Advertisement

Obesity and Stress: The Melanocortin Connection

  • Sara Singhal
  • Jennifer W. Hill
Chapter

Abstract

The role of the melanocortin system in energy homeostasis, feeding behavior, and metabolism has been a focus of intense study since its discovery in 1979 (Crine et al. 1979; Hill and Faulkner 2016). The ability of melanocortins to suppress feeding and increase energy expenditure has made melanocortin receptors (MCRs) a major target of anti-obesity drugs in development (Fani et al. 2014). In addition, the melanocortin system’s influence on circulating glucose levels suggests it could also be targeted to treat obesity-related type 2 diabetes (Morgan et al. 2015; Parton et al. 2007). While very promising in theory, problematic side effects have plagued pharmaceutical trials for such medications, preventing FDA approval (Ericson et al. 2017). These adverse effects are due to other systemic and central functions of the melanocortin system. To understand and overcome these challenges, a more comprehensive understanding is needed of the role melanocortin peptides play and how they perform their diverse functions.

References

  1. Ab Aziz, C. B., & Ahmad, A. H. (2006). The role of the thalamus in modulating pain. The Malaysian Journal of Medical Sciences : MJMS, 13(2), 11–18.PubMedGoogle Scholar
  2. Adam, T. C., & Epel, E. S. (2007). Stress, eating and the reward system. Physiology & Behavior, 91(4), 449–458.CrossRefGoogle Scholar
  3. Adan, R. A., & Gispen, W. H. (2000). Melanocortins and the brain: From effects via receptors to drug targets. European Journal of Pharmacology, 405(1–3), 13–24.PubMedCrossRefGoogle Scholar
  4. Adan, R. A. H., et al. (1994). Differential-effects of melanocortin peptides on neural melanocortin receptors. Molecular Pharmacology, 46(6), 1182–1190.PubMedGoogle Scholar
  5. Adan, R. A. H., et al. (1999). Characterization of melanocortin receptor ligands on cloned brain melanocortin receptors and on grooming behavior in the rat. European Journal of Pharmacology, 378(3), 249–258.PubMedCrossRefGoogle Scholar
  6. Adler, N. E., & Snibbe, A. C. (2003). The role of psychosocial processes in explaining the gradient between socioeconomic status and health. Current Directions in Psychological Science, 12(4), 119–123.CrossRefGoogle Scholar
  7. Adler, N. E., et al. (2000). Relationship of subjective and objective social status with psychological and physiological functioning: Preliminary data in healthy white women. Health Psychology, 19(6), 586–592.PubMedCrossRefGoogle Scholar
  8. Alam, T., et al. (2012). Expression of genes involved in energy homeostasis in the duodenum and liver of Holstein-Friesian and Jersey cows and their F-1 hybrid. Physiological Genomics, 44(2), 198–209.PubMedCrossRefGoogle Scholar
  9. Al-Chaer, E. D. (2013). Neuroanatomy of pain and pain pathways. In Handbook of pain and palliative care (pp. 273–294). New York: Springer.CrossRefGoogle Scholar
  10. Aloyo, V. J., et al. (1983). Peptide-induced excessive grooming in the rat – The role of opiate receptors. Peptides, 4(6), 833–836.PubMedCrossRefGoogle Scholar
  11. Alvaro, J. D., et al. (1996). Morphine down-regulates melanocortin-4 receptor expression in brain regions that mediate opiate addiction. Molecular Pharmacology, 50(3), 583–591.PubMedGoogle Scholar
  12. Amano, M., et al. (2016). Immunohistochemical detection of corticotropin-releasing hormone (CRH) in the brain and pituitary of the hagfish, Eptatretus burgeri. General and Comparative Endocrinology, 236, 174–180.PubMedCrossRefGoogle Scholar
  13. Amir, S., & Amit, Z. (1979). The pituitary gland mediates acute and chronic pain responsiveness in stressed and non-stressed rats. Life Sciences, 24(5), 439–448.PubMedCrossRefGoogle Scholar
  14. An, J. J., et al. (2007). Peripheral effect of alpha-melanocyte-stimulating hormone on fatty acid oxidation in skeletal muscle. Journal of Biological Chemistry, 282(5), 2862–2870.Google Scholar
  15. Anderson, K. E., et al. (1987). Diet-hormone interactions – Protein carbohydrate ratio alters reciprocally the plasma-levels of testosterone and cortisol and their respective binding globulins in man. Life Sciences, 40(18), 1761–1768.PubMedCrossRefGoogle Scholar
  16. Andersson, B. A., et al. (2014). Plasma tumor necrosis factor-alpha and C-reactive protein as biomarker for survival in head and neck squamous cell carcinoma. Journal of Cancer Research and Clinical Oncology, 140(3), 515–519.PubMedCrossRefGoogle Scholar
  17. Andrews, Z. B. (2011). Central mechanisms involved in the orexigenic actions of ghrelin. Peptides, 32(11), 2248–2255.PubMedCrossRefGoogle Scholar
  18. Andrews, R. C., & Walker, B. R. (1999). Glucocorticoids and insulin resistance: Old hormones, new targets. Clinical Science, 96(5), 513–523.PubMedCrossRefGoogle Scholar
  19. Andrews, R. C., Rooyackers, O., & Walker, B. R. (2003). Effects of the 11 beta-hydroxysteroid dehydrogenase inhibitor carbenoxolone on insulin sensitivity in men with type 2 diabetes. The Journal of Clinical Endocrinology and Metabolism, 88(1), 285–291.PubMedCrossRefGoogle Scholar
  20. Andrews, Z. B., et al. (2008). UCP2 mediates ghrelin's action on NPY/AgRP neurons by lowering free radicals. Nature, 454(7206), 846–851.PubMedPubMedCentralCrossRefGoogle Scholar
  21. Aponte, Y., Atasoy, D., & Sternson, S. M. (2011). AGRP neurons are sufficient to orchestrate feeding behavior rapidly and without training. Nature Neuroscience, 14(3), 351–355.PubMedCrossRefGoogle Scholar
  22. Arce, M., et al. (2010). Diet choice, cortisol reactivity, and emotional feeding in socially housed rhesus monkeys. Physiology & Behavior, 101(4), 446–455.CrossRefGoogle Scholar
  23. Argiolas, A., et al. (1987). Paraventricular nucleus lesion prevents yawning and penile erection induced by apomorphine and oxytocin but not by ACTH in rats. Brain Research, 421(1–2), 349–352.PubMedCrossRefGoogle Scholar
  24. Argiolas, A., et al. (2000). ACTH- and alpha-MSH-induced grooming, stretching, yawning and penile erection in male rats: Site of action in the brain and role of melanocortin receptors. Brain Research Bulletin, 51(5), 425–431.PubMedCrossRefGoogle Scholar
  25. Arnason, B. G., et al. (2013). Mechanisms of action of adrenocorticotropic hormone and other melanocortins relevant to the clinical management of patients with multiple sclerosis. Multiple Sclerosis Journal, 19(2), 130–136.PubMedCrossRefGoogle Scholar
  26. Aronsson, M., et al. (1988). Localization of glucocorticoid receptor mRNA in the male rat brain by in situ hybridization. Proceedings of the National Academy of Sciences of the United States of America, 85(23), 9331–9335.PubMedPubMedCentralCrossRefGoogle Scholar
  27. Arruda, A. P., et al. (2010). Hypothalamic actions of tumor necrosis factor alpha provide the thermogenic core for the wastage syndrome in cachexia. Endocrinology, 151(2), 683–694.PubMedCrossRefGoogle Scholar
  28. Arvidsson, U., et al. (1995). Distribution and targeting of a mu-opioid receptor (MOR1) in brain and spinal-cord. Journal of Neuroscience, 15(5), 3328–3341.PubMedCrossRefGoogle Scholar
  29. Asai, M., et al. (2013). Loss of function of the melanocortin 2 receptor accessory protein 2 is associated with mammalian obesity. Science, 341(6143), 275–278.PubMedPubMedCentralCrossRefGoogle Scholar
  30. Asakawa, A., et al. (2001). A role of ghrelin in neuroendocrine and behavioral responses to stress in mice. Neuroendocrinology, 74(3), 143–147.PubMedCrossRefGoogle Scholar
  31. Atasoy, D., et al. (2012). Deconstruction of a neural circuit for hunger. Nature, 488(7410), 172-+.PubMedPubMedCentralCrossRefGoogle Scholar
  32. Avena, N. M., Rada, P., & Hoebel, B. G. (2008). Evidence for sugar addiction: Behavioral and neurochemical effects of intermittent, excessive sugar intake. Neuroscience and Biobehavioral Reviews, 32(1), 20–39.PubMedCrossRefGoogle Scholar
  33. Ayhan, I., & Randrup, A. (1973). Behavioural and pharmacological studies on morphine-induced excitation of rats. Possible relation to brain catecholamines. Psychopharmacologia, 29(4), 317–328.PubMedCrossRefGoogle Scholar
  34. Bagnol, D., et al. (1999). Anatomy of an endogenous antagonist: Relationship between Agouti-related protein and proopiomelanocortin in brain. Journal of Neuroscience, 19(18), RC26.PubMedCrossRefGoogle Scholar
  35. Bale, T. L., & Vale, W. W. (2004). CRF and CRF receptors: Role in stress responsivity and other behaviors. Annual Review of Pharmacology and Toxicology, 44, 525–557.PubMedCrossRefGoogle Scholar
  36. Bale, T. L., Lee, K. F., & Vale, W. W. (2002). The role of corticotropin-releasing factor receptors in stress and anxiety. Integrative and Comparative Biology, 42(3), 552–555.PubMedCrossRefGoogle Scholar
  37. Barr, R. G., et al. (1999). The response of crying newborns to sucrose: Is it a "sweetness" effect? Physiology & Behavior, 66(3), 409–417.CrossRefGoogle Scholar
  38. Barsegyan, A., et al. (2010). Glucocorticoids in the prefrontal cortex enhance memory consolidation and impair working memory by a common neural mechanism. Proceedings of the National Academy of Sciences of the United States of America, 107(38), 16655–16660.PubMedPubMedCentralCrossRefGoogle Scholar
  39. Bartness, T. J., & Song, C. K. (2007). Thematic review series: Adipocyte biology. Sympathetic and sensory innervation of white adipose tissue. Journal of Lipid Research, 48(8), 1655–1672.PubMedCrossRefGoogle Scholar
  40. Baubet, V., et al. (1994). Effects of an acute immobilization stress upon Proopiomelanocortin (Pomc) messenger-Rna levels in the mediobasal hypothalamus – A quantitative in-situ hybridization study. Molecular Brain Research, 26(1–2), 163–168.PubMedCrossRefGoogle Scholar
  41. Baudrand, R., et al. (2010). Overexpression of 11 beta-Hydroxysteroid dehydrogenase type 1 in hepatic and visceral adipose tissue is associated with metabolic disorders in morbidly obese patients. Obesity Surgery, 20(1), 77–83.PubMedCrossRefGoogle Scholar
  42. Beaulieu, S., Gagne, B., & Barden, N. (1988). Glucocorticoid regulation of proopiomelanocortin messenger ribonucleic acid content of rat hypothalamus. Molecular Endocrinology, 2(8), 727–731.PubMedCrossRefGoogle Scholar
  43. Begriche, K., et al. (2012). Melanocortin-3 receptors are involved in adaptation to restricted feeding. Genes Brain and Behavior, 11(3), 291–302.CrossRefGoogle Scholar
  44. Behan, D. P., et al. (1995). Displacement of Corticotropin-releasing factor from its binding-protein as a possible treatment for Alzheimers-disease. Nature, 378(6554), 284–287.PubMedCrossRefGoogle Scholar
  45. Benjamins, J. A., Nedelkoska, L., & Lisak, R. P. (2014). Adrenocorticotropin hormone 1-39 promotes proliferation and differentiation of oligodendroglial progenitor cells and protects from excitotoxic and inflammation-related damage. Journal of Neuroscience Research, 92(10), 1243–1251.PubMedCrossRefGoogle Scholar
  46. Bernton, E. W., Long, J. B., & Holaday, J. W. (1985). Opioids and neuropeptides – Mechanisms in circulatory shock. Federation Proceedings, 44(2), 290–299.PubMedGoogle Scholar
  47. Berridge, K. C., et al. (2005). Sequential super-stereotypy of an instinctive fixed action pattern in hyper-dopaminergic mutant mice: A model of obsessive compulsive disorder and Tourette’s. BMC Biology, 3, 4.Google Scholar
  48. Bertolini, A., & Ferrari, W. (1982). Evidence and implications of a melanocortins-endorphins homeostatic system. In Neuropeptides and psychosomatic process (pp. 245–261). Budapest: Akadémiai Kiadó.Google Scholar
  49. Bertolini, A., Poggioli, R., & Ferrari, W. (1979). ACTH-induced Hyperalgesia in rats. Experientia, 35(9), 1216–1217.PubMedCrossRefGoogle Scholar
  50. Bertolini, A., et al. (1986a). Alpha-msh and other acth fragments improve cardiovascular function and survival in experimental hemorrhagic-shock. European Journal of Pharmacology, 130(1–2), 19–26.PubMedCrossRefGoogle Scholar
  51. Bertolini, A., et al. (1986b). Adrenocorticotropin reversal of experimental hemorrhagic-shock is antagonized by morphine. Life Sciences, 39(14), 1271–1280.PubMedCrossRefGoogle Scholar
  52. Bertolini, A., Ferrari, W., & Guarini, S. (1989). The adrenocorticotropic hormone (ACTH)-induced reversal of hemorrhagic-shock. Resuscitation, 18(2–3), 253–267.PubMedCrossRefGoogle Scholar
  53. Bertolini, A., Tacchi, R., & Vergoni, A. V. (2009). Brain effects of melanocortins. Pharmacological Research, 59(1), 13–47.PubMedCrossRefGoogle Scholar
  54. Besedovsky, H., et al. (1986). Immunoregulatory feedback between interleukin-1 and glucocorticoid hormones. Science, 233(4764), 652–654.PubMedCrossRefGoogle Scholar
  55. Bitto, A., et al. (2011). Melanocortins protect against multiple organ dysfunction syndrome in mice. British Journal of Pharmacology, 162(4), 917–928.PubMedPubMedCentralCrossRefGoogle Scholar
  56. Bjorntorp, P. (1996). The regulation of adipose tissue distribution in humans. International Journal of Obesity and Related Metabolic Disorders, 20(4), 291–302.PubMedGoogle Scholar
  57. Bjorntorp, P., & Rosmond, R. (2000). Obesity and cortisol. Nutrition, 16(10), 924–936.PubMedCrossRefGoogle Scholar
  58. Blasio, A., et al. (2014). Opioid system in the medial prefrontal cortex mediates binge-like eating. Addiction Biology, 19(4), 652–662.PubMedCrossRefGoogle Scholar
  59. Boadas-Vaello, P., et al. (2016). Neuroplasticity of ascending and descending pathways after somatosensory system injury: Reviewing knowledge to identify neuropathic pain therapeutic targets. Spinal Cord, 54(5), 330–340.PubMedCrossRefGoogle Scholar
  60. Boggiano, M. M., & Chandler, P. C. (2006). Binge eating in rats produced by combining dieting with stress. Current Protocols in Neuroscience, Chapter 9, Unit9 23A.PubMedGoogle Scholar
  61. Borges, B. C., et al. (2011). Leptin resistance and desensitization of hypophagia during prolonged inflammatory challenge. American Journal of Physiology. Endocrinology and Metabolism, 300(5), E858–E869.PubMedCrossRefGoogle Scholar
  62. Borges, B. C., Elias, C. F., & Elias, L. L. (2016a). PI3K signaling: A molecular pathway associated with acute hypophagic response during inflammatory challenges. Molecular and Cellular Endocrinology, 438, 36–41.PubMedPubMedCentralCrossRefGoogle Scholar
  63. Borges, B. C., et al. (2016b). PI3K p110beta subunit in leptin receptor expressing cells is required for the acute hypophagia induced by endotoxemia. Molecular Metabolism, 5(6), 379–391.PubMedPubMedCentralCrossRefGoogle Scholar
  64. Borovikova, L. V., et al. (2000). Vagus nerve stimulation attenuates the systemic inflammatory response to endotoxin. Nature, 405(6785), 458–462.PubMedCrossRefGoogle Scholar
  65. Boston, B. A. (1999). The role of melanocortins in adipocyte function. In T. A. Luger et al. (Eds.), Cutaneous Neuroimmunomodulation: The proopiomelanocortin system (pp. 75–84).Google Scholar
  66. Boston, B. A., & Cone, R. D. (1996). Characterization of melanocortin receptor subtype expression in murine adipose tissues and in the 3T3-L1 cell line. Endocrinology, 137(5), 2043–2050.PubMedCrossRefGoogle Scholar
  67. Bouret, S., et al. (1999). mu-Opioid receptor mRNA expression in proopiomelanocortin neurons of the rat arcuate nucleus. Molecular Brain Research, 70(1), 155–158.PubMedCrossRefGoogle Scholar
  68. Bouyer, K., & Simerly, R. B. (2013). Neonatal leptin exposure specifies innervation of presympathetic hypothalamic neurons and improves the metabolic status of leptin-deficient mice. The Journal of Neuroscience, 33(2), 840–851.PubMedPubMedCentralCrossRefGoogle Scholar
  69. Brabant, G., et al. (1987). Circadian and pulsatile thyrotropin secretion in euthyroid man under the influence of thyroid-hormone and glucocorticoid administration. Journal of Clinical Endocrinology & Metabolism, 65(1), 83–88.CrossRefGoogle Scholar
  70. Briers, B., & Laporte, S. (2013). A wallet full of calories: The effect of financial dissatisfaction on the desire for food energy. Journal of Marketing Research, 50(6), 767–781.CrossRefGoogle Scholar
  71. Briggs, D. I., et al. (2010). Diet-induced obesity causes ghrelin resistance in Arcuate NPY/AgRP neurons. Endocrinology, 151(10), 4745–4755.PubMedCrossRefGoogle Scholar
  72. Broberger, C., et al. (1998). The neuropeptide Y agouti gene-related protein (AGRP) brain circuitry in normal, anorectic, and monosodium glutamate-treated mice. Proceedings of the National Academy of Sciences of the United States of America, 95(25), 15043–15048.PubMedPubMedCentralCrossRefGoogle Scholar
  73. Brown, M. R., et al. (1982). Corticotropin-releasing factor – Actions on the sympathetic nervous-system and metabolism. Endocrinology, 111(3), 928–931.PubMedCrossRefGoogle Scholar
  74. Brunson, K. L., et al. (2001). Corticotropin (ACTH) acts directly on amygdala neurons to down-regulate corticotropin-releasing hormone gene expression. Annals of Neurology, 49(3), 304–312.PubMedPubMedCentralCrossRefGoogle Scholar
  75. Büch, T. R., et al. (2009). Pertussis toxin-sensitive signaling of melanocortin-4 receptors in hypothalamic GT1-7 cells defines agouti-related protein as a biased agonist. Journal of Biological Chemistry, 284(39), 26411–26420.PubMedCrossRefGoogle Scholar
  76. Buggy, J. J. (1998). Binding of alpha-melanocyte-stimulating hormone to its G-protein-coupled receptor on B-lymphocytes activates the Jak/STAT pathway. Biochemical Journal, 331, 211–216.PubMedPubMedCentralCrossRefGoogle Scholar
  77. Bultman, S. J., Michaud, E. J., & Woychik, R. P. (1992). Molecular characterization of the mouse agouti locus. Cell, 71(7), 1195–1204.PubMedCrossRefGoogle Scholar
  78. Bumaschny, V. F., et al. (2012). Obesity-programmed mice are rescued by early genetic intervention. Journal of Clinical Investigation, 122(11), 4203–4212.PubMedPubMedCentralCrossRefGoogle Scholar
  79. Butler, A. A., et al. (2017). A life without hunger: The ups (and downs) to modulating melanocortin-3 receptor signaling. Frontiers in Neuroscience, 11, 128.PubMedPubMedCentralCrossRefGoogle Scholar
  80. Byrne, N. M., et al. (2012). Does metabolic compensation explain the majority of less-than-expected weight loss in obese adults during a short-term severe diet and exercise intervention? International Journal of Obesity, 36(11), 1472–1478.PubMedCrossRefGoogle Scholar
  81. Cabral, A., et al. (2012). Ghrelin indirectly activates hypophysiotropic CRF neurons in rodents. PLoS One, 7(2), e31462.PubMedPubMedCentralCrossRefGoogle Scholar
  82. Calogero, A. E., et al. (1999). Glucocorticoids inhibit gonadotropin-releasing hormone by acting directly at the hypothalamic level. Journal of Endocrinological Investigation, 22(9), 666–670.PubMedCrossRefGoogle Scholar
  83. Cangemi, L., et al. (1995). N-Acetyltransferase mechanism for alpha-melanocyte stimulating hormone regulation in rat ageing. Neuroscience Letters, 201(1), 65–68.PubMedCrossRefGoogle Scholar
  84. Carmignani, M., et al. (2005). Shock induction by arterial hypoperfusion of the gut involves synergistic interactions between the peripheral enkephalin and nitric oxide systems. International Journal of Immunopathology and Pharmacology, 18(1), 33–48.PubMedCrossRefGoogle Scholar
  85. Caruso, C., et al. (2007). Activation of melanocortin 4 receptors reduces the inflammatory response and prevents apoptosis induced by lipopolysaccharide and interferon-gamma in astrocytes. Endocrinology, 148(10), 4918–4926.PubMedCrossRefGoogle Scholar
  86. Caruso, V., et al. (2014). Synaptic changes induced by melanocortin signalling. Nature Reviews. Neuroscience, 15(2), 98–110.PubMedCrossRefGoogle Scholar
  87. Castro, D. C., Cole, S. L., & Berridge, K. C. (2015). Lateral hypothalamus, nucleus accumbens, and ventral pallidum roles in eating and hunger:Interactions between homeostatic and reward circuitry. Frontiers in Systems Neuroscience, 9, 90.PubMedPubMedCentralCrossRefGoogle Scholar
  88. Catania, A., et al. (2004). Targeting melanocortin receptors as a novel strategy to control inflammation. Pharmacological Reviews, 56(1), 1–29.PubMedCrossRefGoogle Scholar
  89. Catania, A., et al. (2010). The melanocortin system in control of inflammation. The Scientific World Journal, 10, 1840–1853.PubMedPubMedCentralCrossRefGoogle Scholar
  90. Cavagnini, F., et al. (2000). Glucocorticoids and neuroendocrine function. International Journal of Obesity and Related Metabolic Disorders, 24(Suppl 2), S77–S79.PubMedCrossRefGoogle Scholar
  91. Ceriani, G., et al. (1994). Central neurogenic antiinflammatory action of alpha-msh - modulation of peripheral inflammation-induced by cytokines and other mediators of inflammation. Neuroendocrinology, 59(2), 138–143.PubMedCrossRefGoogle Scholar
  92. Chaki, S., & Okubo, T. (2007). Melanocortin-4 receptor antagonists for the treatment of depression and anxiety disorders. Current Topics in Medicinal Chemistry, 7(11), 1145–1151.PubMedCrossRefGoogle Scholar
  93. Chaki, S., et al. (2003). Involvement of the melanocortin MC4 receptor in stress-related behavior in rodents. European Journal of Pharmacology, 474(1), 95–101.PubMedCrossRefGoogle Scholar
  94. Chan, L. F., et al. (2009). MRAP and MRAP2 are bidirectional regulators of the melanocortin receptor family. Proceedings of the National Academy of Sciences of the United States of America, 106(15), 6146–6151.PubMedPubMedCentralCrossRefGoogle Scholar
  95. Chance, W. T., et al. (2003). Refractory hypothalamic alpha-MSH satiety and AGRP feeding systems in rats bearing MCA sarcomas. Peptides, 24(12), 1909–1919.PubMedCrossRefGoogle Scholar
  96. Chandramohan, G., et al. (2009). Role of γ melanocyte-stimulating hormone–renal melanocortin 3 receptor system in blood pressure regulation in salt-resistant and salt-sensitive rats. Metabolism, 58(10), 1424–1429.PubMedCrossRefGoogle Scholar
  97. Chang, D., Yi, S. J., & Baram, T. Z. (1996). Developmental profile of corticotropin releasing hormone messenger RNA in the rat inferior olive. International Journal of Developmental Neuroscience, 14(1), 69–76.PubMedPubMedCentralCrossRefGoogle Scholar
  98. Chaput, J. P., et al. (2007). Psychobiological effects observed in obese men experiencing body weight loss plateau. Depression and Anxiety, 24(7), 518–521.PubMedCrossRefGoogle Scholar
  99. Chen, C. L. C., et al. (1986). Expression and regulation of proopiomelanocortin-like gene in the ovary and placenta – Comparison with the testis. Endocrinology, 118(6), 2382–2389.PubMedCrossRefGoogle Scholar
  100. Chen, W. B., et al. (1997). Exocrine gland dysfunction in MC5-R-deficient mice: Evidence for coordinated regulation of exocrine gland function by melanocortin peptides. Cell, 91(6), 789–798.PubMedCrossRefGoogle Scholar
  101. Chen, Y. C., et al. (2001). Novel and transient populations of corticotropin-releasing hormone-expressing neurons in developing hippocampus suggest unique functional roles: A quantitative spatiotemporal analysis. Journal of Neuroscience, 21(18), 7171–7181.PubMedCrossRefGoogle Scholar
  102. Chen, C., et al. (2008). Pharmacological and pharmacokinetic characterization of 2-piperazine-alpha-isopropyl benzylamine derivatives as melanocortin-4 receptor antagonists. Bioorganic & Medicinal Chemistry, 16(10), 5606–5618.CrossRefGoogle Scholar
  103. Chen, Y., et al. (2013). Impairment of synaptic plasticity by the stress mediator CRH involves selective destruction of thin dendritic spines via RhoA signaling. Molecular Psychiatry, 18(4), 485–496.PubMedCrossRefGoogle Scholar
  104. Chen, K. Y., et al. (2015). RM-493, a melanocortin-4 receptor (MC4R) agonist, increases resting energy expenditure in obese individuals. The Journal of Clinical Endocrinology and Metabolism, 100(4), 1639–1645.PubMedPubMedCentralCrossRefGoogle Scholar
  105. Chernow, B., et al. (1986). Hemorrhagic hypotension increases plasma beta-endorphin concentrations in the nonhuman primate. Critical Care Medicine, 14(5), 505–507.PubMedCrossRefGoogle Scholar
  106. Chhabra, K. H., et al. (2016). Reprogramming the body weight set point by a reciprocal interaction of hypothalamic leptin sensitivity and Pomc gene expression reverts extreme obesity. Molecular Metabolism, 5(10), 869–881.PubMedPubMedCentralCrossRefGoogle Scholar
  107. Chiba, A. (2001). Marked distributional difference of alpha-melanocyte-stimulating hormone (alpha-MSH)-like immunoreactivity in the brain between two elasmobranchs (Scyliorhinus torazame and Etmopterus brachyurus): An immunohistochemical study. General and Comparative Endocrinology, 122(3), 287–295.PubMedCrossRefGoogle Scholar
  108. Chida, D., et al. (2007). Melanocortin 2 receptor is required for adrenal gland development, steroidogenesis, and neonatal gluconeogenesis. Proceedings of the National Academy of Sciences of the United States of America, 104(46), 18205–18210.PubMedPubMedCentralCrossRefGoogle Scholar
  109. Cho, K. J., et al. (2005). Signaling pathways implicated in alpha-melanocyte stimulating hormone-induced lipolysis in 3T3-L1 adipocytes. Journal of Cellular Biochemistry, 96(4), 869–878.PubMedCrossRefGoogle Scholar
  110. Chu, H. C., et al. (2012). Effect of periaqueductal gray melanocortin 4 receptor in pain facilitation and glial activation in rat model of chronic constriction injury. Neurological Research, 34(9), 871–888.PubMedCrossRefGoogle Scholar
  111. Chuang, J.-C., et al. (2010). A β3-adrenergic-Leptin-Melanocortin circuit regulates behavioral and metabolic changes induced by chronic stress. Biological Psychiatry, 67(11), 1075–1082.PubMedPubMedCentralCrossRefGoogle Scholar
  112. Chuang, J. C., et al. (2011). Ghrelin mediates stress-induced food-reward behavior in mice. The Journal of Clinical Investigation, 121(7), 2684–2692.PubMedPubMedCentralCrossRefGoogle Scholar
  113. Chung, T. T., et al. (2008). The majority of adrenocorticotropin receptor (melanocortin 2 receptor) mutations found in familial glucocorticoid deficiency type 1 lead to defective trafficking of the receptor to the cell surface. Journal of Clinical Endocrinology & Metabolism, 93(12), 4948–4954.CrossRefGoogle Scholar
  114. Ciccocioppo, R., et al. (2003). The bed nucleus is a neuroanatomical substrate for the anorectic effect of corticotropin-releasing factor and for its reversal by nociceptin/orphanin FQ. The Journal of Neuroscience, 23(28), 9445–9451.PubMedPubMedCentralCrossRefGoogle Scholar
  115. Cifani, C., et al. (2009). A preclinical model of binge eating elicited by yo-yo dieting and stressful exposure to food: Effect of sibutramine, fluoxetine, topiramate, and midazolam. Psychopharmacology, 204(1), 113–125.PubMedCrossRefGoogle Scholar
  116. Cintra, A., & Bortolotti, F. (1992). Presence of strong glucocorticoid receptor immunoreactivity within hypothalamic and hypophyseal cells containing pro-opiomelanocortic peptides. Brain Research, 577(1), 127–133.PubMedCrossRefGoogle Scholar
  117. Cintra, A., et al. (1987). Presence of glucocorticoid receptor immunoreactivity in corticotrophin releasing factor and in growth hormone releasing factor immunoreactive neurons of the rat di- and telencephalon. Neuroscience Letters, 77(1), 25–30.PubMedCrossRefGoogle Scholar
  118. Clark, A. J. L., & Chan, L. F. (2017). Promiscuity among the MRAPs. Journal of Molecular Endocrinology, 58(3), F1–F4.PubMedCrossRefGoogle Scholar
  119. Clark, A. J. L., & Weber, A. (1998). Adrenocorticotropin insensitivity syndromes. Endocrine Reviews, 19(6), 828–843.PubMedCrossRefGoogle Scholar
  120. Cohen-Mansfield, J., & Jensen, B. (2007). Dressing and grooming – Preferences of community-dwelling older adults. Journal of Gerontological Nursing, 33(2), 31–39.PubMedGoogle Scholar
  121. Collier, H. O. (1980). Cellular site of opiate dependence. Nature, 283(5748), 625–629.PubMedCrossRefGoogle Scholar
  122. Collins, G. T., & Eguibar, J. R. (2010). Neurophamacology of yawning. Frontiers of Neurology and Neuroscience, 28, 90–106.PubMedCrossRefGoogle Scholar
  123. Cone, R. D. (2005). Anatomy and regulation of the central melanocortin system. Nature Neuroscience, 8(5), 571–578.PubMedPubMedCentralCrossRefGoogle Scholar
  124. Cone, R. D. (2006). Studies on the physiological functions of the melanocortin system. Endocrine Reviews, 27(7), 736–749.PubMedCrossRefGoogle Scholar
  125. Conrad, C. D., et al. (1996). Chronic stress impairs rat spatial memory on the Y maze, and this effect is blocked by tianeptine pretreatment. Behavioral Neuroscience, 110(6), 1321–1334.PubMedCrossRefGoogle Scholar
  126. Constantinopoulos, P., et al. (2015). Cortisol in tissue and systemic level as a contributing factor to the development of metabolic syndrome in severely obese patients. European Journal of Endocrinology, 172(1), 69–78.PubMedCrossRefGoogle Scholar
  127. Contreras, P. C., & Takemori, A. E. (1984). Antagonism of morphine-induced analgesia, tolerance and dependence by alpha-melanocyte-stimulating hormone. Journal of Pharmacology and Experimental Therapeutics, 229(1), 21–26.PubMedGoogle Scholar
  128. Coolen, L. M., & Wood, R. I. (1998). Bidirectional connections of the medial amygdaloid nucleus in the Syrian hamster brain: Simultaneous anterograde and retrograde tract tracing. The Journal of Comparative Neurology, 399(2), 189–209.PubMedCrossRefGoogle Scholar
  129. Corander, M. P., et al. (2011). Loss of Agouti-related peptide does not significantly impact the phenotype of murine POMC deficiency. Endocrinology, 152(5), 1819–1828.PubMedPubMedCentralCrossRefGoogle Scholar
  130. Cornier, M. A., et al. (2004). Effects of short-term overfeeding on hunger, satiety, and energy intake in thin and reduced-obese individuals. Appetite, 43(3), 253–259.PubMedCrossRefGoogle Scholar
  131. Corrado, E., et al. (2006). Markers of inflammation and infection influence the outcome of patients with baseline asymptomatic carotid lesions: A 5-year follow-up study. Stroke, 37(2), 482–486.PubMedCrossRefGoogle Scholar
  132. Cortes, R., et al. (2014). Evolution of the melanocortin system. General and Comparative Endocrinology, 209, 3–10.PubMedCrossRefGoogle Scholar
  133. Cottone, P., et al. (2009). Consummatory, anxiety-related and metabolic adaptations in female rats with alternating access to preferred food. Psychoneuroendocrinology, 34(1), 38–49.PubMedCrossRefGoogle Scholar
  134. Cowley, M. A., et al. (2001). Leptin activates anorexigenic POMC neurons through a neural network in the arcuate nucleus. Nature, 411(6836), 480–484.PubMedPubMedCentralCrossRefGoogle Scholar
  135. Cox, B. M. (2013). Recent developments in the study of opioid receptors. Molecular Pharmacology, 83(4), 723–728.PubMedCrossRefGoogle Scholar
  136. Crine, P., et al. (1979). Concomitant synthesis of beta-endorphin and alpha-melanotropin from two forms of pro-opiomelanocortin in the rat pars intermedia. Proceedings of the National Academy of Sciences of the United States of America, 76(10), 5085–5089.PubMedPubMedCentralCrossRefGoogle Scholar
  137. Cui, M. Y., et al. (2014). Ancient origins and evolutionary conservation of intracellular and neural signaling pathways engaged by the Leptin receptor. Endocrinology, 155(11), 4202–4214.PubMedCrossRefGoogle Scholar
  138. Cullinan, W. E. (2000). GABA(A) receptor subunit expression within hypophysiotropic CRH neurons: A dual hybridization histochemical study. The Journal of Comparative Neurology, 419(3), 344–351.PubMedCrossRefGoogle Scholar
  139. Currie, P. J., et al. (2005). Ghrelin is an orexigenic and metabolic signaling peptide in the arcuate and paraventricular nuclei. American Journal of Physiology. Regulatory, Integrative and Comparative Physiology, 289(2), R353–R358.PubMedCrossRefGoogle Scholar
  140. da Silva, A. A., do Carmo, J. M., & Hall, J. E. (2013). Role of leptin and central nervous system melanocortins in obesity hypertension. Current Opinion in Nephrology and Hypertension, 22(2), 135–140.PubMedPubMedCentralCrossRefGoogle Scholar
  141. Dabrowska, J., et al. (2011). Neuroanatomical evidence for reciprocal regulation of the corticotrophin-releasing factor and oxytocin systems in the hypothalamus and the bed nucleus of the stria terminalis of the rat: Implications for balancing stress and affect. Psychoneuroendocrinology, 36(9), 1312–1326.PubMedPubMedCentralCrossRefGoogle Scholar
  142. Dagogo-Jack, S., et al. (1997). Robust leptin secretory responses to dexamethasone in obese subjects. The Journal of Clinical Endocrinology and Metabolism, 82(10), 3230–3233.PubMedGoogle Scholar
  143. Dallman, M. F., et al. (2003). Chronic stress and obesity: A new view of "comfort food". Proceedings of the National Academy of Sciences of the United States of America, 100(20), 11696–11701.PubMedPubMedCentralCrossRefGoogle Scholar
  144. Dallman, M. F., et al. (2006). Glucocorticoids, chronic stress, and obesity. In A. Kalsbeek et al. (Eds.), Hypothalamic integration of energy metabolism (pp. 75–105).Google Scholar
  145. Dallmann, R., et al. (2011). The orally active melanocortin-4 receptor antagonist BL-6020/979: A promising candidate for the treatment of cancer cachexia. Journal of Cachexia, Sarcopenia and Muscle, 2(3), 163–174.PubMedPubMedCentralCrossRefGoogle Scholar
  146. Dautzenberg, F. M., et al. (2004). Cell-type specific calcium signaling by corticotropin-releasing factor type 1 (CRF1) and 2a (CRF2(a)) receptors: Phospholipase C-mediated responses in human embryonic kidney 293 but not SK-N-MC neuroblastoma cells. Biochemical Pharmacology, 68(9), 1833–1844.PubMedCrossRefGoogle Scholar
  147. Davis, M., et al. (2010). Phasic vs sustained fear in rats and humans: Role of the extended amygdala in fear vs anxiety. Neuropsychopharmacology, 35(1), 105–135.PubMedCrossRefGoogle Scholar
  148. De Barioglio, S. R., Lezcano, N., & Celis, M. E. (1991). Alpha MSH-induced excessive grooming behavior involves a GABAergic mechanism. Peptides, 12(1), 203–205.PubMedCrossRefGoogle Scholar
  149. de Kloet, E. R., & Sarabdjitsingh, R. A. (2008). Everything has rhythm: Focus on glucocorticoid pulsatility. Endocrinology, 149(7), 3241–3243.PubMedCrossRefGoogle Scholar
  150. De Kloet, E. R., et al. (1998). Brain corticosteroid receptor balance in health and disease. Endocrine Reviews, 19(3), 269–301.PubMedGoogle Scholar
  151. de Kloet, E. R., Oitzl, M. S., & Joels, M. (1999). Stress and cognition: Are corticosteroids good or bad guys? Trends in Neurosciences, 22(10), 422–426.PubMedCrossRefGoogle Scholar
  152. de Kloet, E. R., Joels, M., & Holsboer, F. (2005). Stress and the brain: From adaptation to disease. Nature Reviews Neuroscience, 6(6), 463–475.PubMedCrossRefGoogle Scholar
  153. De Souza, E. B., et al. (1986). Reciprocal changes in corticotropin-releasing factor (CRF)-like immunoreactivity and CRF receptors in cerebral cortex of Alzheimer's disease. Nature, 319(6054), 593–595.PubMedCrossRefGoogle Scholar
  154. De Souza, J., Butler, A. A., & Cone, R. D. (2000). Disproportionate inhibition of feeding in A(y) mice by certain stressors: A cautionary note. Neuroendocrinology, 72(2), 126–132.PubMedCrossRefGoogle Scholar
  155. De Souza, C. T., et al. (2005). Consumption of a fat-rich diet activates a proinflammatory response and induces insulin resistance in the hypothalamus. Endocrinology, 146(10), 4192–4199.PubMedPubMedCentralCrossRefGoogle Scholar
  156. De Wied, D., & Jolles, J. (1982). Neuropeptides derived from pro-opiocortin: Behavioral, physiological, and neurochemical effects. Physiological Reviews, 62(3), 976–1059.PubMedCrossRefGoogle Scholar
  157. Decastro, J. M. (1987). Macronutrient relationships with meal patterns and mood in the spontaneous feeding-behavior of humans. Physiology & Behavior, 39(5), 561–569.CrossRefGoogle Scholar
  158. Dekloet, E. R., & Reul, J. (1987). Feedback action and tonic influence of corticosteroids on brain-function – A concept arising from the heterogeneity of brain receptor systems. Psychoneuroendocrinology, 12(2), 83–105.CrossRefGoogle Scholar
  159. Delgado Hernandez, R., et al. (1999). Inhibition of systemic inflammation by central action of the neuropeptide alpha-melanocyte-stimulating hormone. Neuroimmunomodulation, 6(3), 187–192.PubMedCrossRefGoogle Scholar
  160. Delgado, R., et al. (1998). Melanocortin peptides inhibit production of proinflammatory cytokines and nitric oxide by activated microglia. Journal of Leukocyte Biology, 63(6), 740–745.PubMedCrossRefGoogle Scholar
  161. Dent, G. W., Smith, M. A., & Levine, S. (2000). Rapid induction of corticotropin-releasing hormone gene transcription in the paraventricular nucleus of the developing rat. Endocrinology, 141(5), 1593–1598.PubMedCrossRefGoogle Scholar
  162. Deuster, P. A., et al. (1992). Hormonal responses to ingesting water or a carbohydrate beverage during a 2-H run. Medicine and Science in Sports and Exercise, 24(1), 72–79.PubMedCrossRefGoogle Scholar
  163. Dhillo, W. S., et al. (2002). The hypothalamic melanocortin system stimulates the hypothalamo-pituitary-adrenal axis in vitro and in vivo in male rats. Neuroendocrinology, 75(4), 209–216.PubMedCrossRefGoogle Scholar
  164. Dhurandhar, E. J. (2016). The food-insecurity obesity paradox: A resource scarcity hypothesis. Physiology & Behavior, 162, 88–92.CrossRefGoogle Scholar
  165. Dias-Ferreira, E., et al. (2009). Chronic stress causes frontostriatal reorganization and affects decision-making. Science, 325(5940), 621–625.PubMedCrossRefGoogle Scholar
  166. Disse, E., et al. (2010). Peripheral ghrelin enhances sweet taste food consumption and preference, regardless of its caloric content. Physiology & Behavior, 101(2), 277–281.CrossRefGoogle Scholar
  167. Dodd, G. T., et al. (2015). Leptin and insulin act on POMC neurons to promote the Browning of white fat. Cell, 160(1–2), 88–104.PubMedPubMedCentralCrossRefGoogle Scholar
  168. Dong, Y., & Benveniste, E. N. (2001). Immune function of astrocytes. Glia, 36(2), 180–190.PubMedCrossRefGoogle Scholar
  169. Dores, R. M., et al. (2014). Molecular evolution of GPCRs: Melanocortin/melanocortin receptors. Journal of Molecular Endocrinology, 52(3), T29–T42.PubMedCrossRefGoogle Scholar
  170. Doyon, C., et al. (2001). Molecular evolution of leptin. General and Comparative Endocrinology, 124(2), 188–198.PubMedCrossRefGoogle Scholar
  171. Dube, L., LeBel, J. L., & Lu, J. (2005). Affect asymmetry and comfort food consumption. Physiology & Behavior, 86(4), 559–567.CrossRefGoogle Scholar
  172. Dunn, A. J. (1988). Studies on the neurochemical mechanisms and significance of ACTH-induced grooming. Annals of the New York Academy of Sciences, 525, 150–168.PubMedCrossRefGoogle Scholar
  173. Dunn, A. J., & Berridge, C. W. (1990). Is Corticotropin-releasing factor a mediator of stress responses. Annals of the New York Academy of Sciences, 579, 183–191.PubMedCrossRefGoogle Scholar
  174. Dunn, A. J., et al. (1987). CRF-induced excessive grooming behavior in rats and mice. Peptides, 8(5), 841–844.PubMedCrossRefGoogle Scholar
  175. Dutia, R., et al. (2012). Beta-endorphin antagonizes the effects of alpha-MSH on food intake and body weight. Endocrinology, 153(9), 4246–4255.PubMedPubMedCentralCrossRefGoogle Scholar
  176. Duvaux-Miret, O., & Capron, A. (1992). Proopiomelanocortin in the helminth schistosoma mansoni. Synthesis of beta-endorphin, ACTH, and alpha-MSH. Existence of POMC-related sequences. Annals of the New York Academy of Sciences, 650(1), 245–250.PubMedCrossRefGoogle Scholar
  177. Dwarkasing, J. T., et al. (2014). Hypothalamic food intake regulation in a cancer-cachectic mouse model. Journal of Cachexia Sarcopenia and Muscle, 5(2), 159–169.CrossRefGoogle Scholar
  178. Dyakonova, V. (2001). Role of opioid peptides in behavior of invertebrates. Journal of Evolutionary Biochemistry and Physiology, 37(4), 335–347.CrossRefGoogle Scholar
  179. Eberwine, J. H., et al. (1987). Complex transcriptional regulation by glucocorticoids and Corticotropin-releasing hormone of Proopiomelanocortin gene-expression in rat pituitary cultures. DNA-a Journal of Molecular & Cellular Biology, 6(5), 483–492.Google Scholar
  180. Eddy, J. P., & Strahan, R. (1968). The role of the pineal complex in the pigmentary effector system of the lampreys, Mordacia mordax (Richardson) and Geotria australis gray. General and Comparative Endocrinology, 11(3), 528–534.PubMedCrossRefGoogle Scholar
  181. Edwards, A. V., & Jones, C. T. (1993). Autonomic control of adrenal function. Journal of Anatomy, 183(Pt 2), 291–307.PubMedPubMedCentralGoogle Scholar
  182. Egecioglu, E., et al. (2010). Ghrelin increases intake of rewarding food in rodents. Addiction Biology, 15(3), 304–311.PubMedPubMedCentralCrossRefGoogle Scholar
  183. Eguibar, J. R., et al. (2017). Yawning reduces facial temperature in the high-yawning subline of Sprague-Dawley rats. BMC Neuroscience, 18(1), 3.PubMedPubMedCentralCrossRefGoogle Scholar
  184. Elam, R., Bergmann, F., & Feuerstein, G. (1984). Simultaneous changes of catecholamines and of leu-enkephalin-like immunoreactivity in plasma and cerebrospinal-fluid of cats undergoing acute hemorrhage. Brain Research, 303(2), 313–317.PubMedCrossRefGoogle Scholar
  185. Elias, C. F., et al. (1998). Leptin activates hypothalamic CART neurons projecting to the spinal cord. Neuron, 21(6), 1375–1385.PubMedCrossRefGoogle Scholar
  186. Ellacott, K. L., & Cone, R. D. (2006). The role of the central melanocortin system in the regulation of food intake and energy homeostasis: Lessons from mouse models. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 361(1471), 1265–1274.PubMedPubMedCentralCrossRefGoogle Scholar
  187. Endo, M., et al. (2007). Involvement of stomach ghrelin and hypothalamic neuropeptides in tumor necrosis factor-alpha-induced hypophagia in mice. Regulatory Peptides, 140(1–2), 94–100.PubMedCrossRefGoogle Scholar
  188. Endsin, M. J., et al. (2017). CRH peptide evolution occurred in three phases: Evidence from characterizing sea lamprey CRH system members. General and Comparative Endocrinology, 240, 162–173.PubMedCrossRefGoogle Scholar
  189. Engeland, W. C., & Arnhold, M. M. (2005). Neural circuitry in the regulation of adrenal corticosterone rhythmicity. Endocrine, 28(3), 325–332.PubMedCrossRefGoogle Scholar
  190. Enriori, P. J., et al. (2007). Diet-induced obesity causes severe but reversible leptin resistance in arcuate melanocortin neurons. Cell Metabolism, 5(3), 181–194.PubMedPubMedCentralCrossRefGoogle Scholar
  191. Enriori, P. J., et al. (2016). Alpha-melanocyte stimulating hormone promotes muscle glucose uptake via melanocortin 5 receptors. Molecular Metabolism, 5(10), 807–822.PubMedPubMedCentralCrossRefGoogle Scholar
  192. Epel, E. S., et al. (2000). Stress and body shape: Stress-induced cortisol secretion is consistently greater among women with central fat. Psychosomatic Medicine, 62(5), 623–632.PubMedCrossRefGoogle Scholar
  193. Epel, E., et al. (2001). Stress may add bite to appetite in women: A laboratory study of stress-induced cortisol and eating behavior. Psychoneuroendocrinology, 26(1), 37–49.PubMedCrossRefGoogle Scholar
  194. Ercil, N. E., Galici, R., & Kesterson, R. A. (2005). HS014, a selective melanocortin-4 (MC4) receptor antagonist, modulates the behavioral effects of morphine in mice. Psychopharmacology, 180(2), 279–285.PubMedCrossRefGoogle Scholar
  195. Ericson, M. D., et al. (2017). Bench-top to clinical therapies: A review of melanocortin ligands from 1954 to 2016. Biochimica et Biophysica Acta, 1863(10 Pt A), 2414–2435.PubMedCrossRefGoogle Scholar
  196. Ezeoke, C. C., & Morley, J. E. (2015). Pathophysiology of anorexia in the cancer cachexia syndrome. Journal of Cachexia, Sarcopenia and Muscle, 6(4), 287–302.PubMedPubMedCentralCrossRefGoogle Scholar
  197. Fairburn, C. G. (1997). Bulimia outcome. American Journal of Psychiatry, 154(12), 1791–1791.PubMedGoogle Scholar
  198. Fani, L., et al. (2014). The melanocortin-4 receptor as target for obesity treatment: A systematic review of emerging pharmacological therapeutic options. International Journal of Obesity, 38(2), 163–169.PubMedCrossRefGoogle Scholar
  199. Fardin, V., Oliveras, J. L., & Besson, J. M. (1984). A reinvestigation of the analgesic effects induced by stimulation of the periaqueductal gray matter in the rat. I. The production of behavioral side effects together with analgesia. Brain Research, 306(1–2), 105–123.PubMedCrossRefGoogle Scholar
  200. Feig, P. U., et al. (2011). Effects of an 11 beta-hydroxysteroid dehydrogenase type 1 inhibitor, MK-0916, in patients with type 2 diabetes mellitus and metabolic syndrome. Diabetes Obesity & Metabolism, 13(6), 498–504.CrossRefGoogle Scholar
  201. Fekete, E. M., & Zorrilla, E. P. (2007). Physiology, pharmacology, and therapeutic relevance of urocortins in mammals: Ancient CRF paralogs. Frontiers in Neuroendocrinology, 28(1), 1–27.PubMedCrossRefGoogle Scholar
  202. Fentress, J. C. (1988). Expressive contexts, fine-structure, and central mediation of rodent grooming. Annals of the New York Academy of Sciences, 525, 18–26.PubMedCrossRefGoogle Scholar
  203. Fernandez, M., et al. (2003). Sucrose attenuates a negative electroencephalographic response to an aversive stimulus for newborns. Journal of Developmental and Behavioral Pediatrics, 24(4), 261–266.PubMedCrossRefGoogle Scholar
  204. Ferrari, W. (1958). Behavioural changes in animals after intracisternal injection with adrenocorticotrophic hormone and melanocyte-stimulating hormone. Nature, 181(4613), 925–926.PubMedCrossRefGoogle Scholar
  205. Ferrari, W., Floris, E., & Paulesu, F. (1955). A peculiar impressive symptomatology induced in the dog by injections of ACTH injected into the cisterna magna. Bollettino della Societa italiana di biologia sperimentale, 31(7–8), 862–864.PubMedGoogle Scholar
  206. Ferrari, W., Vargiu, L., & Gessa, G. L. (1963). Behavioral effects induced by intracisternally injected acth and msh. Annals of the New York Academy of Sciences, 104(1), 330.PubMedCrossRefGoogle Scholar
  207. Fletcher, M., & Kim, D. H. (2017). Age-dependent neuroendocrine signaling from sensory neurons modulates the effect of dietary restriction on longevity of caenorhabditis elegans. PLoS Genetics, 13(1), e1006544.PubMedPubMedCentralCrossRefGoogle Scholar
  208. Ford, E. S. (2005). Risks for all-cause mortality, cardiovascular disease, and diabetes associated with the metabolic syndrome: A summary of the evidence. Diabetes Care, 28(7), 1769–1778.PubMedCrossRefGoogle Scholar
  209. Forman, L. J., & Bagasra, O. (1992). Demonstration by insitu hybridization of the proopiomelanocortin gene in the rat-heart. Brain Research Bulletin, 28(3), 441–445.PubMedCrossRefGoogle Scholar
  210. Forslin Aronsson, A., et al. (2007). Alpha-MSH rescues neurons from excitotoxic cell death. Journal of Molecular Neuroscience, 33(3), 239–251.PubMedCrossRefGoogle Scholar
  211. Foster, M. T., et al. (2009). Palatable foods, stress, and energy stores sculpt corticotropin-releasing factor, adrenocorticotropin, and corticosterone concentrations after restraint. Endocrinology, 150(5), 2325–2333.PubMedCrossRefGoogle Scholar
  212. Fothergill, E., et al. (2016). Persistent metabolic adaptation 6 years after "the biggest loser" competition. Obesity, 24(8), 1612–1619.PubMedCrossRefGoogle Scholar
  213. Fratta, W., et al. (1981). Reciprocal antagonism between ACTH1–24 and β-endorphin in rats. Neuroscience Letters, 24(1), 71–74.PubMedCrossRefGoogle Scholar
  214. Frederich, R. C., et al. (1995). Leptin levels reflect body lipid-content in mice – Evidence for diet-induced resistance to leptin action. Nature Medicine, 1(12), 1311–1314.CrossRefPubMedGoogle Scholar
  215. Fu, L.-Y., & van den Pol, A. N. (2008). Agouti-related peptide and MC3/4 receptor agonists both inhibit excitatory hypothalamic ventromedial nucleus neurons. Journal of Neuroscience, 28(21), 5433–5449.PubMedCrossRefGoogle Scholar
  216. Fujikawa, M., et al. (1995). Involvement of β-adrenoceptors in regulation of the yawning induced by neuropeptides, oxytocin and α-melanocyte-stimulating hormone, in rats. Pharmacology Biochemistry and Behavior, 50(3), 339–343.CrossRefGoogle Scholar
  217. Fujimoto-Ouchi, K., et al. (1995). Establishment and characterization of cachexia-inducing and -non-inducing clones of murine colon 26 carcinoma. International Journal of Cancer, 61(4), 522–528.PubMedCrossRefGoogle Scholar
  218. Fuxe, K., et al. (1987). Studies on the cellular-localization and distribution of glucocorticoid receptor and estrogen-receptor immunoreactivity in the central nervous-system of the rat and their relationship to the monoaminergic and peptidergic neurons of the brain. Journal of Steroid Biochemistry and Molecular Biology, 27(1–3), 159–170.CrossRefGoogle Scholar
  219. Gagner, J. P., & Drouin, J. (1985). Opposite regulation of pro-opiomelanocortin gene transcription by glucocorticoids and CRH. Molecular and Cellular Endocrinology, 40(1), 25–32.PubMedCrossRefGoogle Scholar
  220. Gagner, J. P., & Drouin, J. (1987). Tissue-specific regulation of pituitary proopiomelanocortin gene transcription by corticotropin-releasing hormone, 3′,5′-cyclic adenosine monophosphate, and glucocorticoids. Molecular Endocrinology, 1(10), 677–682.PubMedCrossRefGoogle Scholar
  221. Galimberti, D., et al. (1999). Alpha-MSH peptides inhibit production of nitric oxide and tumor necrosis factor-alpha by microglial cells activated with beta-amyloid and interferon gamma. Biochemical and Biophysical Research Communications, 263(1), 251–256.PubMedCrossRefGoogle Scholar
  222. Gallagher, J. P., et al. (2008). Synaptic physiology of central CRH system. European Journal of Pharmacology, 583(2–3), 215–225.PubMedPubMedCentralCrossRefGoogle Scholar
  223. Gallopin, T., et al. (2006). Cortical sources of CRF, NKB, and CCK and their effects on pyramidal cells in the neocortex. Cerebral Cortex, 16(10), 1440–1452.PubMedCrossRefGoogle Scholar
  224. Gallup, A. C., & Eldakar, O. T. (2013). The thermoregulatory theory of yawning: What we know from over 5 years of research. Frontiers in Neuroscience, 6, 188.PubMedPubMedCentralCrossRefGoogle Scholar
  225. Gamber, K. M., et al. (2012). Over-expression of leptin receptors in hypothalamic POMC neurons increases susceptibility to diet-induced obesity. PLoS One, 7(1), e30485.PubMedPubMedCentralCrossRefGoogle Scholar
  226. Gao, Y., et al. (2014). Hormones and diet, but not body weight, control hypothalamic microglial activity. Glia, 62(1), 17–25.PubMedCrossRefGoogle Scholar
  227. Gautron, L., et al. (2005). Influence of feeding status on neuronal activity in the hypothalamus during lipopolysaccharide-induced anorexia in rats. Neuroscience, 134(3), 933–946.PubMedCrossRefGoogle Scholar
  228. Gautron, L., et al. (2012). Melanocortin-4 receptor expression in different classes of spinal and vagal primary afferent neurons in the mouse. Journal of Comparative Neurology, 520(17), 3933–3948.PubMedCrossRefGoogle Scholar
  229. Gelin, J., et al. (1991). Role of endogenous tumor necrosis factor alpha and interleukin 1 for experimental tumor growth and the development of cancer cachexia. Cancer Research, 51(1), 415–421.PubMedGoogle Scholar
  230. Gessa, G. L., et al. (1967). Stretching and yawning movements after intracerebral injection of ACTH. Revue Canadienne de Biologie, 26(3), 229.PubMedGoogle Scholar
  231. Getting, S. J., Flower, R. J., & Perretti, M. (1999a). Agonism at melanocortin receptor type 3 on macrophages inhibits neutrophil influx. Inflammation Research, 48(SUPPL. 2), S140–S141.PubMedCrossRefGoogle Scholar
  232. Getting, S. J., et al. (1999b). POMC gene-derived peptides activate melanocortin type 3 receptor on murine macrophages, suppress cytokine release, and inhibit neutrophil migration in acute experimental inflammation. Journal of Immunology, 162(12), 7446–7453.Google Scholar
  233. Ghamari-Langroudi, M., et al. (2015). G-protein-independent coupling of MC4R to Kir7.1 in hypothalamic neurons. Nature, 520(7545), 94–98.PubMedPubMedCentralCrossRefGoogle Scholar
  234. Gibson, E. L. (2006). Emotional influences on food choice: Sensory, physiological and psychological pathways. Physiology & Behavior, 89(1), 53–61.CrossRefGoogle Scholar
  235. Giles-Corti, B., & Donovan, R. J. (2002). Socioeconomic status differences in recreational physical activity levels and real and perceived access to a supportive physical environment. Preventive Medicine, 35(6), 601–611.PubMedCrossRefGoogle Scholar
  236. Gilhooly, C. H., et al. (2007). Food cravings and energy regulation: The characteristics of craved foods and their relationship with eating behaviors and weight change during 6 months of dietary energy restriction. International Journal of Obesity, 31(12), 1849–1858.PubMedCrossRefGoogle Scholar
  237. Girardet, C., & Butler, A. A. (2014). Neural melanocortin receptors in obesity and related metabolic disorders. Biochimica et Biophysica Acta-Molecular Basis of Disease, 1842(3), 482–494.CrossRefGoogle Scholar
  238. Girardet, C., et al. (2017). Melanocortin-3 receptors expressed in Nkx2.1(+ve) neurons are sufficient for controlling appetitive responses to hypocaloric conditioning. Scientific Reports, 7, 44444.PubMedPubMedCentralCrossRefGoogle Scholar
  239. Gispen, W. H., et al. (1975). Induction of excessive grooming in rat by intraventricular application of peptides derived from ACTH – Structure-activity studies. Life Sciences, 17(4), 645–652.PubMedCrossRefGoogle Scholar
  240. Giuliani, D., et al. (2006). Both early and delayed treatment with melanocortin 4 receptor-stimulating melanocortins produces neuroprotection in cerebral ischemia. Endocrinology, 147(3), 1126–1135.PubMedCrossRefGoogle Scholar
  241. Giuliani, D., et al. (2007). Selective melanocortin MC4 receptor agonists reverse haemorrhagic shock and prevent multiple organ damage. British Journal of Pharmacology, 150(5), 595–603.PubMedPubMedCentralCrossRefGoogle Scholar
  242. Glowa, J. R., et al. (1992). Effects of corticotropin releasing hormone on appetitive behaviors. Peptides, 13(3), 609–621.PubMedCrossRefGoogle Scholar
  243. Gluck, M. E., et al. (2004). Cortisol, hunger, and desire to binge eat following a cold stress test in obese women with binge eating disorder. Psychosomatic Medicine, 66(6), 876–881.PubMedCrossRefGoogle Scholar
  244. Goehler, L. E., et al. (1997). Vagal paraganglia bind biotinylated interleukin-1 receptor antagonist: A possible mechanism for immune-to-brain communication. Brain Research Bulletin, 43(3), 357–364.PubMedCrossRefGoogle Scholar
  245. Goehler, L. E., et al. (2000). Vagal immune-to-brain communication: A visceral chemosensory pathway. Autonomic Neuroscience-Basic & Clinical, 85(1–3), 49–59.CrossRefGoogle Scholar
  246. Gore, A. C., Attardi, B., & DeFranco, D. B. (2006). Glucocorticoid repression of the reproductive axis: Effects on GnRH and gonadotropin subunit mRNA levels. Molecular and Cellular Endocrinology, 256(1–2), 40–48.PubMedCrossRefGoogle Scholar
  247. Goto, M., et al. (2006). Ghrelin increases neuropeptide Y and agouti-related peptide gene expression in the arcuate nucleus in rat hypothalamic organotypic cultures. Endocrinology, 147(11), 5102–5109.PubMedCrossRefGoogle Scholar
  248. Gottlieb, S., & Ruvkun, G. (1994). Daf-2, Daf-16 and Daf-23 – Genetically interacting genes-controlling Dauer formation in Caenorhabditis-Elegans. Genetics, 137(1), 107–120.PubMedPubMedCentralGoogle Scholar
  249. Goyal, S. N., et al. (2006). Alpha-melanocyte stimulating hormone antagonizes antidepressant-like effect of neuropeptide Y in Porsolt's test in rats. Pharmacology, Biochemistry, and Behavior, 85(2), 369–377.PubMedCrossRefGoogle Scholar
  250. Greenfield, J. R., et al. (2009). Modulation of blood pressure by central melanocortinergic pathways. The New England Journal of Medicine, 360(1), 44–52.PubMedCrossRefGoogle Scholar
  251. Gropp, E., et al. (2005). Agouti-related peptide-expressing neurons are mandatory for feeding. Nature Neuroscience, 8(10), 1289–1291.CrossRefPubMedGoogle Scholar
  252. Gruenewald, T. L., Kemeny, M. E., & Aziz, N. (2006). Subjective social status moderates cortisol responses to social threat. Brain Behavior and Immunity, 20(4), 410–419.CrossRefGoogle Scholar
  253. Grueter, B. A., Rothwell, P. E., & Malenka, R. C. (2012). Integrating synaptic plasticity and striatal circuit function in addiction. Current Opinion in Neurobiology, 22(3), 545–551.PubMedCrossRefGoogle Scholar
  254. Grunfeld, C., et al. (1996). Endotoxin and cytokines induce expression of leptin, the ob gene product, in hamsters. The Journal of Clinical Investigation, 97(9), 2152–2157.PubMedPubMedCentralCrossRefGoogle Scholar
  255. Guarini, S., et al. (1989). Reversal of hemorrhagic-shock in rats by cholinomimetic drugs. British Journal of Pharmacology, 98(1), 218–224.PubMedPubMedCentralCrossRefGoogle Scholar
  256. Guarini, S., Bazzani, C., & Bertolini, A. (1997). Resuscitating effect of melanocortin peptides after prolonged respiratory arrest. British Journal of Pharmacology, 121(7), 1454–1460.PubMedPubMedCentralCrossRefGoogle Scholar
  257. Guarini, S., et al. (2004). Adrenocorticotropin reverses hemorrhagic shock in anesthetized rats through the rapid activation of a vagal anti-inflammatory pathway. Cardiovascular Research, 63(2), 357–365.PubMedCrossRefGoogle Scholar
  258. Gyengesi, E., et al. (2010). Corticosterone regulates synaptic input organization of POMC and NPY/AgRP neurons in adult mice. Endocrinology, 151(11), 5395–5402.PubMedPubMedCentralCrossRefGoogle Scholar
  259. Hagan, M. M., et al. (2002). A new animal model of binge eating: Key synergistic role of past caloric restriction and stress. Physiology & Behavior, 77(1), 45–54.CrossRefGoogle Scholar
  260. Hagan, M. M., et al. (2003). The role of palatable food and hunger as trigger factors in an animal model of stress induced binge eating. International Journal of Eating Disorders, 34(2), 183–197.PubMedCrossRefGoogle Scholar
  261. Hahn, T. M., et al. (1998). Coexpression of Agrp and NPY in fasting-activated hypothalamic neurons. Nature Neuroscience, 1(4), 271–272.PubMedPubMedCentralCrossRefGoogle Scholar
  262. Haitina, T., et al. (2007). Further evidence for ancient role of ACTH peptides at melanocortin (MC) receptors; pharmacology of dogfish and lamprey peptides at dogfish MC receptors. Peptides, 28(4), 798–805.PubMedCrossRefGoogle Scholar
  263. Hansson, G. K. (2005). Inflammation, atherosclerosis, and coronary artery disease. The New England Journal of Medicine, 352(16), 1685–1695.PubMedCrossRefGoogle Scholar
  264. Harrell, C. S., Gillespie, C. F., & Neigh, G. N. (2016). Energetic stress: The reciprocal relationship between energy availability and the stress response. Physiology & Behavior, 166, 43–55.CrossRefGoogle Scholar
  265. Hashimoto, H., et al. (2007). Parathyroid hormone-related protein induces cachectic syndromes without directly modulating the expression of hypothalamic feeding-regulating peptides. Clinical Cancer Research, 13(1), 292–298.PubMedCrossRefGoogle Scholar
  266. Haskell-Luevano, C., & Monck, E. K. (2001). Agouti-related protein functions as an inverse agonist at a constitutively active brain melanocortin-4 receptor. Regulatory Peptides, 99(1), 1–7.CrossRefPubMedGoogle Scholar
  267. Haskell-Luevano, C., et al. (1999). Characterization of the neuroanatomical distribution of agouti-related protein immunoreactivity in the rhesus monkey and the rat. Endocrinology, 140(3), 1408–1415.PubMedCrossRefGoogle Scholar
  268. Haynes, W. G., et al. (1999). Interactions between the melanocortin system and leptin in control of sympathetic nerve traffic. Hypertension, 33(1), 542–547.CrossRefPubMedGoogle Scholar
  269. Heinig, J. A., et al. (1995). The appearance of proopiomelanocortin early in vertebrate evolution: Cloning and sequencing of POMC from a lamprey pituitary cDNA library. General and Comparative Endocrinology, 99(2), 137–144.PubMedCrossRefGoogle Scholar
  270. Heinricher, M. M., et al. (2009). Descending control of nociception: Specificity, recruitment and plasticity. Brain Research Reviews, 60(1), 214–225.PubMedCrossRefGoogle Scholar
  271. Hellhammer, D. H., et al. (1997). Social hierarchy and adrenocortical stress reactivity in men. Psychoneuroendocrinology, 22(8), 643–650.PubMedCrossRefGoogle Scholar
  272. Herman, J. P. (2013). Neural control of chronic stress adaptation. Frontiers in Behavioral Neuroscience, 7, 61.PubMedPubMedCentralCrossRefGoogle Scholar
  273. Herman, J. P., & Morrison, D. G. (1996). Immunoautoradiographic and in situ hybridization analysis of corticotropin-releasing hormone biosynthesis in the hypothalamic paraventricular nucleus. Journal of Chemical Neuroanatomy, 11(1), 49–56.PubMedCrossRefGoogle Scholar
  274. Hill, J. W., & Faulkner, L. D. (2017). The role of the Melanocortin system in metabolic disease: New developments and advances. Neuroendocrinology, 104(4), 330–346.PubMedCrossRefGoogle Scholar
  275. Hill, J. W., et al. (2010). Direct insulin and Leptin action on pro-opiomelanocortin neurons is required for normal glucose homeostasis and fertility. Cell Metabolism, 11(4), 286–297.PubMedPubMedCentralCrossRefGoogle Scholar
  276. Himmelsbach, C. (1939). Studies of certain addiction characteristics of (a) Dihydromorphine (" Paramorphan"), (b) Dihydrodesoxymorphine-D (" Desomorphine"), (c) Dihydrodesoxycodeine-D (" Desocodeine"), and (d) Methyldihydromorphinone (" Metopon"). Journal of Pharmacology and Experimental Therapeutics, 67(2), 239–249.Google Scholar
  277. Homberg, J. R., et al. (2002). Enhanced motivation to self-administer cocaine is predicted by self-grooming behaviour and relates to dopamine release in the rat medial prefrontal cortex and amygdala. European Journal of Neuroscience, 15(9), 1542–1550.PubMedCrossRefGoogle Scholar
  278. Hong, W., Kim, D.-W., & Anderson, D. J. (2014). Antagonistic control of social versus repetitive self-grooming behaviors by separable amygdala neuronal subsets. Cell, 158(6), 1348–1361.PubMedPubMedCentralCrossRefGoogle Scholar
  279. Hosobuchi, Y., Adams, J. E., & Linchitz, R. (1977). Pain relief by electrical stimulation of the central gray matter in humans and its reversal by naloxone. Science, 197(4299), 183–186.PubMedCrossRefGoogle Scholar
  280. Hotamisligil, G., Shargill, N., & Spiegelman, B. (1993). Adipose expression of tumor necrosis factor-alpha: Direct role in obesity—Linked insulin resistance. Science, 259, 87–91 Zhang Y, Proenca R, Mafiei M, Barone M, Leopold L, Friedman JM: Positional cloning of the mouse obese gene and its human homologue. Nature, 1995. 372: p. 425-432.CrossRefPubMedGoogle Scholar
  281. Hu, X. X., Goldmuntz, E. A., & Brosnan, C. F. (1991). The effect of norepinephrine on endotoxin-mediated macrophage activation. Journal of Neuroimmunology, 31(1), 35–42.PubMedCrossRefGoogle Scholar
  282. Huang, Q. H., Hruby, V. J., & Tatro, J. B. (1999). Role of central melanocortins in endotoxin-induced anorexia. The American Journal of Physiology, 276(3 Pt 2), R864–R871.PubMedGoogle Scholar
  283. Humbert, M., et al. (1995). Increased interleukin-1 and interleukin-6 serum concentrations in severe primary pulmonary hypertension. American Journal of Respiratory and Critical Care Medicine, 151(5), 1628–1631.PubMedCrossRefGoogle Scholar
  284. Hummel, A., & Zuhlke, H. (1994). Expression of 2 proopiomelanocortin messenger-RNAs in the islets of langerhans of neonatal rats. Biological Chemistry Hoppe-Seyler, 375(12), 811–815.PubMedCrossRefGoogle Scholar
  285. Hyun, M., et al. (2016). Fat metabolism regulates satiety behavior in C. elegans. Scientific Reports, 6, 24841.PubMedPubMedCentralCrossRefGoogle Scholar
  286. Ichiyama, T., et al. (1999a). Alpha-melanocyte-stimulating hormone inhibits NF-kappa B activation and I kappa B alpha degradation in human glioma cells and in experimental brain inflammation. Experimental Neurology, 157(2), 359–365.PubMedCrossRefGoogle Scholar
  287. Ichiyama, T., et al. (1999b). Systemically administered α-melanocyte-stimulating peptides inhibit NF-κB activation in experimental brain inflammation. Brain Research, 836(1–2), 31–37.PubMedCrossRefGoogle Scholar
  288. Iqbal, J., et al. (2010). An intrinsic gut leptin-melanocortin pathway modulates intestinal microsomal triglyceride transfer protein and lipid absorption. Journal of Lipid Research, 51(7), 1929–1942.PubMedPubMedCentralCrossRefGoogle Scholar
  289. Jacobowitz, D. M., & Odonohue, T. L. (1978). Alpha-melanocyte stimulating hormone – Immunohistochemical identification and mapping in neurons of rat-brain. Proceedings of the National Academy of Sciences of the United States of America, 75(12), 6300–6304.PubMedPubMedCentralCrossRefGoogle Scholar
  290. Jaffe, S. B., Sobieszczyk, S., & Wardlaw, S. L. (1994). Effect of opioid antagonism on beta-endorphin processing and proopiomelanocortin-peptide release in the hypothalamus. Brain Research, 648(1), 24–31.PubMedCrossRefGoogle Scholar
  291. Jahng, J. W., et al. (2008). Dexamethasone reduces food intake, weight gain and the hypothalamic 5-HT concentration and increases plasma leptin in rats. European Journal of Pharmacology, 581(1–2), 64–70.PubMedCrossRefGoogle Scholar
  292. Jais, A., & Bruning, J. C. (2017). Hypothalamic inflammation in obesity and metabolic disease. The Journal of Clinical Investigation, 127(1), 24–32.PubMedPubMedCentralCrossRefGoogle Scholar
  293. Jang, P. G., et al. (2010). NF-kappa B activation in hypothalamic pro-opiomelanocortin neurons is essential in illness- and leptin-induced anorexia. Journal of Biological Chemistry, 285(13), 9706–9715.PubMedCrossRefGoogle Scholar
  294. Jegou, S., Boutelet, I., & Vaudry, H. (2000). Melanocortin-3 receptor mRNA expression in pro-opiomelanocortin neurones of the rat arcuate nucleus. Journal of Neuroendocrinology, 12(6), 501–505.PubMedCrossRefGoogle Scholar
  295. Jiang, W., et al. (2007). Pyrrolidinones as potent functional antagonists of the human melanocortin-4 receptor. Bioorganic & Medicinal Chemistry Letters, 17(20), 5610–5613.CrossRefGoogle Scholar
  296. Jin, X.-C., et al. (2007). Glucocorticoid receptors in the basolateral nucleus of amygdala are required for postreactivation reconsolidation of auditory fear memory. European Journal of Neuroscience, 25(12), 3702–3712.PubMedCrossRefGoogle Scholar
  297. John, K., et al. (2016). The glucocorticoid receptor: Cause of or cure for obesity? American Journal of Physiology-Endocrinology and Metabolism, 310(4), E249–E257.PubMedCrossRefGoogle Scholar
  298. Jolles, J., Wiegant, V. M., & Gispen, W. H. (1978). Reduced behavioral effectiveness of acth-1-24 after a 2nd administration – Interaction with opiates. Neuroscience Letters, 9(2–3), 261–266.PubMedCrossRefGoogle Scholar
  299. Jones, S. J., & Frongillo, E. A. (2006). The modifying effects of food stamp program participation on the relation between food insecurity and weight change in women. Journal of Nutrition, 136(4), 1091–1094.PubMedCrossRefGoogle Scholar
  300. Joseph, S. A., Pilcher, W. H., & Bennettclarke, C. (1983). Immunocytochemical localization of acth perikarya in nucleus tractus solitarius – Evidence for a 2nd opiocortin neuronal system. Neuroscience Letters, 38(3), 221–225.PubMedCrossRefGoogle Scholar
  301. Jun, D.-J., et al. (2010). Melanocortins induce interleukin 6 gene expression and secretion through melanocortin receptors 2 and 5 in 3T3-L1 adipocytes. Journal of Molecular Endocrinology, 44(4), 225–236.PubMedPubMedCentralCrossRefGoogle Scholar
  302. Kalange, A. S., et al. (2007). Central administration of selective melanocortin 4 receptor antagonist HS014 prevents morphine tolerance and withdrawal hyperalgesia. Brain Research, 1181, 10–20.PubMedCrossRefGoogle Scholar
  303. Kalueff, A. V., & Tuohimaa, P. (2004). Grooming analysis algorithm for neurobehavioural stress research. Brain Research Protocols, 13(3), 151–158.PubMedCrossRefGoogle Scholar
  304. Kalueff, A. V., & Tuohimaa, P. (2005). The grooming analysis algorithm discriminates between different levels of anxiety in rats: Potential utility for neurobehavioural stress research. Journal of Neuroscience Methods, 143(2), 169–177.PubMedCrossRefGoogle Scholar
  305. Kalueff, A. V., et al. (2007). Analyzing grooming microstructure in neurobehavioral experiments. Nature Protocols, 2(10), 2538–2544.PubMedCrossRefGoogle Scholar
  306. Kalueff, A. V., et al. (2016). Neurobiology of rodent self-grooming and its value for translational neuroscience. Nature Reviews Neuroscience, 17(1), 45–59.PubMedCrossRefGoogle Scholar
  307. Kalyuzhny, A. E., et al. (1996). Mu-opioid and delta-opioid receptors are expressed in brainstem antinociceptive circuits: Studies using immunocytochemistry and retrograde tract-tracing. Journal of Neuroscience, 16(20), 6490–6503.PubMedCrossRefGoogle Scholar
  308. Karami Kheirabad, M., et al. (2015). Expression of melanocortin-4 receptor mRNA in male rat hypothalamus during chronic stress. International Journal of Molecular and Cellular Medicine, 4(3), 182–187.PubMedPubMedCentralGoogle Scholar
  309. Kariagina, A., et al. (2004). Hypothalamic-pituitary cytokine network. Endocrinology, 145(1), 104–112.PubMedCrossRefGoogle Scholar
  310. Kas, M. J., et al. (2005). Differential regulation of agouti-related protein and neuropeptide Y in hypothalamic neurons following a stressful event. Journal of Molecular Endocrinology, 35(1), 159–164.PubMedCrossRefGoogle Scholar
  311. Katritch, V., Cherezov, V., & Stevens, R. C. (2013). Structure-function of the G protein–coupled receptor superfamily. Annual Review of Pharmacology and Toxicology, 53, 531–556.PubMedCrossRefGoogle Scholar
  312. Kawauchi, H., & Sower, S. A. (2006). The dawn and evolution of hormones in the adenohypophysis. General and Comparative Endocrinology, 148(1), 3–14.PubMedCrossRefGoogle Scholar
  313. Kelly, M. J., Loose, M. D., & Ronnekleiv, O. K. (1990). Opioids hyperpolarize beta-endorphin neurons via mu-receptor activation of a potassium conductance. Neuroendocrinology, 52(3), 268–275.PubMedCrossRefGoogle Scholar
  314. Kenyon, C., et al. (1993). A C-Elegans mutant that lives twice as long as wild-type. Nature, 366(6454), 461–464.PubMedCrossRefGoogle Scholar
  315. Kerman, I. A., Akil, H., & Watson, S. J. (2006). Rostral elements of sympatho-motor circuitry: A virally mediated transsynaptic tracing study. The Journal of Neuroscience, 26(13), 3423–3433.PubMedCrossRefGoogle Scholar
  316. Khachaturian, H., et al. (1986). Further characterization of the extra-arcuate alpha-melanocyte stimulating hormone-like material in hypothalamus: Biochemical and anatomical studies. Neuropeptides, 7(3), 291–313.PubMedCrossRefGoogle Scholar
  317. Kievit, P., et al. (2013). Chronic treatment with a melanocortin-4 receptor agonist causes weight loss, reduces insulin resistance, and improves cardiovascular function in diet-induced obese rhesus macaques. Diabetes, 62(2), 490–497.PubMedPubMedCentralCrossRefGoogle Scholar
  318. King, C. M., & Hentges, S. T. (2011). Relative number and distribution of murine hypothalamic proopiomelanocortin neurons innervating distinct target sites. PLoS One, 6(10), e25864.PubMedPubMedCentralCrossRefGoogle Scholar
  319. Kirschbaum, C., et al. (1995). Persistent high cortisol responses to repeated psychological stress in a subpopulation of healthy-men. Psychosomatic Medicine, 57(5), 468–474.PubMedCrossRefGoogle Scholar
  320. Kishi, T., et al. (2003). Expression of melanocortin 4 receptor mRNA in the central nervous system of the rat. Journal of Comparative Neurology, 457(3), 213–235.CrossRefPubMedGoogle Scholar
  321. Kissileff, H. R., et al. (2012). Leptin reverses declines in satiation in weight-reduced obese humans. American Journal of Clinical Nutrition, 95(2), 309–317.PubMedCrossRefGoogle Scholar
  322. Kivimaki, M., et al. (2006). Work stress, weight gain and weight loss: Evidence for bidirectional effects of job strain on body mass index in the Whitehall II study. International Journal of Obesity, 30(6), 982–987.PubMedCrossRefGoogle Scholar
  323. Kleen, J. K., et al. (2006). Chronic stress impairs spatial memory and motivation for reward without disrupting motor ability and motivation to explore. Behavioral Neuroscience, 120(4), 842–851.PubMedPubMedCentralCrossRefGoogle Scholar
  324. Kleinridders, A., et al. (2009). MyD88 signaling in the CNS is required for development of fatty acid-induced Leptin resistance and diet-induced obesity. Cell Metabolism, 10(4), 249–259.PubMedPubMedCentralCrossRefGoogle Scholar
  325. Klovins, J., et al. (2004). Cloning of two melanocortin (MC) receptors in spiny dogfish: MC3 receptor in cartilaginous fish shows high affinity to ACTH-derived peptides while it has lower preference to gamma-MSH. European Journal of Biochemistry, 271(21), 4320–4331.PubMedCrossRefGoogle Scholar
  326. Knight, Z. A., et al. (2010). Hyperleptinemia is required for the development of leptin resistance. PLoS One, 5(6), e11376.PubMedPubMedCentralCrossRefGoogle Scholar
  327. Knuth, N. D., et al. (2014). Metabolic adaptation following massive weight loss is related to the degree of energy imbalance and changes in circulating leptin. Obesity, 22(12), 2563–2569.PubMedGoogle Scholar
  328. Kobayashi, Y., et al. (2012). Melanocortin systems on pigment dispersion in fish chromatophores. Frontiers in Endocrinology (Lausanne), 3, 9.Google Scholar
  329. Koch, M., et al. (2015). Hypothalamic POMC neurons promote cannabinoid-induced feeding. Nature, 519(7541), 45–U72.PubMedPubMedCentralCrossRefGoogle Scholar
  330. Kojima, M., et al. (1999). Ghrelin is a growth-hormone-releasing acylated peptide from stomach. Nature, 402(6762), 656–660.PubMedCrossRefGoogle Scholar
  331. Konner, A. C., et al. (2007). Insulin action in AgRP-expressing neurons is required for suppression of hepatic glucose production. Cell Metabolism, 5(6), 438–449.PubMedCrossRefGoogle Scholar
  332. Koob, G. F. (2010). The role of CRF and CRF-related peptides in the dark side of addiction. Brain Research, 1314, 3–14.PubMedCrossRefGoogle Scholar
  333. Krahn, D. D., Gosnell, B. A., & Majchrzak, M. J. (1990). The anorectic effects of CRH and restraint stress decrease with repeated exposures. Biological Psychiatry, 27(10), 1094–1102.PubMedCrossRefGoogle Scholar
  334. Krashes, M. J., et al. (2011). Rapid, reversible activation of AgRP neurons drives feeding behavior in mice. Journal of Clinical Investigation, 121(4), 1424–1428.PubMedCrossRefGoogle Scholar
  335. Kreitzer, A. C., & Malenka, R. C. (2008). Striatal plasticity and basal ganglia circuit function. Neuron, 60(4), 543–554.PubMedPubMedCentralCrossRefGoogle Scholar
  336. Krude, H., & Gruters, A. (2000). Implications of proopiomelanocortin (POMC) mutations in humans: The POMC deficiency syndrome. Trends in Endocrinology and Metabolism, 11(1), 15–22.PubMedCrossRefGoogle Scholar
  337. Kruk, M. R., et al. (1998). The hypothalamus: Cross-roads of endocrine and behavioural regulation in grooming and aggression. Neuroscience & Biobehavioral Reviews, 23(2), 163–177.CrossRefGoogle Scholar
  338. Kuhnen, P., et al. (2016). Proopiomelanocortin deficiency treated with a melanocortin-4 receptor agonist. The New England Journal of Medicine, 375(3), 240–246.PubMedCrossRefGoogle Scholar
  339. Kuo, J. J., Silva, A. A., & Hall, J. E. (2003). Hypothalamic melanocortin receptors and chronic regulation of arterial pressure and renal function. Hypertension, 41(3), 768–774.PubMedCrossRefGoogle Scholar
  340. la Fleur, S. E., et al. (2005). Choice of lard, but not total lard calories, damps adrenocorticotropin responses to restraint. Endocrinology, 146(5), 2193–2199.PubMedCrossRefGoogle Scholar
  341. Land, B. B., et al. (2014). Medial prefrontal D1 dopamine neurons control food intake. Nature Neuroscience, 17(2), 248–253.PubMedPubMedCentralCrossRefGoogle Scholar
  342. Larhammar, D., et al. (2009). Early duplications of opioid receptor and peptide genes in vertebrate evolution. Annals of the New York Academy of Sciences, 1163, 451–453.PubMedCrossRefGoogle Scholar
  343. Laurent, H. K., Powers, S. I., & Granger, D. A. (2013). Refining the multisystem view of the stress response: Coordination among cortisol, alpha-amylase, and subjective stress in response to relationship conflict. Physiology & Behavior, 119, 52–60.CrossRefGoogle Scholar
  344. LeDoux, J. (2012). Rethinking the emotional brain. Neuron, 73(4), 653–676.PubMedPubMedCentralCrossRefGoogle Scholar
  345. Lee, D. J., & Taylor, A. W. (2011). Following EAU recovery there is an associated MC5r-dependent APC induction of regulatory immunity in the spleen. Investigative Ophthalmology & Visual Science, 52(12), 8862–8867.CrossRefGoogle Scholar
  346. Lee, E. H. Y., et al. (1993). Hippocampal Crf, ne, and Nmda system interactions in memory processing in the rat. Synapse, 14(2), 144–153.PubMedCrossRefGoogle Scholar
  347. Lee, J. Y., et al. (2001). Saturated fatty acids, but not unsaturated fatty acids, induce the expression of cyclooxygenase-2 mediated through toll-like receptor 4. The Journal of Biological Chemistry, 276(20), 16683–16689.PubMedCrossRefGoogle Scholar
  348. Lee, M., et al. (2008). Effects of selective modulation of the central melanocortin-3-receptor on food intake and hypothalamic POMC expression. Peptides, 29(3), 440–447.PubMedCrossRefGoogle Scholar
  349. Leeson, R., Gulabivala, K., & Ng, Y. (2014). Definition of pain. Endodontics, 369 Merskey H Logic, truth and language in concepts of pain. Qual Life Res, 1994(Suppl 1), S69–S76.Google Scholar
  350. Leone, S., Noera, G., & Bertolini, A. (2013). Melanocortins as innovative drugs for ischemic diseases and neurodegenerative disorders: Established data and perspectives. Current Medicinal Chemistry, 20(6), 735–750.PubMedGoogle Scholar
  351. Leroy, J. L., et al. (2013). Cash and in-kind transfers lead to excess weight gain in a population of women with a high prevalence of overweight in rural Mexico. Journal of Nutrition, 143(3), 378–383.PubMedCrossRefGoogle Scholar
  352. Lesouhaitier, O., et al. (2009). Gram-negative bacterial sensors for eukaryotic signal molecules. Sensors (Basel), 9(9), 6967–6990.CrossRefGoogle Scholar
  353. Lewis, V. A., & Gebhart, G. F. (1977). Evaluation of the periaqueductal central gray (PAG) as a morphine-specific locus of action and examination of morphine-induced and stimulation-produced analgesia at coincident PAG loci. Brain Research, 124(2), 283–303.PubMedCrossRefGoogle Scholar
  354. Liang, L., et al. (2013). Evolution of melanocortin receptors in cartilaginous fish: Melanocortin receptors and the stress axis in elasmobranches. General and Comparative Endocrinology, 181, 4–9.PubMedCrossRefGoogle Scholar
  355. Libby, P. (2002). Inflammation in atherosclerosis. Nature, 420(6917), 868–874.PubMedCrossRefGoogle Scholar
  356. Lieberman, H. R., Wurtman, J. J., & Chew, B. (1986). Changes in mood after carbohydrate consumption among obese individuals. American Journal of Clinical Nutrition, 44(6), 772–778.PubMedCrossRefGoogle Scholar
  357. Lim, C. T., Grossman, A., & Khoo, B. (2000). Normal physiology of ACTH and GH release in the hypothalamus and anterior pituitary in man. In L. J. De Groot et al. (Eds.), Endotext. South Dartmouth, MA: MDText.com, Inc.Google Scholar
  358. Lim, B. K., et al. (2012). Anhedonia requires MC4R-mediated synaptic adaptations in nucleus accumbens. Nature, 487(7406), 183–U64.PubMedPubMedCentralCrossRefGoogle Scholar
  359. Lim, K., et al. (2016). Origin of aberrant blood pressure and sympathetic regulation in diet-induced obesity. Hypertension, 68(2), 491-+.PubMedCrossRefGoogle Scholar
  360. Lindberg, C., et al. (2005). Cytokine production by a human microglial cell line: Effects of beta-amyloid and alpha-melanocyte-stimulating hormone. Neurotoxicity Research, 8(3–4), 267–276.PubMedCrossRefGoogle Scholar
  361. Lindblom, J., et al. (2001). The MC4 receptor mediates alpha-MSH induced release of nucleus accumbens dopamine. Neuroreport, 12(10), 2155–2158.PubMedCrossRefGoogle Scholar
  362. Lipton, J. M., et al. (1991). Central administration of the peptide alpha-msh inhibits inflammation in the skin. Peptides, 12(4), 795–798.PubMedCrossRefGoogle Scholar
  363. Lisak, R. P., Nedelkoska, L., & Benjamins, J. A. (2016). The melanocortin ACTH 1-39 promotes protection of oligodendrocytes by astroglia. Journal of the Neurological Sciences, 362, 21–26.PubMedCrossRefGoogle Scholar
  364. Liu, H. Y., et al. (2003). Transgenic mice expressing green fluorescent protein under the control of the melanocortin-4 receptor promoter. Journal of Neuroscience, 23(18), 7143–7154.PubMedCrossRefGoogle Scholar
  365. Liu, J., et al. (2007). The melanocortinergic pathway is rapidly recruited by emotional stress and contributes to stress-induced anorexia and anxiety-like behavior. Endocrinology, 148(11), 5531–5540.PubMedPubMedCentralCrossRefGoogle Scholar
  366. Liu, J., et al. (2013). Melanocortin-4 receptor in the medial amygdala regulates emotional stress-induced anxiety-like behaviour, anorexia and corticosterone secretion. International Journal of Neuropsychopharmacology, 16(1), 105–120.PubMedCrossRefGoogle Scholar
  367. Liu, Y., et al. (2016). Lipopolysacharide rapidly and completely suppresses AgRP neuron-mediated food intake in male mice. Endocrinology, 157(6), 2380–2392.PubMedPubMedCentralCrossRefGoogle Scholar
  368. Loh, K., et al. (2017). Insulin controls food intake and energy balance via NPY neurons. Molecular Metabolism, 6(6), 574–584.PubMedPubMedCentralCrossRefGoogle Scholar
  369. Lopez-Soriano, J., et al. (1999). Leptin and tumor growth in rats. International Journal of Cancer, 81(5), 726–729.PubMedCrossRefGoogle Scholar
  370. Lu, X. Y., et al. (2003). Interaction between alpha-melanocyte-stimulating hormone and corticotropin-releasing hormone in the regulation of feeding and hypothalamo-pituitary-adrenal responses. Journal of Neuroscience, 23(21), 7863–7872.PubMedCrossRefGoogle Scholar
  371. Ludwig, J., et al. (2011). Neighborhoods, obesity, and diabetes – A randomized social experiment. New England Journal of Medicine, 365(16), 1509–1519.PubMedCrossRefGoogle Scholar
  372. Luisella, A., et al. (2007). Type 2 diabetes and metabolic syndrome are associated with increased expression of 11beta-hydroxysteroid dehydrogenase 1 in obese subjects. International Journal of Obesity, 31, S88–S88.Google Scholar
  373. Luquet, S., et al. (2005). NPY/AgRP neurons are essential for feeding in adult mice but can be ablated in neonates. Science, 310(5748), 683–685.PubMedCrossRefGoogle Scholar
  374. Luscher, C., & Slesinger, P. A. (2010). Emerging roles for G protein-gated inwardly rectifying potassium (GIRK) channels in health and disease. Nature Reviews. Neuroscience, 11(5), 301–315.PubMedPubMedCentralCrossRefGoogle Scholar
  375. Lute, B., et al. (2014). Biphasic effect of melanocortin agonists on metabolic rate and body temperature. Cell Metabolism, 20(2), 333–345.PubMedPubMedCentralCrossRefGoogle Scholar
  376. Lutter, M., & Nestler, E. J. (2009). Homeostatic and hedonic signals interact in the regulation of food intake. The Journal of Nutrition, 139(3), 629–632.PubMedPubMedCentralCrossRefGoogle Scholar
  377. Lutter, M., et al. (2008). The orexigenic hormone ghrelin defends against depressive symptoms of chronic stress. Nature Neuroscience, 11(7), 752–753.PubMedPubMedCentralCrossRefGoogle Scholar
  378. Ma, X. M., Levy, A., & Lightman, S. L. (1997). Rapid changes in heteronuclear RNA for corticotrophin-releasing hormone and arginine vasopressin in response to acute stress. Journal of Endocrinology, 152(1), 81–89.PubMedCrossRefGoogle Scholar
  379. MacLean, P. S., et al. (2009). Regular exercise attenuates the metabolic drive to regain weight after long-term weight loss. American Journal of Physiology-Regulatory Integrative and Comparative Physiology, 297(3), R793–R802.CrossRefGoogle Scholar
  380. Magoul, R., et al. (1993). Tachykinergic afferents to the rat arcuate nucleus. A combined immunohistochemical and retrograde tracing study. Peptides, 14(2), 275–286.PubMedCrossRefGoogle Scholar
  381. Markison, S., et al. (2005). The regulation of feeding and metabolic rate and the prevention of murine cancer cachexia with a small-molecule melanocortin-4 receptor antagonist. Endocrinology, 146(6), 2766–2773.PubMedCrossRefGoogle Scholar
  382. Markowitz, C. E., et al. (1992). Effect of opioid receptor antagonism on proopiomelanocortin peptide levels and gene expression in the hypothalamus. Molecular and Cellular Neurosciences, 3(3), 184–190.PubMedCrossRefGoogle Scholar
  383. Marks, D. L., Ling, N., & Cone, R. D. (2001). Role of the central melanocortin system in cachexia. Cancer Research, 61(4), 1432–1438.PubMedGoogle Scholar
  384. Marks, D. L., et al. (2006). The regulation of food intake by selective stimulation of the type 3 melanocortin receptor (MC3R). Peptides, 27(2), 259–264.PubMedCrossRefGoogle Scholar
  385. Marsh, D. J., et al. (1999). Response of melanocortin-4 receptor-deficient mice to anorectic and orexigenic peptides. Nature Genetics, 21(1), 119–122.PubMedCrossRefGoogle Scholar
  386. Martin, W. J., & MacIntyre, D. E. (2004). Melanocortin receptors and erectile function. European Urology, 45(6), 706–713.PubMedCrossRefGoogle Scholar
  387. Martin, C. K., et al. (2007). Effect of calorie restriction on resting metabolic rate and spontaneous physical activity. Obesity (Silver Spring), 15(12), 2964–2973.CrossRefGoogle Scholar
  388. Matthes, H. W., et al. (1996). Loss of morphine-induced analgesia, reward effect and withdrawal symptoms in mice lacking the mu-opioid-receptor gene. Nature, 383(6603), 819–823.PubMedCrossRefGoogle Scholar
  389. Mavrikaki, M., et al. (2016). Melanocortin-3 receptors in the limbic system mediate feeding-related motivational responses during weight loss. Molecular Metabolism, 5(7), 566–579.PubMedPubMedCentralCrossRefGoogle Scholar
  390. Mayan, H., et al. (1996). Dietary sodium intake modulates pituitary Proopiomelanocortin mRNA abundance. Hypertension, 28(2), 244–249.PubMedCrossRefGoogle Scholar
  391. McEwen, B. S. (2007). Physiology and neurobiology of stress and adaptation: Central role of the brain. Physiological Reviews, 87(3), 873–904.PubMedCrossRefGoogle Scholar
  392. McEwen, B. S., De Kloet, E. R., & Rostene, W. (1986). Adrenal steroid receptors and actions in the nervous system. Physiological Reviews, 66(4), 1121–1188.PubMedCrossRefGoogle Scholar
  393. Meaney, M. J., Sapolsky, R. M., & McEwen, B. S. (1985). The development of the glucocorticoid receptor system in the rat limbic brain. II. An autoradiographic study. Brain Research, 350(1–2), 165–168.PubMedCrossRefGoogle Scholar
  394. Mechanick, J. I., et al. (1992). Proopiomelanocortin gene-expression in a distinct population of rat spleen and lung leukocytes. Endocrinology, 131(1), 518–525.PubMedCrossRefGoogle Scholar
  395. Melby, C. L., et al. (2017). Attenuating the biologic drive for weight regain following weight loss: Must what Goes down always go back up? Nutrients, 9(5), E468.PubMedCrossRefGoogle Scholar
  396. Mena, J. D., Selleck, R. A., & Baldo, B. A. (2013). Mu-opioid stimulation in rat prefrontal cortex engages hypothalamic orexin/hypocretin-containing neurons, and reveals dissociable roles of nucleus accumbens and hypothalamus in cortically driven feeding. The Journal of Neuroscience, 33(47), 18540–18552.PubMedPubMedCentralCrossRefGoogle Scholar
  397. Mendez, I. A., et al. (2015). Involvement of endogenous enkephalins and beta-endorphin in feeding and diet-induced obesity. Neuropsychopharmacology, 40(9), 2103–2112.PubMedPubMedCentralCrossRefGoogle Scholar
  398. Menzaghi, F., et al. (1993). Functional impairment of hypothalamic corticotropin-releasing factor neurons with immunotargeted toxins enhances food intake induced by neuropeptide Y. Brain Research, 618(1), 76–82.PubMedCrossRefGoogle Scholar
  399. Mercer, A. J., et al. (2014). Temporal changes in nutritional state affect hypothalamic POMC peptide levels independently of leptin in adult male mice. American Journal of Physiology-Endocrinology and Metabolism, 306(8), E904–E915.PubMedPubMedCentralCrossRefGoogle Scholar
  400. Methlie, P., et al. (2013). Changes in adipose glucocorticoid metabolism before and after bariatric surgery assessed by direct hormone measurements. Obesity, 21(12), 2495–2503.PubMedCrossRefGoogle Scholar
  401. Michalaki, V., et al. (2004). Serum levels of IL-6 and TNF-alpha correlate with clinicopathological features and patient survival in patients with prostate cancer. British Journal of Cancer, 90(12), 2312–2316.PubMedPubMedCentralCrossRefGoogle Scholar
  402. Michopoulos, V., Toufexis, D., & Wilson, M. E. (2012). Social stress interacts with diet history to promote emotional feeding in females. Psychoneuroendocrinology, 37(9), 1479–1490.PubMedPubMedCentralCrossRefGoogle Scholar
  403. Miell, J. P., Englaro, P., & Blum, W. F. (1996). Dexamethasone induces an acute and sustained rise in circulating leptin levels in normal human subjects. Hormone and Metabolic Research, 28(12), 704–707.PubMedCrossRefGoogle Scholar
  404. Miklos, I. H., & Kovacs, K. J. (2002). GABAergic innervation of corticotropin-releasing hormone (CRH)-secreting parvocellular neurons and its plasticity as demonstrated by quantitative immunoelectron microscopy. Neuroscience, 113(3), 581–592.PubMedCrossRefGoogle Scholar
  405. Mizoguchi, K., et al. (2000). Chronic stress induces impairment of spatial working memory because of prefrontal dopaminergic dysfunction. Journal of Neuroscience, 20(4), 1568–1574.PubMedCrossRefGoogle Scholar
  406. Moberg, G. (2000). Biological response to stress: implications for animal welfare. In The biology of animal stress: basic principles and implications for animal welfare (pp. 1–21). London: CABI Publishing.CrossRefGoogle Scholar
  407. Moller, C. L., et al. (2011). Characterization of murine melanocortin receptors mediating adipocyte lipolysis and examination of signalling pathways involved. Molecular and Cellular Endocrinology, 341(1–2), 9–17.PubMedCrossRefGoogle Scholar
  408. Montero-Melendez, T. (2015). ACTH: The forgotten therapy. Seminars in Immunology, 27(3), 216–226.PubMedCrossRefGoogle Scholar
  409. Moore, C. J., et al. (2015). Antagonism of corticotrophin-releasing factor type 1 receptors attenuates caloric intake of free feeding subordinate female rhesus monkeys in a rich dietary environment. Journal of Neuroendocrinology, 27(1), 33–43.PubMedCrossRefGoogle Scholar
  410. Morgan, S. A., et al. (2014). 11 beta-HSD1 is the major regulator of the tissue-specific effects of circulating glucocorticoid excess. Proceedings of the National Academy of Sciences of the United States of America, 111(24), E2482–E2491.PubMedPubMedCentralCrossRefGoogle Scholar
  411. Morgan, D. A., et al. (2015). Regulation of glucose tolerance and sympathetic activity by MC4R signaling in the lateral hypothalamus. Diabetes, 64(6), 1976–1987.PubMedPubMedCentralCrossRefGoogle Scholar
  412. Morimoto, M., et al. (1996). Distribution of glucocorticoid receptor immunoreactivity and mRNA in the rat brain: An immunohistochemical and in situ hybridization study. Neuroscience Research, 26(3), 235–269.PubMedCrossRefGoogle Scholar
  413. Morton, N. M., et al. (2004). Novel adipose tissue-mediated resistance to diet-induced visceral obesity in 11 beta-hydroxysteroid dehydrogenase type 1-deficient mice. Diabetes, 53(4), 931–938.PubMedCrossRefGoogle Scholar
  414. Mostyn, A., et al. (2001). The role of leptin in the transition from fetus to neonate. The Proceedings of the Nutrition Society, 60(2), 187–194.PubMedCrossRefGoogle Scholar
  415. Mounien, L., et al. (2005). Expression of melanocortin MC3 and MC4 receptor mRNAs by neuropeptide Y neurons in the rat arcuate nucleus. Neuroendocrinology, 82(3–4), 164–170.PubMedCrossRefGoogle Scholar
  416. Mountjoy, K. G. (2010). Distribution and function of melanocortin receptors within the brain. In A. Catania (Ed.), Melanocortins: Multiple actions and therapeutic potential (pp. 29–48). New York: Springer.CrossRefGoogle Scholar
  417. Mountjoy, K. G., et al. (1992). The cloning of a family of genes that encode the melanocortin receptors. Science, 257(5074), 1248–1251.PubMedCrossRefGoogle Scholar
  418. Mul, J. D., et al. (2012). Melanocortin receptor 4 deficiency affects body weight regulation, grooming behavior, and substrate preference in the rat. Obesity, 20(3), 612–621.PubMedCrossRefGoogle Scholar
  419. Murphy, M. T., Richards, D. B., & Lipton, J. M. (1983). Anti-pyretic potency of centrally administered alpha-melanocyte stimulating hormone. Science, 221(4606), 192–193.PubMedCrossRefGoogle Scholar
  420. Myers, B., & Greenwood-Van Meerveld, B. (2007). Corticosteroid receptor-mediated mechanisms in the amygdala regulate anxiety and colonic sensitivity. American Journal of Physiology-Gastrointestinal and Liver Physiology, 292(6), G1622–G1629.PubMedCrossRefGoogle Scholar
  421. Myers, M. G., et al. (2010). Obesity and leptin resistance: Distinguishing cause from effect. Trends in Endocrinology and Metabolism, 21(11), 643–651.PubMedCrossRefGoogle Scholar
  422. Myers, B., McKlveen, J. M., & Herman, J. P. (2014). Glucocorticoid actions on synapses, circuits, and behavior: Implications for the energetics of stress. Frontiers in Neuroendocrinology, 35(2), 180–196.PubMedCrossRefGoogle Scholar
  423. Nakamura, Y., Walker, B. R., & Ikuta, T. (2016). Systematic review and meta-analysis reveals acutely elevated plasma cortisol following fasting but not less severe calorie restriction. Stress, 19(2), 151–157.PubMedCrossRefGoogle Scholar
  424. Naslund, E., et al. (2000). Associations of leptin, insulin resistance and thyroid function with long-term weight loss in dieting obese men. Journal of Internal Medicine, 248(4), 299–308.PubMedCrossRefGoogle Scholar
  425. Nathan, P. J., & Bullmore, E. T. (2009). From taste hedonics to motivational drive: Central mu-opioid receptors and binge-eating behaviour. International Journal of Neuropsychopharmacology, 12(7), 995–1008.PubMedCrossRefGoogle Scholar
  426. Nestler, E. J., & Hyman, S. E. (2010). Animal models of neuropsychiatric disorders. Nature Neuroscience, 13(10), 1161–1169.PubMedPubMedCentralCrossRefGoogle Scholar
  427. Ni, X. P., et al. (2003). Genetic disruption of gamma-melanocyte-stimulating hormone signaling leads to salt-sensitive hypertension in the mouse. The Journal of Clinical Investigation, 111(8), 1251–1258.PubMedPubMedCentralCrossRefGoogle Scholar
  428. Ni, X. P., et al. (2006). Modulation by dietary sodium intake of melanocortin 3 receptor mRNA and protein abundance in the rat kidney. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 290(3), R560–R567.CrossRefGoogle Scholar
  429. Nijenhuis, W. A. J., Oosterom, J., & Adan, R. A. H. (2001). AgRP(83-132) acts as an inverse agonist on the human-melanocortin-4 receptor. Molecular Endocrinology, 15(1), 164–171.PubMedGoogle Scholar
  430. Nijenhuis, W. A. J., et al. (2003). Discovery and in vivo evaluation of new melanocortin-4 receptor-selective peptides. Peptides, 24(2), 271–280.PubMedCrossRefGoogle Scholar
  431. Nikolarakis, K. E., Almeida, O. F., & Herz, A. (1987). Feedback inhibition of opioid peptide release in the hypothalamus of the rat. Neuroscience, 23(1), 143–148.PubMedCrossRefGoogle Scholar
  432. Nilaver, G., et al. (1979). Adrenocorticotropin and beta-lipotropin in the hypothalamus - localization in the same arcuate neurons by sequential immunocytochemical procedures. Journal of Cell Biology, 81(1), 50–58.PubMedCrossRefGoogle Scholar
  433. Niu, Z. J., et al. (2012). Melanocortin 4 receptor antagonists attenuates morphine antinociceptive tolerance, astroglial activation and cytokines expression in the spinal cord of rat. Neuroscience Letters, 529(2), 112–117.PubMedCrossRefGoogle Scholar
  434. Norman, D., et al. (2003). ACTH and alpha-MSH inhibit leptin expression and secretion in 3T3-L1 adipocytes: Model for a central-peripheral melanocortin-leptin pathway. Molecular and Cellular Endocrinology, 200(1–2), 99–109.PubMedCrossRefGoogle Scholar
  435. Novoselova, T. V., et al. (2016). Loss of Mrap2 is associated with Sim1 deficiency and increased circulating cholesterol. Journal of Endocrinology, 230(1), 13–26.PubMedCrossRefGoogle Scholar
  436. Nyberg, S. T., et al. (2012). Job strain in relation to body mass index: Pooled analysis of 160 000 adults from 13 cohort studies. Journal of Internal Medicine, 272(1), 65–73.PubMedCrossRefGoogle Scholar
  437. Ochi, M., et al. (2008). Effect of chronic stress on gastric emptying and plasma ghrelin levels in rats. Life Sciences, 82(15–16), 862–868.PubMedCrossRefGoogle Scholar
  438. Odonohue, T. L., & Dorsa, D. M. (1982). The opiomelanotropinergic neuronal and endocrine systems. Peptides, 3(3), 353–395.CrossRefGoogle Scholar
  439. Ohata, H., & Shibasaki, T. (2011). Involvement of CRF2 receptor in the brain regions in restraint-induced anorexia. Neuroreport, 22(10), 494–498.PubMedCrossRefGoogle Scholar
  440. Okada, S., et al. (1998). Elevated serum interleukin-6 levels in patients with pancreatic cancer. Japanese Journal of Clinical Oncology, 28(1), 12–15.PubMedCrossRefGoogle Scholar
  441. Oliveira, J. F., et al. (2013). Chronic stress disrupts neural coherence between cortico-limbic structures. Frontiers in Neural Circuits, 7, 10.PubMedPubMedCentralGoogle Scholar
  442. Oliver, G., & Wardle, J. (1999). Perceived effects of stress on food choice. Physiology & Behavior, 66(3), 511–515.CrossRefGoogle Scholar
  443. Oliver, G., Wardle, J., & Gibson, E. L. (2000). Stress and food choice: A laboratory study. Psychosomatic Medicine, 62(6), 853–865.PubMedCrossRefGoogle Scholar
  444. Ollmann, M. M., et al. (1997). Antagonism of central melanocortin receptors in vitro and in vivo by Agouti-related protein. Science, 278(5335), 135–138.CrossRefPubMedGoogle Scholar
  445. Ortolani, D., et al. (2011). Effects of comfort food on food intake, anxiety-like behavior and the stress response in rats. Physiology & Behavior, 103(5), 487–492.CrossRefGoogle Scholar
  446. Ottaviani, E., Franchini, A., & Franceschi, C. (1997). Evolution of neuroendocrine thymus: Studies on POMC-derived peptides, cytokines and apoptosis in lower and higher vertebrates. Journal of Neuroimmunology, 72(1), 67–74.PubMedCrossRefGoogle Scholar
  447. Ottosson, M., et al. (2000). Effects of cortisol and growth hormone on lipolysis in human adipose tissue. The Journal of Clinical Endocrinology and Metabolism, 85(2), 799–803.PubMedGoogle Scholar
  448. Pagano, R. L., et al. (2012). Motor cortex stimulation inhibits thalamic sensory neurons and enhances activity of PAG neurons: Possible pathways for antinociception. Pain, 153(12), 2359–2369.PubMedCrossRefGoogle Scholar
  449. Palkovits, M., Mezey, É., & Eskay, R. L. (1987). Pro-opiomelanocortin-derived peptides (ACTH/β-endorphin/α-MSH) in brainstem baroreceptor areas of the rat. Brain Research, 436(2), 323–338.CrossRefPubMedGoogle Scholar
  450. Pan, J. P., et al. (2004). The value of plasma levels of tumor necrosis factor-alpha and interleukin-6 in predicting the severity and prognosis in patients with congestive heart failure. Journal of the Chinese Medical Association, 67(5), 222–228.PubMedGoogle Scholar
  451. Pan, X. C., et al. (2013). Melanocortin-4 receptor expression in the rostral ventromedial medulla involved in modulation of nociception in transgenic mice. Journal of Huazhong University of Science and Technology-Medical Sciences, 33(2), 195–198.CrossRefGoogle Scholar
  452. Parton, L. E., et al. (2007). Glucose sensing by POMC neurons regulates glucose homeostasis and is impaired in obesity. Nature, 449(7159), 228–2U7.PubMedCrossRefGoogle Scholar
  453. Parylak, S. L., Koob, G. F., & Zorrilla, E. P. (2011). The dark side of food addiction. Physiology & Behavior, 104(1), 149–156.CrossRefGoogle Scholar
  454. Pavlov, V. A., & Tracey, K. J. (2006). Controlling inflammation: The cholinergic anti-inflammatory pathway. Biochemical Society Transactions, 34, 1037–1040.PubMedCrossRefGoogle Scholar
  455. Peckett, A. J., Wright, D. C., & Riddell, M. C. (2011). The effects of glucocorticoids on adipose tissue lipid metabolism. Metabolism-Clinical and Experimental, 60(11), 1500–1510.PubMedCrossRefGoogle Scholar
  456. Pecoraro, N., et al. (2004). Chronic stress promotes palatable feeding, which reduces signs of stress: Feedforward and feedback effects of chronic stress. Endocrinology, 145(8), 3754–3762.PubMedCrossRefGoogle Scholar
  457. Pednekar, J., Mulgaonker, V., & Mascarenhas, J. (1993). Effect of intensity and duration of stress on male sexual behaviour. Indian Journal of Experimental Biology, 31(7), 638–640.PubMedGoogle Scholar
  458. Peeke, P. M., & Chrousos, G. P. (1995). Hypercortisolism and obesity. Annals of the New York Academy of Sciences, 771, 665–676.PubMedCrossRefGoogle Scholar
  459. Pego, J. M., et al. (2010). Stress and the neuroendocrinology of anxiety disorders. Current Topics in Behavioral Neurosciences, 2, 97–117.PubMedCrossRefGoogle Scholar
  460. Pelletier, G. (1993). Regulation of proopiomelanocortin gene expression in rat brain and pituitary as studied by in situ hybridization. Annals of the New York Academy of Sciences, 680, 246–259.PubMedCrossRefGoogle Scholar
  461. Pennock, R. L., & Hentges, S. T. (2011). Differential expression and sensitivity of presynaptic and postsynaptic opioid receptors regulating hypothalamic proopiomelanocortin neurons. The Journal of Neuroscience, 31(1), 281–288.PubMedPubMedCentralCrossRefGoogle Scholar
  462. Pennock, R. L., & Hentges, S. T. (2016). Desensitization-resistant and -sensitive GPCR-mediated inhibition of GABA release occurs by Ca2+−dependent and -independent mechanisms at a hypothalamic synapse. Journal of Neurophysiology, 115(5), 2376–2388.PubMedPubMedCentralCrossRefGoogle Scholar
  463. Perello, M., Stuart, R. C., & Nillni, E. A. (2007). Differential effects of fasting and leptin on proopiomelanocortin peptides in the arcuate nucleus and in the nucleus of the solitary tract. American Journal of Physiology-Endocrinology and Metabolism, 292(5), E1348–E1357.CrossRefPubMedGoogle Scholar
  464. Perello, M., Stuart, R., & Nillni, E. A. (2008). Prothyrotropin-releasing hormone targets its processing products to different vesicles of the secretory pathway. Journal of Biological Chemistry, 283(29), 19936–19947.PubMedCrossRefGoogle Scholar
  465. Petervari, E., et al. (2011). Central alpha-MSH infusion in rats: Disparate anorexic vs. metabolic changes with aging. Regulatory Peptides, 166(1–3), 105–111.PubMedCrossRefGoogle Scholar
  466. Petrovich, G. D., et al. (2009). Central, but not basolateral, amygdala is critical for control of feeding by aversive learned cues. Journal of Neuroscience, 29(48), 15205–15212.PubMedCrossRefGoogle Scholar
  467. Pfaus, J. G., et al. (2004). Selective facilitation of sexual solicitation in the female rat by a melanocortin receptor agonist. Proceedings of the National Academy of Sciences of the United States of America, 101(27), 10201–10204.PubMedPubMedCentralCrossRefGoogle Scholar
  468. Plotsky, P. M. (1986). Opioid inhibition of immunoreactive corticotropin-releasing factor secretion into the hypophysial-portal circulation of rats. Regulatory Peptides, 16(3–4), 235–242.PubMedCrossRefGoogle Scholar
  469. Pollard, T. M., et al. (1995). Effects of academic examination stress on eating behavior and blood lipid levels. International Journal of Behavioral Medicine, 2(4), 299–320.PubMedCrossRefGoogle Scholar
  470. Pradhan, A. D., et al. (2001). C-reactive protein, interleukin 6, and risk of developing type 2 diabetes mellitus. JAMA, 286(3), 327–334.PubMedCrossRefGoogle Scholar
  471. Pritchard, L. E., & White, A. (2007). Minireview: Neuropeptide processing and its impact on melanocortin pathways. Endocrinology, 148(9), 4201–4207.PubMedCrossRefGoogle Scholar
  472. Pritchard, L. E., Turnbull, A. V., & White, A. (2002). Pro-opiomelanocortin processing in the hypothalamus: Impact on melanocortin signalling and obesity. Journal of Endocrinology, 172(3), 411–421.PubMedCrossRefGoogle Scholar
  473. Prokop, J. W., et al. (2012). Leptin and leptin receptor: Analysis of a structure to function relationship in interaction and evolution from humans to fish. Peptides, 38(2), 326–336.PubMedPubMedCentralCrossRefGoogle Scholar
  474. Prokop, P., Fancovicova, J., & Fedor, P. (2014). Parasites enhance self-grooming behaviour and information retention in humans. Behavioural Processes, 107, 42–46.PubMedCrossRefGoogle Scholar
  475. Quarta, C., et al. (2016). Renaissance of leptin for obesity therapy. Diabetologia, 59(5), 920–927.PubMedCrossRefGoogle Scholar
  476. Rauchhaus, M., et al. (2000). Plasma cytokine parameters and mortality in patients with chronic heart failure. Circulation, 102(25), 3060–3067.PubMedCrossRefGoogle Scholar
  477. Rebuffescrive, M., et al. (1992). Effect of chronic stress and exogenous glucocorticoids on regional fat distribution and metabolism. Physiology & Behavior, 52(3), 583–590.CrossRefGoogle Scholar
  478. Rees, J. L. (2000). The melanocortin 1 receptor (MC1R): More than just red hair. Pigment Cell Research, 13(3), 135–140.PubMedCrossRefGoogle Scholar
  479. Refojo, D., et al. (2011). Glutamatergic and dopaminergic neurons mediate anxiogenic and anxiolytic effects of CRHR1. Science, 333(6051), 1903–1907.PubMedCrossRefGoogle Scholar
  480. Regev, L., et al. (2012). Site-specific genetic manipulation of amygdala Corticotropin-releasing factor reveals its imperative role in mediating behavioral response to challenge. Biological Psychiatry, 71(4), 317–326.PubMedCrossRefGoogle Scholar
  481. Reinick, C. L., et al. (2012). Identification of an MRAP-independent Melanocortin-2 receptor: Functional expression of the cartilaginous fish, Callorhinchus milii, Melanocortin-2 receptor in CHO cells. Endocrinology, 153(10), 4757–4765.PubMedPubMedCentralCrossRefGoogle Scholar
  482. Ren, P., et al. (1996). Control of C. elegans larval development by neuronal expression of a TGF-beta homolog. Science, 274(5291), 1389–1391.PubMedCrossRefGoogle Scholar
  483. Rene, F., et al. (1998). Melanocortin receptors and δ-opioid receptor mediate opposite signalling actions of POMC-derived peptides in CATH.A cells. European Journal of Neuroscience, 10(5), 1885–1894.PubMedCrossRefGoogle Scholar
  484. Renquist, B. J., et al. (2012). Melanocortin-3 receptor regulates the normal fasting response. Proceedings of the National Academy of Sciences of the United States of America, 109(23), E1489–E1498.PubMedPubMedCentralCrossRefGoogle Scholar
  485. Retana-Marquez, S., et al. (2009). Naltrexone effects on male sexual behavior, corticosterone, and testosterone in stressed male rats. Physiology & Behavior, 96(2), 333–342.CrossRefGoogle Scholar
  486. Reul, J. M., & de Kloet, E. R. (1986). Anatomical resolution of two types of corticosterone receptor sites in rat brain with in vitro autoradiography and computerized image analysis. Journal of Steroid Biochemistry, 24(1), 269–272.PubMedCrossRefGoogle Scholar
  487. Reul, J., & Dekloet, E. R. (1985). 2 receptor systems for corticosterone in rat-brain – microdistribution and differential occupation. Endocrinology, 117(6), 2505–2511.PubMedCrossRefGoogle Scholar
  488. Reul, J., & Dekloet, E. R. (1986). Anatomical resolution of 2 types of corticosterone receptor-sites in rat-brain with invitro autoradiography and computerized image-analysis. Journal of Steroid Biochemistry and Molecular Biology, 24(1), 269–272.CrossRefGoogle Scholar
  489. Reul, J. M. H. M., & Holsboer, F. (2002). Corticotropin-releasing factor receptors 1 and 2 in anxiety and depression. Current Opinion in Pharmacology, 2(1), 23–33.PubMedCrossRefGoogle Scholar
  490. Reynolds, D. V. (1969). Surgery in the rat during electrical analgesia induced by focal brain stimulation. Science, 164(3878), 444–445.PubMedCrossRefGoogle Scholar
  491. Riddle, D. L., Swanson, M. M., & Albert, P. S. (1981). Interacting genes in nematode Dauer larva formation. Nature, 290(5808), 668–671.PubMedCrossRefGoogle Scholar
  492. Rinaman, L. (2010). Ascending projections from the caudal visceral nucleus of the solitary tract to brain regions involved in food intake and energy expenditure. Brain Research, 1350, 18–34.PubMedPubMedCentralCrossRefGoogle Scholar
  493. Rivier, C., & Vale, W. (1984). Influence of corticotropin-releasing factor on reproductive functions in the rat. Endocrinology, 114(3), 914–921.PubMedCrossRefGoogle Scholar
  494. Roberts, L., et al. (2010). Plasma cytokine levels during acute HIV-1 infection predict HIV disease progression. AIDS, 24(6), 819–831.PubMedPubMedCentralCrossRefGoogle Scholar
  495. Roberts, B. W., et al. (2014). Regulation of a putative corticosteroid, 17,21-dihydroxypregn-4-ene,3,20-one, in sea lamprey, Petromyzon marinus. General and Comparative Endocrinology, 196, 17–25.PubMedCrossRefGoogle Scholar
  496. Rodrigues, A. R., Almeida, H., & Gouveia, A. M. (2013). Alpha-MSH signalling via melanocortin 5 receptor promotes lipolysis and impairs re-esterification in adipocytes. Biochimica et Biophysica Acta-Molecular and Cell Biology of Lipids, 1831(7), 1267–1275.CrossRefGoogle Scholar
  497. Rodriguez, A. C. I., et al. (2015). Hypothalamic-pituitary-adrenal axis dysregulation and cortisol activity in obesity: A systematic review. Psychoneuroendocrinology, 62, 301–318.CrossRefGoogle Scholar
  498. Roeling, T. A. P., et al. (1993). Efferent connections of the hypothalamic grooming area in the rat. Neuroscience, 56(1), 199–225.CrossRefPubMedGoogle Scholar
  499. Romanowski, C. P., et al. (2010). Central deficiency of corticotropin-releasing hormone receptor type 1 (CRH-R1) abolishes effects of CRH on NREM but not on REM sleep in mice. Sleep, 33(4), 427–436.PubMedPubMedCentralCrossRefGoogle Scholar
  500. Roozendaal, B. (2002). Stress and memory: Opposing effects of glucocorticoids on memory consolidation and memory retrieval. Neurobiology of Learning and Memory, 78(3), 578–595.PubMedCrossRefGoogle Scholar
  501. Roozendaal, B., PortilloMarquez, G., & McGaugh, J. L. (1996). Basolateral amygdala lesions block glucocorticoid-induced modulation of memory for spatial learning. Behavioral Neuroscience, 110(5), 1074–1083.PubMedCrossRefGoogle Scholar
  502. Roozendaal, B., et al. (2002). Involvement of stress-released corticotropin-releasing hormone in the basolateral amygdala in regulating memory consolidation. Proceedings of the National Academy of Sciences of the United States of America, 99(21), 13908–13913.PubMedPubMedCentralCrossRefGoogle Scholar
  503. Roozendaal, B., McReynolds, J. R., & McGaugh, J. L. (2004). The basolateral amygdala interacts with the medial prefrontal cortex in regulating glucocorticoid effects on working memory impairment. Journal of Neuroscience, 24(6), 1385–1392.PubMedCrossRefGoogle Scholar
  504. Rosellirehfuss, L., et al. (1993). Identification of a receptor for gamma-melanotropin and other proopiomelanocortin peptides in the hypothalamus and limbic system. Proceedings of the National Academy of Sciences of the United States of America, 90(19), 8856–8860.CrossRefGoogle Scholar
  505. Rosenbaum, M., & Leibel, R. L. (2014). 20 years of leptin: Role of leptin in energy homeostasis in humans. The Journal of Endocrinology, 223(1), T83–T96.PubMedPubMedCentralCrossRefGoogle Scholar
  506. Rosenstock, J., et al. (2010). The 11-beta-Hydroxysteroid dehydrogenase type 1 inhibitor INCB13739 improves hyperglycemia in patients with type 2 diabetes inadequately controlled by metformin monotherapy. Diabetes Care, 33(7), 1516–1522.PubMedPubMedCentralCrossRefGoogle Scholar
  507. Royalty, J. E., et al. (2014). Investigation of safety, tolerability, pharmacokinetics, and pharmacodynamics of single and multiple doses of a long-acting alpha-MSH analog in healthy overweight and obese subjects. Journal of Clinical Pharmacology, 54(4), 394–404.PubMedCrossRefGoogle Scholar
  508. Rubinstein, M., et al. (1996). Absence of opioid stress-induced analgesia in mice lacking beta-endorphin by site-directed mutagenesis. Proceedings of the National Academy of Sciences of the United States of America, 93(9), 3995–4000.PubMedPubMedCentralCrossRefGoogle Scholar
  509. Russo, S. J., et al. (2010). The addicted synapse: Mechanisms of synaptic and structural plasticity in nucleus accumbens. Trends in Neurosciences, 33(6), 267–276.PubMedPubMedCentralCrossRefGoogle Scholar
  510. Ryan, K. K., et al. (2014). Loss of melanocortin-4 receptor function attenuates HPA responses to psychological stress. Psychoneuroendocrinology, 42, 98–105.PubMedPubMedCentralCrossRefGoogle Scholar
  511. Rybkin, I. I., et al. (1997). Effect of restraint stress on food intake and body weight is determined by time of day. The American Journal of Physiology, 273(5 Pt 2), R1612–R1622.PubMedGoogle Scholar
  512. Salzet, M., et al. (1997). Leech immunocytes contain proopiomelanocortin: Nitric oxide mediates hemolymph proopiomelanocortin processing. The Journal of Immunology, 159(11), 5400–5411.Google Scholar
  513. Sanchez, M. M., et al. (2000). Distribution of corticosteroid receptors in the rhesus brain: Relative absence of glucocorticoid receptors in the hippocampal formation. The Journal of Neuroscience, 20(12), 4657–4668.PubMedCrossRefGoogle Scholar
  514. Sanchez, M. S., et al. (2001). Correlation of increased grooming behavior and motor activity with alterations in nigrostriatal and mesolimbic catecholamines after alpha-melanotropin and neuropeptide glutamine-isoleucine injection in the rat ventral tegmental area. Cellular and Molecular Neurobiology, 21(5), 523–533.PubMedCrossRefGoogle Scholar
  515. Sandman, C. A., & Kastin, A. J. (1981). Intraventricular Administration of Msh Induces Hyperalgesia in rats. Peptides, 2(2), 231–233.PubMedCrossRefGoogle Scholar
  516. Sarkar, S., Legradi, G., & Lechan, R. M. (2002). Intracerebroventricular administration of alpha-melanocyte stimulating hormone increases phosphorylation of CREB in TRH- and CRH-producing neurons of the hypothalamic paraventricular nucleus. Brain Research, 945(1), 50–59.CrossRefPubMedGoogle Scholar
  517. Sartin, J. L., et al. (2008). Central role of the melanocortin-4 receptors in appetite regulation after endotoxin. Journal of Animal Science, 86(10), 2557–2567.PubMedCrossRefGoogle Scholar
  518. Sato, I., et al. (2005). Insulin inhibits neuropeptide Y gene expression in the arcuate nucleus through GABAergic systems. The Journal of Neuroscience, 25(38), 8657–8664.PubMedCrossRefGoogle Scholar
  519. Scarinci, F. (2004). French women don't get fat: The secret of eating for pleasure. Library Journal, 129(18), 112-+.Google Scholar
  520. Scarlett, J. M., et al. (2007). Regulation of central melanocortin signaling by interleukin-1 beta. Endocrinology, 148(9), 4217–4225.PubMedCrossRefGoogle Scholar
  521. Schackwitz, W. S., Inoue, T., & Thomas, J. H. (1996). Chemosensory neurons function in parallel to mediate a pheromone response in C. elegans. Neuron, 17(4), 719–728.PubMedCrossRefGoogle Scholar
  522. Schadt, J. C. (1989). Sympathetic and hemodynamic adjustments to hemorrhage – A possible role for endogenous opioid-peptides. Resuscitation, 18(2–3), 219–228.PubMedCrossRefGoogle Scholar
  523. Schaible, E. V., et al. (2013). Single administration of tripeptide alpha-MSH(11-13) attenuates brain damage by reduced inflammation and apoptosis after experimental traumatic brain injury in mice. PLoS One, 8(8), e71056.PubMedPubMedCentralCrossRefGoogle Scholar
  524. Schiöth, H. B., et al. (2005). Evolutionary conservation of the structural, pharmacological, and genomic characteristics of the melanocortin receptor subtypes. Peptides, 26(10), 1886–1900.PubMedCrossRefGoogle Scholar
  525. Schreck, C. B. (2000). Accumulation and long-term effects of stress in fish. In G. P. Moberg & J. A. Mench (Eds.), The biology of animal stress: Basic principles and implications for animal welfare (pp. 147–158). Wallingford; New York: CABI Pub..CrossRefGoogle Scholar
  526. Schwabe, L., et al. (2013). Mineralocorticoid receptor blockade prevents stress-induced modulation of multiple memory Systems in the Human Brain. Biological Psychiatry, 74(11), 801–808.PubMedCrossRefGoogle Scholar
  527. Schwartz, N. B. (2000). Neuroendocrine regulation of reproductive cyclicity. In P. M. Conn & E. Marc (Eds.), Freeman neuroendocrinology in physiology and m. Humana Press. https://doi.org/10.1007/978-1-59259-707-9135–145.CrossRefGoogle Scholar
  528. Seevers, M. (1936). Opiate addiction in the monkey I. Methods of study. Journal of Pharmacology and Experimental Therapeutics, 56(2), 147–156.Google Scholar
  529. Selkirk, J. V., et al. (2007). Identification of differential melanocortin 4 receptor agonist profiles at natively expressed receptors in rat cortical astrocytes and recombinantly expressed receptors in human embryonic kidney cells. Neuropharmacology, 52(2), 459–466.PubMedCrossRefGoogle Scholar
  530. Sellayah, D., Cagampang, F. R., & Cox, R. D. (2014). On the evolutionary origins of obesity: A new hypothesis. Endocrinology, 155(5), 1573–1588.CrossRefPubMedGoogle Scholar
  531. Seoane, L. M., et al. (2004). Ghrelin: From a GH-secretagogue to the regulation of food intake, sleep and anxiety. Pediatric Endocrinology Reviews, 1(Suppl 3), 432–437.PubMedGoogle Scholar
  532. Serlachius, A., Hamer, M., & Wardle, J. (2007). Stress and weight change in university students in the United Kingdom. Physiology & Behavior, 92(4), 548–553.CrossRefGoogle Scholar
  533. Serova, L. I., et al. (2013). Intranasal infusion of melanocortin receptor four (MC4R) antagonist to rats ameliorates development of depression and anxiety related symptoms induced by single prolonged stress. Behavioural Brain Research, 250, 139–147.PubMedCrossRefGoogle Scholar
  534. Shah, S., et al. (2011). Efficacy and safety of the selective 11 beta-HSD-1 inhibitors MK-0736 and MK-0916 in overweight and obese patients with hypertension. Journal of the American Society of Hypertension, 5(3), 166–176.PubMedCrossRefGoogle Scholar
  535. Sharma, S., Fernandes, M. F., & Fulton, S. (2013). Adaptations in brain reward circuitry underlie palatable food cravings and anxiety induced by high-fat diet withdrawal. International Journal of Obesity, 37(9), 1183–1191.PubMedCrossRefGoogle Scholar
  536. Shepard, J. D., Barron, K. W., & Myers, D. A. (2000). Corticosterone delivery to the amygdala increases corticotropin-releasing factor mRNA in the central amygdaloid nucleus and anxiety-like behavior. Brain Research, 861(2), 288–295.PubMedCrossRefGoogle Scholar
  537. Shi, X., et al. (2013). Nuclear factor kappaB (NF-kappaB) suppresses food intake and energy expenditure in mice by directly activating the Pomc promoter. Diabetologia, 56(4), 925–936.PubMedCrossRefGoogle Scholar
  538. Shibata, M., et al. (2016). AgRP neuron-specific deletion of glucocorticoid receptor leads to increased energy expenditure and decreased body weight in female mice on a high-fat diet. Endocrinology, 157(4), 1457–1466.PubMedCrossRefGoogle Scholar
  539. Shin, A. C., et al. (2017). Insulin receptor signaling in POMC, but not AgRP, neurons controls adipose tissue insulin action. Diabetes, 66(6), 1560–1571.PubMedPubMedCentralCrossRefGoogle Scholar
  540. Shinyama, H., et al. (2003). Regulation of melanocortin-4 receptor signaling: Agonist-mediated desensitization and internalization. Endocrinology, 144(4), 1301–1314.PubMedCrossRefGoogle Scholar
  541. Shoureshi, P., et al. (2007). Analyzing the evolution of beta-endorphin post-translational processing events: Studies on reptiles. General and Comparative Endocrinology, 153(1–3), 148–154.PubMedCrossRefGoogle Scholar
  542. Shutter, J. R., et al. (1997). Hypothalamic expression of ART, a novel gene related to agouti, is up-regulated in obese and diabetic mutant mice. Genes & Development, 11(5), 593–602.CrossRefGoogle Scholar
  543. Sinha, R. (2008). Chronic stress, drug use, and vulnerability to addiction. In Uhl, G. R. (Ed.), Addiction reviews 2008 (pp. 105–130).PubMedPubMedCentralCrossRefGoogle Scholar
  544. Sirinathsinghji, D. J. S. (1987). Inhibitory influence of Corticotropin releasing-factor on components of sexual-behavior in the male-rat. Brain Research, 407(1), 185–190.PubMedCrossRefGoogle Scholar
  545. Skibicka, K. P., & Grill, H. J. (2009). Hypothalamic and hindbrain melanocortin receptors contribute to the feeding, thermogenic, and cardiovascular action of melanocortins. Endocrinology, 150(12), 5351–5361.PubMedPubMedCentralCrossRefGoogle Scholar
  546. Skutella, T., et al. (1994a). Corticotropin-releasing hormone (CRH) antisense oligodeoxynucleotide induces anxiolytic effects in rat. Neuroreport, 5(16), 2181–2185.PubMedCrossRefGoogle Scholar
  547. Skutella, T., et al. (1994b). Corticotropin-releasing hormone (CRH) antisense oligodeoxynucleotide treatment attenuates social defeat-induced anxiety in rats. Cellular and Molecular Neurobiology, 14(5), 579–588.PubMedCrossRefGoogle Scholar
  548. Slominski, A., Ermak, G., & Mihm, M. (1996). ACTH receptor, CYP11A1, CYP17 and CYP21A2 genes are expressed in skin. Journal of Clinical Endocrinology & Metabolism, 81(7), 2746–2749.Google Scholar
  549. Smart, J. L., et al. (2007). Central dysregulation of the hypothalamic-pituitary-adrenal axis in neuron-specific proopiomelanocortin-deficient mice. Endocrinology, 148(2), 647–659.PubMedCrossRefGoogle Scholar
  550. Smeets, T., et al. (2009). Stress selectively and lastingly promotes learning of context-related high arousing information. Psychoneuroendocrinology, 34(8), 1152–1161.PubMedCrossRefGoogle Scholar
  551. Smith, A. I., & Funder, J. W. (1988). Proopiomelanocortin processing in the pituitary, central nervous-system, and peripheral-tissues. Endocrine Reviews, 9(1), 159–179.PubMedCrossRefGoogle Scholar
  552. Smith, M. A., et al. (2007). Melanocortins and agouti-related protein modulate the excitability of two arcuate nucleus neuron populations by alteration of resting potassium conductances. The Journal of Physiology, 578(2), 425–438.PubMedCrossRefGoogle Scholar
  553. Sohn, J. W., et al. (2013). Melanocortin 4 receptors reciprocally regulate sympathetic and parasympathetic preganglionic neurons. Cell, 152(3), 612–619.PubMedPubMedCentralCrossRefGoogle Scholar
  554. Sokolove, J., & Lepus, C. M. (2013). Role of inflammation in the pathogenesis of osteoarthritis: Latest findings and interpretations. Therapeutic Advances in Musculoskeletal Disease, 5(2), 77–94.PubMedPubMedCentralCrossRefGoogle Scholar
  555. Spaccapelo, L., et al. (2013). Up-regulation of the canonical Wnt-3A and Sonic hedgehog signaling underlies melanocortin-induced neurogenesis after cerebral ischemia. European Journal of Pharmacology, 707(1–3), 78–86.PubMedCrossRefGoogle Scholar
  556. Speakman, J. R. (2008). Thrifty genes for obesity, an attractive but flawed idea, and an alternative perspective: The 'drifty gene' hypothesis. International Journal of Obesity, 32(11), 1611–1617.CrossRefPubMedGoogle Scholar
  557. Spranger, J., et al. (2003). Inflammatory cytokines and the risk to develop type 2 diabetes: Results of the prospective population-based European prospective investigation into cancer and nutrition (EPIC)-potsdam study. Diabetes, 52(3), 812–817.PubMedPubMedCentralCrossRefGoogle Scholar
  558. Spruijt, B. M., et al. (1985). Comparison of structural requirements of alpha-MSH and ACTH for inducing excessive grooming and pigment dispersion. Peptides, 6(6), 1185–1189.PubMedCrossRefGoogle Scholar
  559. Srinivasan, S., et al. (2004). Constitutive activity of the melanocortin-4 receptor is maintained by its N-terminal domain and plays a role in energy homeostasis in humans. The Journal of Clinical Investigation, 114(8), 1158–1164.PubMedPubMedCentralCrossRefGoogle Scholar
  560. Starowicz, K., & Przewlocka, B. (2003). The role of melanocortins and their receptors in inflammatory processes, nerve regeneration and nociception. Life Sciences, 73(7), 823–847.PubMedCrossRefGoogle Scholar
  561. Starowicz, K., et al. (2002). Modulation of melanocortin-induced changes in spinal nociception by mu-opioid receptor agonist and antagonist in neuropathic rats. Neuroreport, 13(18), 2447–2452.PubMedCrossRefGoogle Scholar
  562. Starowicz, K., et al. (2005). Inhibition of morphine tolerance by spinal melanocortin receptor blockade. Pain, 117(3), 401–411.PubMedCrossRefGoogle Scholar
  563. Starowicz, K., et al. (2009). Peripheral antinociceptive effects of MC4 receptor antagonists in a rat model of neuropathic pain – A biochemical and behavioral study. Pharmacological Reports, 61(6), 1086–1095.PubMedCrossRefGoogle Scholar
  564. Stefano, G. B., & Kream, R. (2008). Endogenous opiates, opioids, and immune function: Evolutionary brokerage of defensive behaviors. Seminars in Cancer Biology, 18(3), 190–198.PubMedCrossRefGoogle Scholar
  565. Stefano, G. B., Salzet-Raveillon, B., & Salzet, M. (1999). Mytilus edulis hemolymph contains pro-opiomelanocortin: LPS and morphine stimulate differential processing. Molecular Brain Research, 63(2), 340–350.PubMedCrossRefGoogle Scholar
  566. Stein, C., & Machelska, H. (2011). Modulation of peripheral sensory neurons by the immune system: Implications for pain therapy. Pharmacological Reviews, 63(4), 860–881.PubMedCrossRefGoogle Scholar
  567. Stengel, A., & Tache, Y. (2014). CRF and urocortin peptides as modulators of energy balance and feeding behavior during stress. Frontiers in Neuroscience, 8, 52.PubMedPubMedCentralCrossRefGoogle Scholar
  568. Steptoe, A., Lipsey, Z., & Wardle, J. (1998). Stress, hassles and variations in alcohol consumption, food choice and physical exercise: A diary study. British Journal of Health Psychology, 3, 51–63.CrossRefGoogle Scholar
  569. Strassmann, G., et al. (1992). Evidence for the involvement of interleukin 6 in experimental cancer cachexia. The Journal of Clinical Investigation, 89(5), 1681–1684.PubMedPubMedCentralCrossRefGoogle Scholar
  570. Sundstrom, G., Dreborg, S., & Larhammar, D. (2010). Concomitant duplications of opioid peptide and receptor genes before the origin of jawed vertebrates. PLoS One, 5(5), e10512.PubMedPubMedCentralCrossRefGoogle Scholar
  571. Suzuki, H., et al. (2011). Similar changes of hypothalamic feeding-regulating peptides mRNAs and plasma leptin levels in PTHrP-, LIF-secreting tumors-induced cachectic rats and adjuvant arthritic rats. International Journal of Cancer, 128(9), 2215–2223.PubMedCrossRefGoogle Scholar
  572. Takahashi, A., et al. (1995). Isolation and characterization of melanotropins from lamprey pituitary-glands. International Journal of Peptide and Protein Research, 46(3–4), 197–204.PubMedGoogle Scholar
  573. Takahashi, A., et al. (2001). Evolutionary significance of proopiomelanocortin in agnatha and chondrichthyes. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 129(2–3), 283–289.CrossRefGoogle Scholar
  574. Takahashi, A., et al. (2006). Posttranslational processing of proopiomelanocortin family molecules in sea lamprey based on mass spectrometric and chemical analyses. General and Comparative Endocrinology, 148(1), 79–84.PubMedCrossRefGoogle Scholar
  575. Takahashi, A., et al. (2016). Characterization of melanocortin receptors from stingray Dasyatis akajei, a cartilaginous fish. General and Comparative Endocrinology, 232, 115–124.PubMedCrossRefGoogle Scholar
  576. Tao, Y. X. (2010). The Melanocortin-4 receptor: Physiology, pharmacology, and pathophysiology. Endocrine Reviews, 31(4), 506–543.PubMedPubMedCentralCrossRefGoogle Scholar
  577. Tao, Y.-X., et al. (2010). Constitutive activity of neural melanocortin receptors. In Conn, P. M. (Ed.), Methods in enzymology, Constitutive activity in receptors and other proteins, Part A Vol 484: (pp. 267–279).Google Scholar
  578. Tataranni, P. A., et al. (1996). Effects of glucocorticoids on energy metabolism and food intake in humans. American Journal of Physiology-Endocrinology and Metabolism, 271(2), E317–E325.CrossRefGoogle Scholar
  579. Taylor, A. W., & Lee, D. (2010). Applications of the role of alpha-MSH in ocular immune privilege. In A. Catania (Ed.), Melanocortins: Multiple actions and therapeutic potential (pp. 143–149). New York: Springer.CrossRefGoogle Scholar
  580. Taylor, A. W., & Namba, K. (2001). In vitro induction of CD25(+) CD4(+) regulatory T cells by the neuropeptide alpha-melanocyte stimulating hormone (alpha-MSH). Immunology and Cell Biology, 79(4), 358–367.PubMedCrossRefGoogle Scholar
  581. Taylor, A. W., Kitaichi, N., & Biros, D. (2006). Melanocortin 5 receptor and ocular immunity. Cellular and Molecular Biology, 52(2), 53–59.PubMedGoogle Scholar
  582. Tedford, H. W., & Zamponi, G. W. (2006). Direct G protein modulation of Cav2 calcium channels. Pharmacological Reviews, 58(4), 837–862.PubMedCrossRefGoogle Scholar
  583. Telander, D. G. (2011). Inflammation and age-related macular degeneration (AMD). Seminars in Ophthalmology, 26(3), 192–197.PubMedCrossRefGoogle Scholar
  584. Tempel, D. L., & Leibowitz, S. F. (1994). Adrenal steroid receptors: Interactions with brain neuropeptide systems in relation to nutrient intake and metabolism. Journal of Neuroendocrinology, 6(5), 479–501.PubMedCrossRefGoogle Scholar
  585. Terenius, L., Gispen, W. H., & Dewied, D. (1975). Acth-like peptides and opiate receptors in rat-brain – Structure-activity studies. European Journal of Pharmacology, 33(2), 395–399.PubMedCrossRefGoogle Scholar
  586. Thaler, J. P., et al. (2012). Obesity is associated with hypothalamic injury in rodents and humans. Journal of Clinical Investigation, 122(1), 153–162.PubMedCrossRefGoogle Scholar
  587. Thistlethwaite, D., et al. (1975). Familial glucocorticoid deficiency – Studies of diagnosis and pathogenesis. Archives of Disease in Childhood, 50(4), 291–297.PubMedPubMedCentralCrossRefGoogle Scholar
  588. Thornton, J. W. (2001). Evolution of vertebrate steroid receptors from an ancestral estrogen receptor by ligand exploitation and serial genome expansions. Proceedings of the National Academy of Sciences, 98(10), 5671–5676.CrossRefGoogle Scholar
  589. Ting, P. T., & Koo, J. Y. (2006). Use of etanercept in human immunodeficiency virus (HIV) and acquired immunodeficiency syndrome (AIDS) patients. International Journal of Dermatology, 45(6), 689–692.PubMedCrossRefGoogle Scholar
  590. Tiwari, A. (2010). INCB-13739, an 11beta-hydroxysteroid dehydrogenase type 1 inhibitor for the treatment of type 2 diabetes. IDrugs, 13(4), 266–275.PubMedGoogle Scholar
  591. Tolle, V., & Low, M. J. (2008). In vivo evidence for inverse agonism of agouti-related peptide in the central nervous system of proopiomelanocortin-deficient mice. Diabetes, 57(1), 86–94.PubMedCrossRefGoogle Scholar
  592. Tong, Q., et al. (2008). Synaptic release of GABA by AgRP neurons is required for normal regulation of energy balance. Nature Neuroscience, 11(9), 998–1000.PubMedPubMedCentralCrossRefGoogle Scholar
  593. Torres, S. J., & Nowson, C. A. (2007). Relationship between stress, eating behavior, and obesity. Nutrition, 23(11–12), 887–894.PubMedCrossRefGoogle Scholar
  594. Townsend, M. S., et al. (2001). Food insecurity is positively related to overweight in women. Journal of Nutrition, 131(6), 1738–1745.PubMedCrossRefGoogle Scholar
  595. Tracey, K. J. (2002). The inflammatory reflex. Nature, 420(6917), 853–859.PubMedCrossRefGoogle Scholar
  596. Tracey, K. J. (2007). Physiology and immunology of the cholinergic antiinflammatory pathway. Journal of Clinical Investigation, 117(2), 289–296.PubMedPubMedCentralCrossRefGoogle Scholar
  597. Tran, J. A., et al. (2007). Design, synthesis, in vitro, and in vivo characterization of phenylpiperazines and pyridinylpiperazines as potent and selective antagonists of the melanocortin-4 receptor. Journal of Medicinal Chemistry, 50(25), 6356–6366.PubMedCrossRefGoogle Scholar
  598. Traslavina, G. A. A., & Franci, C. R. (2012). Divergent roles of the CRH receptors in the control of gonadotropin secretion induced by acute restraint stress at Proestrus. Endocrinology, 153(10), 4838–4848.PubMedCrossRefGoogle Scholar
  599. Tsatmali, M., et al. (2000). Skill POMC peptides: Their actions at the human MC-1 receptor and roles in the tanning response. Pigment Cell Research, 13, 125–129.PubMedCrossRefGoogle Scholar
  600. Tsou, K., et al. (1986). Immunocytochemical localization of pro-opiomelanocortin-derived peptides in the adult rat spinal cord. Brain Research, 378(1), 28–35.PubMedCrossRefGoogle Scholar
  601. Ulrich-Lai, Y. M., & Engeland, W. C. (2002). Adrenal splanchnic innervation modulates adrenal cortical responses to dehydration stress in rats. Neuroendocrinology, 76(2), 79–92.PubMedCrossRefGoogle Scholar
  602. Ulrich-Lai, Y. M., & Herman, J. P. (2009). Neural regulation of endocrine and autonomic stress responses. Nature Reviews. Neuroscience, 10(6), 397–409.PubMedPubMedCentralCrossRefGoogle Scholar
  603. Ulrich-Lai, Y. M., & Ryan, K. K. (2014). Neuroendocrine circuits governing energy balance and stress regulation: Functional overlap and therapeutic implications. Cell Metabolism, 19(6), 910–925.PubMedPubMedCentralCrossRefGoogle Scholar
  604. Ulrich-Lai, Y. M., et al. (2010). Pleasurable behaviors reduce stress via brain reward pathways. Proceedings of the National Academy of Sciences of the United States of America, 107(47), 20529–20534.PubMedPubMedCentralCrossRefGoogle Scholar
  605. Ulrich-Lai, Y. M., et al. (2015). Stress exposure, food intake and emotional state. Stress, 18(4), 381–399.PubMedPubMedCentralGoogle Scholar
  606. Utter, A. C., et al. (1999). Effect of carbohydrate ingestion and hormonal responses on ratings of perceived exertion during prolonged cycling and running. European Journal of Applied Physiology and Occupational Physiology, 80(2), 92–99.PubMedCrossRefGoogle Scholar
  607. Valdearcos, M., et al. (2014). Microglia dictate the impact of saturated fat consumption on hypothalamic inflammation and neuronal function. Cell Reports, 9(6), 2124–2138.PubMedPubMedCentralCrossRefGoogle Scholar
  608. Valentino, R. J., & Van Bockstaele, E. (2008). Convergent regulation of locus coeruleus activity as an adaptive response to stress. European Journal of Pharmacology, 583(2–3), 194–203.PubMedPubMedCentralCrossRefGoogle Scholar
  609. Valentino, R. J., Foote, S. L., & Page, M. E. (1993). The locus-Coeruleus as a site for integrating Corticotropin-releasing factor and noradrenergic mediation of stress responses. Corticotropin-Releasing Factor and Cytokines: Role in the Stress Response, 697, 173–188.Google Scholar
  610. Vallarino, M., et al. (1988). Alpha-melanocyte-stimulating hormone (alpha-MSH) in the brain of the cartilagenous fish. Immunohistochemical localization and biochemical characterization. Peptides, 9(4), 899–907.PubMedCrossRefGoogle Scholar
  611. Vallarino, M., et al. (1989). Proopiomelanocortin (POMC)-related peptides in the brain of the rainbow trout, Salmo gairdneri. Peptides, 10(6), 1223–1230.PubMedCrossRefGoogle Scholar
  612. Vallarino, M., d’Amora, M., & Dores, R. M. (2012). New insights into the neuroanatomical distribution and phylogeny of opioids and POMC-derived peptides in fish. General and Comparative Endocrinology, 177(3), 338–347.PubMedCrossRefGoogle Scholar
  613. Valles, A., et al. (2000). Single exposure to stressors causes long-lasting, stress-dependent reduction of food intake in rats. American Journal of Physiology. Regulatory, Integrative and Comparative Physiology, 279(3), R1138–R1144.PubMedCrossRefGoogle Scholar
  614. Valsamakis, G., et al. (2004). 11 beta-hydroxysteroid dehydrogenase type 1 activity in lean and obese males with type 2 diabetes mellitus. Journal of Clinical Endocrinology & Metabolism, 89(9), 4755–4761.CrossRefGoogle Scholar
  615. van Gaalen, M. M., et al. (2002). Effects of transgenic overproduction of CRH on anxiety-like behaviour. European Journal of Neuroscience, 15(12), 2007–2015.PubMedCrossRefGoogle Scholar
  616. van Wimersma Greidanus, T. B., et al. (1986). The influence of neurotensin, naloxone, and haloperidol on elements of excessive grooming behavior induced by ACTH. Behavioral and Neural Biology, 46(2), 137–144.PubMedCrossRefGoogle Scholar
  617. Varela, L., & Horvath, T. L. (2012). Leptin and insulin pathways in POMC and AgRP neurons that modulate energy balance and glucose homeostasis. EMBO Reports, 13(12), 1079–1086.PubMedPubMedCentralCrossRefGoogle Scholar
  618. Vergoni, A. V., et al. (1989). Tolerance develops to the behavioral-effects of ACTH-(1-24) during continuous icv infusion in rats, and is associated with increased hypothalamic levels of beta-endorphin. Neuropeptides, 14(2), 93–98.PubMedCrossRefGoogle Scholar
  619. Vergoni, A. V., et al. (1998). Differential influence of a selective melanocortin MC4 receptor antagonist (HS014) on melanocortin-induced behavioral effects in rats. European Journal of Pharmacology, 362(2–3), 95–101.PubMedCrossRefGoogle Scholar
  620. Vergoni, A. V., et al. (1999a). Corticotropin-releasing factor (CRF) induced anorexia is not influenced by a melanocortin 4 receptor blockage. Peptides, 20(4), 509–513.PubMedCrossRefGoogle Scholar
  621. Vergoni, A. V., et al. (1999b). Selective melanocortin MC4 receptor blockage reduces immobilization stress-induced anorexia in rats. European Journal of Pharmacology, 369(1), 11–15.PubMedCrossRefGoogle Scholar
  622. Vogel, H., et al. (2016). GLP-1 and estrogen conjugate acts in the supramammillary nucleus to reduce food-reward and body weight. Neuropharmacology, 110(Pt A), 396–406.PubMedCrossRefGoogle Scholar
  623. Vogt, M. C., et al. (2014). Neonatal insulin action impairs hypothalamic Neurocircuit formation in response to maternal high-fat feeding. Cell, 156(3), 495–509.PubMedPubMedCentralCrossRefGoogle Scholar
  624. Voisey, J., Kelly, G., & Van Daal, A. (2003). Agouti signal protein regulation in human melanoma cells. Pigment Cell Research, 16(1), 65–71.PubMedCrossRefGoogle Scholar
  625. Vowels, J. J., & Thomas, J. H. (1992). Genetic-analysis of chemosensory control of Dauer formation in Caenorhabditis-Elegans. Genetics, 130(1), 105–123.PubMedPubMedCentralGoogle Scholar
  626. Vrinten, D. H., et al. (2000). Antagonism of the melanocortin system reduces cold and mechanical allodynia in mononeuropathic rats. Journal of Neuroscience, 20(21), 8131–8137.PubMedCrossRefGoogle Scholar
  627. Vrinten, D. H., et al. (2001). Chronic blockade of melanocortin receptors alleviates allodynia in rats with neuropathic pain. Anesthesia and Analgesia, 93(6), 1572–1577.PubMedCrossRefGoogle Scholar
  628. Walker, J. M., et al. (1982). Non-opiate effects of dynorphin and des-Tyr-dynorphin. Science, 218(4577), 1136–1138.PubMedCrossRefGoogle Scholar
  629. Walker, B. R., et al. (1995). Carbenoxolone increases hepatic insulin sensitivity in man: A novel role for 11-oxosteroid reductase in enhancing glucocorticoid receptor activation. The Journal of Clinical Endocrinology and Metabolism, 80(11), 3155–3159.PubMedGoogle Scholar
  630. Wallerius, S., et al. (2003). Rise in morning saliva cortisol is associated with abdominal obesity in men: A preliminary report. Journal of Endocrinological Investigation, 26(7), 616–619.PubMedCrossRefGoogle Scholar
  631. Wang, Y. J., et al. (2012). Effects of adrenal dysfunction and high-dose adrenocorticotropic hormone on NMDA-induced spasm seizures in young Wistar rats. Epilepsy Research, 100(1–2), 125–131.PubMedCrossRefGoogle Scholar
  632. Wardlaw, S. L. (2011). Hypothalamic proopiomelanocortin processing and the regulation of energy balance. European Journal of Pharmacology, 660(1), 213–219.PubMedPubMedCentralCrossRefGoogle Scholar
  633. Wardlaw, S. L., McCarthy, K. C., & Conwell, I. M. (1998). Glucocorticoid regulation of hypothalamic proopiomelanocortin. Neuroendocrinology, 67(1), 51–57.PubMedCrossRefGoogle Scholar
  634. Watkins, L. R., et al. (1995). Blockade of interleukin-1 induced hyperthermia by subdiaphragmatic vagotomy – Evidence for vagal mediation of immune brain communication. Neuroscience Letters, 183(1–2), 27–31.PubMedCrossRefGoogle Scholar
  635. Watson, S. J., et al. (1978). Evidence for 2 separate opiate peptide neuronal systems. Nature, 275(5677), 226–228.PubMedCrossRefGoogle Scholar
  636. Wellen, K. E., & Hotamisligil, G. S. (2005). Inflammation, stress, and diabetes. Journal of Clinical Investigation, 115(5), 1111–1119.PubMedPubMedCentralCrossRefGoogle Scholar
  637. Wendelaar Bonga, S. E. (1997). The stress response in fish. Physiological Reviews, 77(3), 591–625.PubMedCrossRefGoogle Scholar
  638. Wessells, H., et al. (2000). Effect of an alpha-melanocyte stimulating hormone analog on penile erection and sexual desire in men with organic erectile dysfunction. Urology, 56(4), 641–646.PubMedCrossRefGoogle Scholar
  639. Wessells, H., et al. (2003). MT-II induces penile erection via brain and spinal mechanisms. In R. D. Cone (Ed.), Melanocortin system (pp. 90–95).Google Scholar
  640. Weyermann, P., et al. (2009). Orally available selective melanocortin-4 receptor antagonists stimulate food intake and reduce cancer-induced cachexia in mice. PLoS One, 4(3), e4774.PubMedPubMedCentralCrossRefGoogle Scholar
  641. White, J. D. (1993). Neuropeptide Y: A central regulator of energy homeostasis. Regulatory Peptides, 49(2), 93–107.PubMedCrossRefGoogle Scholar
  642. White, B. D., Dean, R. G., & Martin, R. J. (1990). Adrenalectomy decreases neuropeptide Y mRNA levels in the arcuate nucleus. Brain Research Bulletin, 25(5), 711–715.PubMedCrossRefGoogle Scholar
  643. Wikberg, J. E. S., & Mutulis, F. (2008). Targeting melanocortin receptors: An approach to treat weight disorders and sexual dysfunction. Nature Reviews Drug Discovery, 7(4), 307–323.PubMedCrossRefGoogle Scholar
  644. Wilde, P. E., & Peterman, J. N. (2006). Individual weight change is associated with household food security status. Journal of Nutrition, 136(5), 1395–1400.PubMedCrossRefGoogle Scholar
  645. Wilkinson, C. W., & Dorsa, D. M. (1986). The effects of aging on molecular forms of beta- and gamma-endorphins in rat hypothalamus. Neuroendocrinology, 43(2), 124–131.PubMedCrossRefGoogle Scholar
  646. Willemse, T., et al. (1994). The effect of haloperidol and naloxone on excessive grooming behavior of cats. European Neuropsychopharmacology, 4(1), 39–45.PubMedCrossRefGoogle Scholar
  647. Wilson, B. D., et al. (1995). Structure and function of ASP, the human homolog of the mouse agouti gene. Human Molecular Genetics, 4(2), 223–230.PubMedCrossRefGoogle Scholar
  648. Wisse, B. E., et al. (2001). Reversal of cancer anorexia by blockade of central melanocortin receptors in rats. Endocrinology, 142(8), 3292–3301.PubMedCrossRefGoogle Scholar
  649. Wisse, B. E., Schwartz, M. W., & Cummings, D. E. (2003). Melanocortin signaling and anorexia in chronic disease states. Melanocortin System, 994, 275–281.Google Scholar
  650. Wood, P., et al. (1978). Increase of hippocampal acetylcholine turnover rate and the stretching-yawning syndrome elicited by alpha-MSH and ACTH. Life Sciences, 22(8), 673–678.PubMedCrossRefGoogle Scholar
  651. Woods, C. P., et al. (2015). Tissue specific regulation of glucocorticoids in severe obesity and the response to significant weight loss following bariatric surgery (BARICORT). Journal of Clinical Endocrinology & Metabolism, 100(4), 1434–1444.CrossRefGoogle Scholar
  652. Wu, Q., & Palmiter, R. D. (2011). GABAergic signaling by AgRP neurons prevents anorexia via a melanocortin-independent mechanism. European Journal of Pharmacology, 660(1), 21–27.PubMedPubMedCentralCrossRefGoogle Scholar
  653. Wyss-Coray, T. (2006). Inflammation in Alzheimer disease: Driving force, bystander or beneficial response? Nature Medicine, 12(9), 1005–1015.PubMedGoogle Scholar
  654. Xu, H., et al. (2003). Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance. The Journal of Clinical Investigation, 112(12), 1821–1830.PubMedPubMedCentralCrossRefGoogle Scholar
  655. Yamaguchi, N. (1992). Sympathoadrenal system in neuroendocrine control of glucose: Mechanisms involved in the liver, pancreas, and adrenal gland under hemorrhagic and hypoglycemic stress. Canadian Journal of Physiology and Pharmacology, 70(2), 167–206.PubMedCrossRefGoogle Scholar
  656. Yamano, Y., et al. (2004). Regulation of CRF, POMC and MC4R gene expression after electrical foot shock stress in the rat amygdala and hypothalamus. Journal of Veterinary Medical Science, 66(11), 1323–1327.PubMedCrossRefGoogle Scholar
  657. Yang, Y., et al. (2011). Hunger states switch a flip-flop memory circuit via a synaptic AMPK-dependent positive feedback loop. Cell, 146(6), 992–1003.PubMedPubMedCentralCrossRefGoogle Scholar
  658. Yaswen, L., et al. (1999). Obesity in the mouse model of pro-opiomelanocortin deficiency responds to peripheral melanocortin. Nature Medicine, 5(9), 1066–1070.PubMedPubMedCentralCrossRefGoogle Scholar
  659. Ye, D. W., et al. (2014). Motor cortex-periaqueductal gray-spinal cord neuronal circuitry may involve in modulation of nociception: A virally mediated transsynaptic tracing study in spinally transected transgenic mouse model. PLoS One, 9(2), 5.Google Scholar
  660. Yi, C. X., et al. (2017). TNF alpha drives mitochondrial stress in POMC neurons in obesity. Nature Communications, 8, 15143.PubMedPubMedCentralCrossRefGoogle Scholar
  661. Young, J. (1935). The photoreceptors of lampreys III. Control of color change by the pineal and pituitary. The Journal of Experimental Biology, 12, 258–270.Google Scholar
  662. Young, E. A., et al. (1993). Altered ratios of beta-endorphin: Beta-lipotropin released from anterior lobe corticotropes with increased secretory drive. II. Repeated stress. Journal of Neuroendocrinology, 5(1), 121–126.PubMedCrossRefGoogle Scholar
  663. Zagon, I. S., & Mclaughlin, P. J. (1992). An opioid growth-factor regulates the replication of microorganisms. Life Sciences, 50(16), 1179–1187.PubMedCrossRefGoogle Scholar
  664. Zakrzewska, K. E., et al. (1999). Selective dependence of intracerebroventricular neuropeptide Y-elicited effects on central glucocorticoids. Endocrinology, 140(7), 3183–3187.PubMedCrossRefGoogle Scholar
  665. Zelissen, P. M. J., et al. (2005). Effect of three treatment schedules of recombinant methionyl human leptin on body weight in obese adults: A randomized, placebo-controlled trial. Diabetes Obesity & Metabolism, 7(6), 755–761.CrossRefGoogle Scholar
  666. Zellner, D. A., et al. (2006). Food selection changes under stress. Physiology & Behavior, 87(4), 789–793.CrossRefGoogle Scholar
  667. Zhan, C., et al. (2013). Acute and long-term suppression of feeding behavior by POMC neurons in the brainstem and hypothalamus. Respectively. Journal of Neuroscience, 33(8), 3624–3632.PubMedCrossRefGoogle Scholar
  668. Zhang, M., & Kelley, A. E. (2000). Enhanced intake of high-fat food following striatal mu-opioid stimulation: Microinjection mapping and Fos expression. Neuroscience, 99(2), 267–277.PubMedCrossRefGoogle Scholar
  669. Zhang, L., et al. (2011). Melanocortin-5 receptor and sebogenesis. European Journal of Pharmacology, 660(1), 202–206.PubMedCrossRefGoogle Scholar
  670. Zharkovsky, A., et al. (1993). Concurrent nimodipine attenuates the withdrawal signs and the increase of cerebral dihydropyridine binding after chronic morphine treatment in rats. Naunyn-Schmiedeberg's Archives of Pharmacology, 347(5), 483–486.PubMedCrossRefGoogle Scholar
  671. Zheng, H., et al. (2005a). Brain stem melanocortinergic modulation of meal size and identification of hypothalamic POMC projections. American Journal of Physiology - Regulatory, Integrative and Comparative Physiology, 289(1), R247–R258.PubMedCrossRefGoogle Scholar
  672. Zheng, S. X., Bosch, M. A., & Ronnekleiv, O. K. (2005b). mu-opioid receptor mRNA expression in identified hypothalamic neurons. The Journal of Comparative Neurology, 487(3), 332–344.PubMedCrossRefGoogle Scholar
  673. Zheng, J., et al. (2009). Effects of repeated restraint stress on gastric motility in rats. American Journal of Physiology. Regulatory, Integrative and Comparative Physiology, 296(5), R1358–R1365.PubMedCrossRefGoogle Scholar
  674. Zhou, Y., et al. (2013). Voluntary alcohol drinking enhances proopiomelanocortin gene expression in nucleus accumbens shell and hypothalamus of Sardinian alcohol-preferring rats. Alcoholism, Clinical and Experimental Research, 37(Suppl 1), E131–E140.PubMedCrossRefGoogle Scholar
  675. Zollner, C., & Stein, C. (2007). Opioids. Handbook of Experimental Pharmacology, 177, 31–63.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.University of ToledoToledoUSA

Personalised recommendations