staiger, H., et al. (2014a). Differential effect of glucose ingestion on the neural processing of food stimuli in lean and overweight adults. Human Brain Mapping, 35(3), 918–928. https://doi.org/10.1002/hbm.22223.CrossRefPubMedGoogle Scholar
  80. Heni, M., Kullmann, S., Veit, R., Ketterer, C., Frank, S., Machicao, F., et al. (2014b). Variation in the obesity risk gene FTO determines the postprandial cerebral processing of food stimuli in the prefrontal cortex. Molecular Metabolism, 3(2), 109–113. https://doi.org/10.1016/j.molmet.2013.11.009.CrossRefPubMedGoogle Scholar
  81. Heni, M., Kullmann, S., Gallwitz, B., Häring, H.-U., Preissl, H., & Fritsche, A. (2015). Dissociation of GLP-1 and insulin association with food processing in the brain: GLP-1 sensitivity despite insulin resistance in obese humans. Molecular Metabolism, 4(12), 971–976. https://doi.org/10.1016/j.molmet.2015.09.007.CrossRefPubMedPubMedCentralGoogle Scholar
  82. Heni, M., Wagner, R., Kullmann, S., Gancheva, S., Roden, M., Peter, A., et al. (2017). Hypothalamic and Striatal insulin action suppresses endogenous glucose production and may stimulate glucose uptake during Hyperinsulinemia in lean but not in overweight men. Diabetes, db161380. https://doi.org/10.2337/db16-1380.
  83. Herman, C. P., & Mack, D. (1975). Restrained and unrestrained eating. Journal of Personality, 43(4), 647–660.CrossRefPubMedGoogle Scholar
  84. Herman, C. P., & Polivy, J. (2008). External cues in the control of food intake in humans: The sensory-normative distinction. Physiology & Behavior, 94(5), 722–728.CrossRefGoogle Scholar
  85. Hess, M. E., Hess, S., Meyer, K. D., Verhagen, W. L. A., Koch, L., Brönneke, H. S., et al. (2013). The fat mass and obesity associated gene (FTO) regulates activity of the dopaminergic midbrain circuitry. Nature Publishing Group, 16. https://doi.org/10.1038/nn.3449.CrossRefPubMedGoogle Scholar
  86. Huang, X.-F., Zavitsanou, K., Huang, X., Yu, Y., Wang, H., Chen, F., et al. (2006). Dopamine transporter and D2 receptor binding densities in mice prone or resistant to chronic high fat diet-induced obesity. Behavioural Brain Research, 175(2), 415–419.CrossRefPubMedGoogle Scholar
  87. Hui, H., Farilla, L., Merkel, P., & Perfetti, R. (2002). The short half-life of glucagon-like peptide-1 in plasma does not reflect its long-lasting beneficial effects. European Journal of Endocrinology, 146(6), 863–869.CrossRefPubMedGoogle Scholar
  88. Jacobson, P., Torgerson, J. S., Sjostrom, L., & Bouchard, C. (2006). Spouse resemblance in body mass index: Effects on adult obesity prevalence in the offspring generation. American Journal of Epidemiology, 165(1), 101–108. https://doi.org/10.1093/aje/kwj342.CrossRefPubMedGoogle Scholar
  89. Jastreboff, A. M., Sinha, R., Lacadie, C., Small, D. M., Sherwin, R. S., & Potenza, M. N. (2013). Neural correlates of stress- and food cue-induced food craving in obesity: Association with insulin levels. Diabetes Care, 36(2), 394–402. https://doi.org/10.2337/dc12-1112.CrossRefPubMedPubMedCentralGoogle Scholar
  90. Jastreboff, A. M., Lacadie, C., Seo, D., Kubat, J., Van Name, M. A., Giannini, C., et al. (2014). Leptin is associated with exaggerated brain reward and emotion responses to food images in adolescent obesity. Diabetes Care, 37(11), 3061–3068. https://doi.org/10.2337/dc14-0525.CrossRefPubMedPubMedCentralGoogle Scholar
  91. Jauch-Chara, K., Friedrich, A., Rezmer, M., Melchert, U. H., Scholand-Engler, G., Hallschmid, H. M., & Oltmanns, K. M. (2012). Intranasal insulin suppresses food intake via enhancement of brain energy levels in humans. Diabetes, 61(9), 2261–2268. https://doi.org/10.2337/db12-0025.CrossRefPubMedPubMedCentralGoogle Scholar
  92. Jia, G., Fu, Y., Zhao, X., Dai, Q., Zheng, G., Yang, Y., et al. (2011). N6-methyladenosine in nuclear RNA is a major substrate of the obesity-associated FTO. Nature Chemical Biology, 7(12), 885–887. https://doi.org/10.1038/nchembio.687.CrossRefPubMedPubMedCentralGoogle Scholar
  93. Johnson, P. M., & Kenny, P. J. (2010). Dopamine D2 receptors in addiction-like reward dysfunction and compulsive eating in obese rats. Nature Neuroscience, 13(5), 635–641.CrossRefPubMedPubMedCentralGoogle Scholar
  94. Johnson, F., & Wardle, J. (2014). Variety, palatability, and obesity. Advances in Nutrition (Bethesda, Md.), 5(6), 851–859. https://doi.org/10.3945/an.114.007120.CrossRefGoogle Scholar
  95. Johnson, F., Pratt, M., & Wardle, J. (2012). Dietary restraint and self-regulation in eating behavior. International Journal of Obesity, 36(5), 665–674.CrossRefPubMedGoogle Scholar
  96. Kalra, S. P. (2001). Circumventing leptin resistance for weight control. Proceedings of the National Academy of Sciences of the United States of America, 98(8), 4279–4281. https://doi.org/10.1073/pnas.091101498.CrossRefPubMedPubMedCentralGoogle Scholar
  97. Karra, E., O’Daly, O. G., Choudhury, A. I., Yousseif, A., Millership, S., Neary, M. T., et al. (2013). A link between FTO, ghrelin, and impaired brain food-cue responsivity. The Journal of Clinical Investigation, 123(8), 3539–3551. https://doi.org/10.1172/JCI44403.CrossRefPubMedPubMedCentralGoogle Scholar
  98. Kirsch, P., Reuter, M., Mier, D., Lonsdorf, T., Stark, R., Gallhofer, B., et al. (2006). Imaging gene-substance interactions: The effect of the DRD2 TaqIA polymorphism and the dopamine agonist bromocriptine on the brain activation during the anticipation of reward. Neuroscience Letters, 405(3), 196–201. https://doi.org/10.1016/j.neulet.2006.07.030.CrossRefPubMedGoogle Scholar
  99. Kling, S. M. R., Roe, L. S., Keller, K. L., & Rolls, B. J. (2016). Double trouble: Portion size and energy density combine to increase preschool children’s lunch intake. Physiology & Behavior, 162, 18–26.CrossRefGoogle Scholar
  100. Koordeman, R., Anschutz, D. J., van Baaren, R. B., & Engels, R. C. M. E. (2010). Exposure to soda commercials affects sugar-sweetened soda consumption in young women. An observational experimental study. Appetite, 54(3), 619–622.CrossRefPubMedGoogle Scholar
  101. Kroemer, N. B., & Small, D. M. (2016). Fuel not fun: Reinterpreting attenuated brain responses to reward in obesity. Physiology & Behavior, 162, 37–45. https://doi.org/10.1016/j.physbeh.2016.04.020.CrossRefGoogle Scholar
  102. Kroemer, N. B., Krebs, L., Kobiella, A., Grimm, O., Vollstädt-Klein, S., Wolfensteller, U., et al. (2013). (still) longing for food: Insulin reactivity modulates response to food pictures. Human Brain Mapping, 34(10), 2367–2380. https://doi.org/10.1002/hbm.22071.CrossRefPubMedGoogle Scholar
  103. Kullmann, S., Heni, M., Veit, R., Ketterer, C., Schick, F., Häring, H.-U. H. H.-U., et al. (2012). The obese brain: Association of body mass index and insulin sensitivity with resting state network functional connectivity. Human Brain Mapping, 33(5), 1052–1061. https://doi.org/10.1002/hbm.21268.CrossRefPubMedGoogle Scholar
  104. Kumar, S., Raju, M., & Gowda, N. (2010). Influence of parental obesity on school children. The Indian Journal of Pediatrics, 77(3), 255–258. https://doi.org/10.1007/s12098-010-0015-3.CrossRefPubMedGoogle Scholar
  105. Kunath, N., Müller, N. C. J., Tonon, M., Konrad, B. N., Pawlowski, M., Kopczak, A., et al. (2016). Ghrelin modulates encoding-related brain function without enhancing memory formation in humans. NeuroImage, 142, 465–473. https://doi.org/10.1016/j.neuroimage.2016.07.016.CrossRefPubMedGoogle Scholar
  106. Langeveld, M., & DeVries, J. H. (2015). The long-term effect of energy restricted diets for treating obesity. Obesity, 23(8), 1529–1538. https://doi.org/10.1002/oby.21146.CrossRefPubMedGoogle Scholar
  107. Ledikwe, J. H., Blanck, H. M., Khan, L. K., Serdula, M. K., Seymour, J. D., Tohill, B. C., & Rolls, B. J. (2006). Low-energy-density diets are associated with high diet quality in adults in the United States. Journal of the American Dietetic Association, 106(8), 1172–1180.CrossRefPubMedGoogle Scholar
  108. Ledikwe, J. H., Rolls, B. J., Smiciklas-Wright, H., Mitchell, D. C., Ard, J. D., Champagne, C., et al. (2007). Reductions in dietary energy density are associated with weight loss in overweight and obese participants in the PREMIER trial. The American Journal of Clinical Nutrition, 85(5), 1212–1221.CrossRefPubMedGoogle Scholar
  109. Leibel, R. L. (2008). Molecular physiology of weight regulation in mice and humans. International Journal of Obesity, 32, S98–S108.CrossRefPubMedGoogle Scholar
  110. Logothetis, N. K., Pauls, J., Augath, M., Trinath, T., & Oeltermann, A. (2001). Neurophysiological investigation of the basis of the fMRI signal. Nature, 412 (6843), 150.CrossRefPubMedGoogle Scholar
  111. Loos, R. J. F., & Yeo, G. S. H. (2014). The bigger picture of FTO: The first GWAS-identified obesity gene. Nature Reviews. Endocrinology, 10(1), 51–61. https://doi.org/10.1038/nrendo.2013.227.CrossRefPubMedGoogle Scholar
  112. Lowe, M. R., & Butryn, M. L. (2007). Hedonic hunger: A new dimension of appetite? Physiology & Behavior, 91(4), 432–439. https://doi.org/10.1016/j.physbeh.2007.04.006.CrossRefGoogle Scholar
  113. Lowe, M. R., Butryn, M. L., Didie, E. R., Annunziato, R. A., Thomas, J. G., Crerand, C. E., et al. (2009). The power of food scale. A new measure of the psychological influence of the food environment. Appetite, 53(1), 114–118. https://doi.org/10.1016/j.appet.2009.05.016.CrossRefPubMedGoogle Scholar
  114. Lowe, M. R., Arigo, D., Butryn, M. L., Gilbert, J. R., Sarwer, D., & Stice, E. (2016). Hedonic hunger prospectively predicts onset and maintenance of loss of control eating among college women. Health Psychology, 35(3), 238.CrossRefPubMedGoogle Scholar
  115. MacLean, P. S., Wing, R. R., Davidson, T., Epstein, L., Goodpaster, B., Hall, K. D., et al. (2015). NIH working group report: Innovative research to improve maintenance of weight loss. Obesity, 23(1), 7–15. https://doi.org/10.1002/oby.20967.CrossRefPubMedGoogle Scholar
  116. Malik, S., McGlone, F., Bedrossian, D., & Dagher, A. (2008). Ghrelin modulates brain activity in areas that control appetitive behavior. Cell Metabolism, 7(5), 400–409. Retrieved from http://ac.els-cdn.com/S1550413108000788/1-s2.0-S1550413108000788-main.pdf?_tid=443beeaa-e1de-11e3-8bb1-00000aab0f6c&acdnat=1400783229_25281b85b5a58e9889dc4a0aa30cb36d.CrossRefPubMedGoogle Scholar
  117. Man, M. S., Clarke, H. F., & Roberts, A. C. (2009). The role of the orbitofrontal cortex and medial striatum in the regulation of prepotent responses to food rewards. Cerebral Cortex, 19(4), 899–906. Retrieved from http://cercor.oxfordjournals.org/content/19/4/899.full.pdf.CrossRefPubMedGoogle Scholar
  118. Martin, C. K., Coulon, S. M., Markward, N., Greenway, F. L., & Anton, S. D. (2009a). Association between energy intake and viewing television, distractibility, and memory for advertisements. The American Journal of Clinical Nutrition, 89(1), 37–44.CrossRefPubMedGoogle Scholar
  119. Martin, L. E., Holsen, L. M., Chambers, R. J., Bruce, A. S., Brooks, W. M., Zarcone, J. R., et al. (2009b). Neural mechanisms associated with food motivation in obese and healthy weight adults. Obesity, 18(2), 254–260. Retrieved from http://onlinelibrary.wiley.com/store/10.1038/oby.2009.220/asset/oby.2009.220.pdf?v=1&t=hvie1us5&s=9e7326e9ee6e5317496a95a030883ab36244d626.CrossRefPubMedGoogle Scholar
  120. Mathar, D., Neumann, J., Villringer, A., & Horstmann, A. (2017). Failing to learn from negative prediction errors: Obesity is associated with alterations in a fundamental neural learning mechanism. Cortex. https://doi.org/10.1016/j.cortex.2017.08.022.
  121. Mayer, J. (1953). Glucostatic mechanism of regulation of food intake. The New England Journal of Medicine, 249(1), 13–16. https://doi.org/10.1056/NEJM195307022490104.CrossRefPubMedGoogle Scholar
  122. Merchenthaler, I., Lane, M., & Shughrue, P. (1999). Distribution of pre-pro-glucagon and glucagon-like peptide-1 receptor messenger RNAs in the rat central nervous system. The Journal of Comparative Neurology, 403(2), 261–280. https://doi.org/10.1002/(SICI)1096-9861(19990111)403:2<261::AID-CNE8=3.0.CO;2-5.CrossRefPubMedGoogle Scholar
  123. Miller, E. K., & Cohen, J. D. (2001). An integrative theory of prefrontal cortex function. Annual Review of Neuroscience, 24(1), 167–202. https://doi.org/10.1146/annurev.neuro.24.1.167.CrossRefPubMedGoogle Scholar
  124. Murray, S., Tulloch, A., Gold, M. S., & Avena, N. M. (2014). Hormonal and neural mechanisms of food reward, eating behaviour and obesity. Nature Reviews. Endocrinology, 10(9), 540–552. https://doi.org/10.1038/nrendo.2014.91.CrossRefPubMedGoogle Scholar
  125. ten Kulve, J. S., Veltman, D. J., van Bloemendaal, L., Groot, P. F. C., Ruhé, H. G., Barkhof, F., et al. (2016). Endogenous GLP1 and GLP1 analogue alter CNS responses to palatable food consumption. Journal of Endocrinology, 229(1), 1–12. https://doi.org/10.1530/JOE-15-0461.CrossRefPubMedGoogle Scholar
  126. Ng, J., Stice, E., Yokum, S., & Bohon, C. (2011). An fMRI study of obesity, food reward, and perceived caloric density. Does a low-fat label make food less appealing? Appetite, 57(1), 65–72. https://doi.org/10.1016/j.appet.2011.03.017.CrossRefPubMedPubMedCentralGoogle Scholar
  127. Nummenmaa, L., Hirvonen, J., Hannukainen, J. C., Immonen, H., Lindroos, M. M., Salminen, P., & Nuutila, P. (2012). Dorsal striatum and its limbic connectivity mediate abnormal anticipatory reward processing in obesity. PLoS One, 7(2). https://doi.org/10.1371/journal.pone.0031089.CrossRefPubMedPubMedCentralGoogle Scholar
  128. Page, K. A., Chan, O., Arora, J., Belfort-Deaguiar, R., Dzuira, J., Roehmholdt, B., et al. (2013). Effects of fructose vs glucose on regional cerebral blood flow in brain regions involved with appetite and reward pathways. JAMA, 309(1), 63–70. https://doi.org/10.1001/jama.2012.116975.CrossRefPubMedPubMedCentralGoogle Scholar
  129. Pliquett, R. U., Führer, D., Falk, S., Zysset, S., von Cramon, D. Y., & Stumvoll, M. (2006). The effects of insulin on the central nervous system--focus on appetite regulation. Hormone and Metabolic Research = Hormon- Und Stoffwechselforschung = Hormones et Métabolisme, 38(7), 442–446. https://doi.org/10.1055/s-2006-947840.CrossRefPubMedGoogle Scholar
  130. Polivy, J., & Herman, C. P. (1985). Dieting and binging: A causal analysis. American Psychologist, 40(2), 193.CrossRefPubMedGoogle Scholar
  131. Porubská, K., Veit, R., Preissl, H., Fritsche, A., & Birbaumer, N. (2006). Subjective feeling of appetite modulates brain activity: An fMRI study. NeuroImage, 32(3), 1273–1280. https://doi.org/10.1016/j.neuroimage.2006.04.216.CrossRefPubMedGoogle Scholar
  132. Potter, G. M., Moshirfar, A., & Castonguay, T. W. (1999). Insulin affects dopamine overflow in the nucleus accumbens and the striatum. Physiology & Behavior, 65(4–5), 811–816.Google Scholar
  133. Powell, L. M., Szczypka, G., Chaloupka, F. J., & Braunschweig, C. L. (2007). Nutritional content of television food advertisements seen by children and adolescents in the United States. Pediatrics, 120(3), 576–583. https://doi.org/10.1542/peds.2006-3595.CrossRefPubMedGoogle Scholar
  134. Rath, S. R., Marsh, J. A., Newnham, J. P., Zhu, K., Atkinson, H. C., Mountain, J., et al. (2016). Parental pre-pregnancy BMI is a dominant early-life risk factor influencing BMI of offspring in adulthood. Obesity Science & Practice, 2(1), 48–57. https://doi.org/10.1002/osp4.28.CrossRefGoogle Scholar
  135. Rogers, P. J., & Brunstrom, J. M. (2016). Appetite and energy balancing. Physiology & Behavior. https://doi.org/10.1016/j.physbeh.2016.03.038.CrossRefGoogle Scholar
  136. Rolls, B. J., & Barnett, R. A. (2000). Volumetrics. HarperCollins.Google Scholar
  137. Rolls, B. J., Rowe, E. A., & Rolls, E. T. (1982). How flavour and appearance affect human feeding. Proceedings of the Nutrition Society, 41(2), 109–117.CrossRefPubMedGoogle Scholar
  138. Rolls, B. J., Morris, E. L., & Roe, L. S. (2002). Portion size of food affects energy intake in normal-weight and overweight men and women. The American Journal of Clinical Nutrition, 76(6), 1207–1213.CrossRefPubMedGoogle Scholar
  139. Rolls, B. J., Roe, L. S., Meengs, J. S., & Wall, D. E. (2004a). Increasing the portion size of a sandwich increases energy intake. Journal of the American Dietetic Association, 104(3), 367–372.CrossRefPubMedGoogle Scholar
  140. Rolls, B. J., Roe, L. S., Kral, T. V. E., Meengs, J. S., & Wall, D. E. (2004b). Increasing the portion size of a packaged snack increases energy intake in men and women. Appetite, 42(1), 63–69.CrossRefPubMedGoogle Scholar
  141. Rolls, B. J., Roe, L. S., & Meengs, J. S. (2006). Larger portion sizes lead to a sustained increase in energy intake over 2 days. Journal of the American Dietetic Association, 106(4), 543–549.CrossRefPubMedGoogle Scholar
  142. Rolls, B. J., Roe, L. S., James, B. L., & Sanchez, C. E. (2017). Does the incorporation of portion-control strategies in a behavioral program improve weight loss in a one-year randomized controlled trial? International Journal of Obesity (2005), 41(3), 434.CrossRefGoogle Scholar
  143. Rothemund, Y., Preuschhof, C., Bohner, G., Bauknecht, H.-C., Klingebiel, R., Flor, H., & Klapp, B. F. (2007). Differential activation of the dorsal striatum by high-calorie visual food stimuli in obese individuals. NeuroImage, 37(2), 410–421. https://doi.org/10.1016/j.neuroimage.2007.05.008.CrossRefPubMedGoogle Scholar
  144. Rudenga, K. J., & Small, D. M. (2012). Amygdala response to sucrose consumption is inversely related to artificial sweetener use. Appetite, 58(2), 504–507. https://doi.org/10.1016/j.appet.2011.12.001.CrossRefPubMedGoogle Scholar
  145. Salbe, A. D., Weyer, C., Harper, I., Lindsay, R. S., Ravussin, E., & Tataranni, P. A. (2002). Assessing risk factors for obesity between childhood and adolescence : II. Energy Metabolism and Physical Activity, 110(2), 307–314.Google Scholar
  146. Sandoval, D., & Sisley, S. R. (2015). Brain GLP-1 and insulin sensitivity. Molecular and Cellular Endocrinology. https://doi.org/10.1016/j.mce.2015.02.017.
  147. Schlogl, H., Kabisch, S., Horstmann, A., Lohmann, G., Muller, K., Lepsien, J., et al. (2013). Exenatide-induced reduction in energy intake is associated with increase in hypothalamic connectivity. Diabetes Care, 36(7), 1933–1940. https://doi.org/10.2337/dc12-1925.CrossRefPubMedPubMedCentralGoogle Scholar
  148. Schultes, B., Ernst, B., Wilms, B., Thurnheer, M., & Hallschmid, M. (2010). Hedonic hunger is increased in severely obese patients and is reduced after gastric bypass surgery. The American Journal of Clinical Nutrition, 92, 277–283. https://doi.org/10.3945/ajcn.2009.29007.INTRODUCTION.CrossRefPubMedGoogle Scholar
  149. Seppälä-Lindroos, A., Vehkavaara, S., Häkkinen, A.-M., Goto, T., Westerbacka, J., Sovijärvi, A., et al. (2002). Fat accumulation in the liver is associated with defects in insulin suppression of glucose production and serum free fatty acids independent of obesity in normal men. The Journal of Clinical Endocrinology & Metabolism, 87(7), 3023–3028. https://doi.org/10.1210/jcem.87.7.8638.CrossRefGoogle Scholar
  150. Sevgi, M., Rigoux, L., Kuhn, A. B., Mauer, J., Schilbach, L., Hess, M. E., et al. (2015). An obesity-predisposing variant of the FTO gene regulates D2R-dependent reward learning. Journal of Neuroscience, 35(36), 12584–12592. https://doi.org/10.1523/JNEUROSCI.1589-15.2015.CrossRefPubMedGoogle Scholar
  151. Shearrer, G., Stice, E., & Burger, K. (2017). Adolescents with versus without parental obesity show greater striatal response to increased sugar, but not fat content of milkshakes. https://doi.org/10.17605/OSF.IO/7J4EH.
  152. Simon, J. J., Skunde, M., Hamze Sinno, M., Brockmeyer, T., Herpertz, S. C., Bendszus, M., et al. (2014). Impaired cross-talk between Mesolimbic food reward processing and metabolic signaling predicts body mass index. Frontiers in Behavioral Neuroscience, 8, 359. https://doi.org/10.3389/fnbeh.2014.00359.CrossRefPubMedPubMedCentralGoogle Scholar
  153. Small, C. J., & Bloom, S. R. (2004). Gut hormones as peripheral anti obesity targets. Current Drug Targets. CNS and Neurological Disorders, 3(5), 379–388.CrossRefPubMedGoogle Scholar
  154. Stice, E., Spoor, S., Bohon, C., Veldhuizen, M. G., & Small, D. M. (2008a). Relation of reward from food intake and anticipated food intake to obesity: A functional magnetic resonance imaging study. Journal of Abnormal Psychology, 117(4), 924–935. https://doi.org/10.1037/a0013600.CrossRefPubMedPubMedCentralGoogle Scholar
  155. Stice, E., Spoor, S., Bohon, C., & Small, D. M. (2008b). Relation between obesity and blunted striatal response to food is moderated by TaqIA A1 allele. Science, 322(5900), 449–452. https://doi.org/10.1126/science.1161550.CrossRefPubMedGoogle Scholar
  156. Stice, E., Yokum, S., Bohon, C., Marti, N., & Smolen, A. (2010a). Reward circuitry responsivity to food predicts future increases in body mass: Moderating effects of DRD2 and DRD4. NeuroImage, 50(4), 1618–1625. https://doi.org/10.1016/j.neuroimage.2010.01.081.CrossRefPubMedPubMedCentralGoogle Scholar
  157. Stice, E., Yokum, S., Blum, K., & Bohon, C. (2010b). Weight gain is associated with reduced Striatal response to palatable food. Journal of Neuroscience, 30(39), 13105–13109. https://doi.org/10.1523/jneurosci.2105-10.2010.CrossRefPubMedGoogle Scholar
  158. Stice, E., Yokum, S., Burger, K. S., Epstein, L. H., & Small, D. M. (2011). Youth at risk for obesity show greater activation of striatal and somatosensory regions to food. The Journal of Neuroscience, 31(12), 4360–4366. https://doi.org/10.1523/JNEUROSCI.6604-10.2011.CrossRefPubMedPubMedCentralGoogle Scholar
  159. Stice, E., Burger, K. S., & Yokum, S. (2015). Reward region Responsivity predicts future weight gain and moderating effects of the TaqIA allele. The Journal of Neuroscience, 35(28), 10316–10324.CrossRefPubMedPubMedCentralGoogle Scholar
  160. Stoeckel, L. E., Weller, R. E., Cook, E. W., III, Twieg, D. B., Knowlton, R. C., & Cox, J. E. (2008). Widespread reward-system activation in obese women in response to pictures of high-calorie foods. NeuroImage, 41(2), 636–647. https://doi.org/10.1016/j.neuroimage.2008.02.031.CrossRefPubMedGoogle Scholar
  161. Sun, X., Veldhuizen, M. G., Wray, A. E., de Araujo, I. E., Sherwin, R. S., Sinha, R., & Small, D. M. (2014). The neural signature of satiation is associated with ghrelin response and triglyceride metabolism. Physiology & Behavior, 136, 63–73. https://doi.org/10.1016/j.physbeh.2014.04.017.CrossRefGoogle Scholar
  162. Sun, X., Kroemer, N. B., Veldhuizen, M. G., Babbs, A. E., de Araujo, I. E., Gitelman, D. R., et al. (2015). Basolateral Amygdala response to food cues in the absence of hunger is associated with weight gain susceptibility. The Journal of Neuroscience, 35(20), 7964–7976.CrossRefPubMedPubMedCentralGoogle Scholar
  163. Sun, X., Veldhuizen, M. G., Babbs, A. E., Sinha, R., & Small, D. M. (2016). Perceptual and brain response to odors is associated with body mass index and postprandial Total Ghrelin reactivity to a meal. Chemical Senses, 41(3), 233–248. https://doi.org/10.1093/chemse/bjv081.CrossRefPubMedPubMedCentralGoogle Scholar
  164. Sun, X., Luquet, S., & Small, D. M. (2017). DRD2: Bridging the genome and Ingestive behavior. Trends in Cognitive Sciences, 21(5), 372–384. https://doi.org/10.1016/j.tics.2017.03.004.CrossRefPubMedPubMedCentralGoogle Scholar
  165. Svetkey, L. P., Stevens, V. J., Brantley, P. J., Appel, L. J., Hollis, J. F., Loria, C. M., et al. (2008). Comparison of strategies for sustaining weight loss: The weight loss maintenance randomized controlled trial. JAMA, 299(10), 1139–1148.CrossRefPubMedGoogle Scholar
  166. Thanos, P. K., Michaelides, M., Piyis, Y. K., Wang, G.-J., & Volkow, N. D. (2008). Food restriction markedly increases dopamine d2 receptor (D2R) in a rat model of obesity as assessed with in-vivo mu PET imaging ( C-11 raclopride) and in-vitro ( H-3 spiperone) autoradiography. Synapse, 62(1), 50–61. https://doi.org/10.1002/syn.20468.CrossRefPubMedGoogle Scholar
  167. Tomkin, G. H. (2014). Treatment of type 2 diabetes, lifestyle, GLP1 agonists and DPP4 inhibitors. World Journal of Diabetes, 5(5), 636–650. https://doi.org/10.4239/wjd.v5.i5.636.CrossRefPubMedPubMedCentralGoogle Scholar
  168. Tschöp, M., Weyer, C., Tataranni, P. A., Devanarayan, V., Ravussin, E., & Heiman, M. L. (2001). Circulating ghrelin levels are decreased in human obesity. Diabetes, 50(4), 707–709.CrossRefPubMedGoogle Scholar
  169. Ubeda-Bañon, I., Novejarque, A., Mohedano-Moriano, A., Pro-Sistiaga, P., de la Rosa-Prieto, C., Insausti, R., et al. (2007). Projections from the posterolateral olfactory amygdala to the ventral striatum: Neural basis for reinforcing properties of chemical stimuli. BMC Neuroscience, 8(1), 103. https://doi.org/10.1186/1471-2202-8-103.CrossRefPubMedPubMedCentralGoogle Scholar
  170. Van Strien, T., Frijters, J. E. R., Bergers, G., Defares, P. B., Van Strien, T., Frijters, J. E. R., et al. (1986). The Dutch eating behavior questionnaire (DEBQ) for assessment of restrained, emotional, and external eating behavior. International Journal of Eating Disorders, 5(2), 295–315. https://doi.org/10.1002/1098-108X(198602)5:2<295::AID-EAT2260050209=3.0.CO;2-T.CrossRefGoogle Scholar
  171. Van Strien, T., Herman, C. P., & Verheijden, M. W. (2009). Eating style, overeating, and overweight in a representative Dutch sample. Does external eating play a role? Appetite, 52(2), 380–387.CrossRefPubMedGoogle Scholar
  172. Verdejo-García, A., Lawrence, A. J., & Clark, L. (2008). Impulsivity as a vulnerability marker for substance-use disorders: Review of findings from high-risk research, problem gamblers and genetic association studies. Neuroscience & Biobehavioral Reviews, 32(4), 777–810.CrossRefGoogle Scholar
  173. Verdich, C., Toubro, S., Buemann, B., Lysgård Madsen, J., Juul Holst, J., & Astrup, A. (2001). The role of postprandial releases of insulin and incretin hormones in meal-induced satiety—Effect of obesity and weight reduction. International Journal of Obesity & Related Metabolic Disorders, 25(8).CrossRefPubMedGoogle Scholar
  174. Visser, P. J., Scheltens, P., Verhey, F. R. J., Schmand, B., Launer, L. J., Jolles, J., & Jonker, C. (1999). Medial temporal lobe atrophy and memory dysfunction as predictors for dementia in subjects with mild cognitive impairment. Journal of Neurology, 246(6), 477–485. https://doi.org/10.1007/s004150050387.CrossRefPubMedGoogle Scholar
  175. Volkow, N. D., Wang, G.-J. J., Telang, F., Fowler, J. S., Thanos, P. K., Logan, J., et al. (2008). Low dopamine striatal D2 receptors are associated with prefrontal metabolism in obese subjects: Possible contributing factors. NeuroImage, 42(4), 1537–1543. https://doi.org/10.1016/j.neuroimage.2008.06.002.CrossRefPubMedPubMedCentralGoogle Scholar
  176. Vukmirovic, M. (2015). The effects of food advertising on food-related behaviours and perceptions in adults: A review. Food Research International, 75, 13–19.CrossRefPubMedGoogle Scholar
  177. Wallner-Liebmann, S., Koschutnig, K., Reishofer, G., Sorantin, E., Blaschitz, B., Kruschitz, R., et al. (2010). Insulin and hippocampus activation in response to images of high-calorie food in normal weight and obese adolescents. Obesity (Silver Spring, Md.), 18(8), 1552–1557. https://doi.org/10.1038/oby.2010.26.CrossRefGoogle Scholar
  178. Wang, G.-J., Volkow, N. D., Logan, J., Pappas, N. R., Wong, C. T., Zhu, W., et al. (2001). Brain dopamine and obesity. The Lancet, 357(9253), 354–357. https://doi.org/10.1016/S0140-6736(00)03643-6.CrossRefGoogle Scholar
  179. Wang, G.-J., Volkow, N. D., Thanos, P. K., & Fowler, J. S. (2004). Similarity between obesity and drug addiction as assessed by neurofunctional imaging: A concept review. Journal of Addictive Diseases, 23(3), 39–53.CrossRefPubMedGoogle Scholar
  180. Wardle, J., Guthrie, C., Sanderson, S., Birch, L., & Plomin, R. (2001). Food and activity preferences in children of lean and obese parents. International Journal of Obesity, 25(7), 971–977. https://doi.org/10.1038/sj.ijo.0801661.CrossRefPubMedGoogle Scholar
  181. de Weijer, B. A., van de Giessen, E., van Amelsvoort, T. A., Boot, E., Braak, B., Janssen, I. M., et al. (2011). Lower striatal dopamine D2/3 receptor availability in obese compared with non-obese subjects. EJNMMI Research, 1(1), 1–5. https://doi.org/10.1186/2191-219X-1-37.CrossRefGoogle Scholar
  182. Westerterp, K. R. (2010). Physical activity, food intake, and body weight regulation: Insights from doubly labeled water studies. Nutrition Reviews, 68(3), 148–154.CrossRefPubMedGoogle Scholar
  183. Wiemerslage, L., Nilsson, E. K., Solstrand Dahlberg, L., Ence-Eriksson, F., Castillo, S., Larsen, A. L., et al. (2016). An obesity-associated risk allele within the FTO gene affects human brain activity for areas important for emotion, impulse control and reward in response to food images. European Journal of Neuroscience, 43(9), 1173–1180. https://doi.org/10.1111/ejn.13177.CrossRefPubMedGoogle Scholar
  184. Wilcox, C. E., Braskie, M. N., Kluth, J. T., & Jagust, W. J. (2010). Overeating behavior and Striatal dopamine with 6-[1 8 F]-Fluoro-L-m-tyrosine PET. Journal of Obesity, 2010.Google Scholar
  185. Witt, A., & Lowe, M. R. (2014). Hedonic hunger and binge eating among women with eating disorders. The International Journal of Eating Disorders, 47(3), 273–280. https://doi.org/10.1002/eat.22171.CrossRefPubMedGoogle Scholar
  186. World Health Organization. (2010). Set of recommendations on the marketing of foods and non-alcoholic beverages to children. Google Scholar
  187. Xia, W., Wang, S., Spaeth, A. M., Rao, H., Wang, P., Yang, Y., et al. (2015). Insulin resistance-associated Interhemispheric functional connectivity alterations in T2DM: A resting-state fMRI study. BioMed Research International, 2015, 719076. https://doi.org/10.1155/2015/719076.CrossRefPubMedPubMedCentralGoogle Scholar
  188. Yokum, S., Ng, J., & Stice, E. (2011). Attentional Bias to food images associated with elevated weight and future weight gain: An fMRI study. Obesity, 19(9), 1775–1783. https://doi.org/10.1038/oby.2011.168.CrossRefPubMedGoogle Scholar
  189. Yokum, S., Ng, J., & Stice, E. (2012). Relation of regional gray and white matter volumes to current BMI and future increases in BMI: A prospective MRI study. International Journal of Obesity (2005), 36(5), 656–664. https://doi.org/10.1038/ijo.2011.175.CrossRefGoogle Scholar
  190. Young, L. R., & Nestle, M. (2002). The contribution of expanding portion sizes to the US obesity epidemic. American Journal of Public Health, 92(2), 246–249.CrossRefPubMedPubMedCentralGoogle Scholar
  191. Yu, C., & McClellan, J. (2016). Genetics of substance use disorders. Child and Adolescent Psychiatric Clinics of North America, 25(3), 377–385. https://doi.org/10.1016/j.chc.2016.02.002.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Kyle S. Burger
    • 1
  • Grace E. Shearrer
    • 1
  • Jennifer R. Gilbert
    • 1
  1. 1.Department of NutritionUniversity of North Carolina at Chapel HillChapel HillUSA

Personalised recommendations