Somatic Embryogenesis in Scots Pine (Pinus sylvestris L.)

  • Malin AbrahamssonEmail author
  • David Clapham
  • Sara von Arnold
Part of the Forestry Sciences book series (FOSC, volume 84)


Scots pine (Pinus sylvestris L.) can be propagated via somatic embryogenesis. However, the protocols available today are not sufficient for large-scale propagation. The method needs to be optimized in order to increase the initiation frequency of embryogenic cell lines giving rise to high quality cotyledonary embryos, and to improve somatic embryo germination. Protocols presented in this chapter have been used to carry out fundamental research, where the resulting knowledge will be valuable for improving culture conditions for large scale propagation of Pinus species via somatic embryogenesis.



We wish to thank Gunnar Flygh and Ravi Shah for their critical reading of the manuscript and comments.


  1. Abrahamsson M, Valladares S, Larsson E, Clapham D, von Arnold S (2012) Patterning during somatic embryogenesis in Scots pine in relation to polar auxin transport and programmed cell death. Plant Cell Tiss Organ Cult 109:391–400CrossRefGoogle Scholar
  2. Abrahamsson M, Valladares S, Merino I, Larsson E, von Arnold S (2017) Degeneration pattern in somatic embryos of Pinus sylvestris L. In Vitro Cell Dev Biol Plant 53:86–96CrossRefPubMedPubMedCentralGoogle Scholar
  3. Aronen T, Pehkonen T, Ryynänen L (2009) Enhancement of somatic embryogenesis from immature zygotic embryos of Pinus sylvestris. Scand J For Res 24:372–383CrossRefGoogle Scholar
  4. Bozhkov PV, von Arnold S (1998) Polyethylene glycol promotes maturation but inhibits further development of Picea abies somatic embryos. Physiol Plant 104:211–224CrossRefGoogle Scholar
  5. Burg K, Helmersson A, Bozhkov P, von Arnold S (2007) Developmental and genetic variation in nuclear microsatellite stability during somatic embryogenesis in pine. J Exp Bot 58:687–698CrossRefPubMedGoogle Scholar
  6. Gupta PK, Durzan DJ (1985) Shoot multiplication from mature trees of Douglas-fir (Pseudotsuga menziesii) and sugar pine (Pinus lambertiana). Plant Cell Rep 4:177–179CrossRefPubMedGoogle Scholar
  7. Häggman H, Jokela A, Krajnakova J, Kauppi A, Niemi K, Aronen T (1999) Somatic embryogenesis of Scots pine: cold treatment and characteristics of explant affecting induction. J Exp Bot 50:1769–1778CrossRefGoogle Scholar
  8. Högberg KA, Bozhkov PV, von Arnold S (2003) Early selection improves clonal performance and reduces intraclonal variation of Norway spruce plants propagated by somatic embryogenesis. Tree Physiol 23:211–216CrossRefPubMedGoogle Scholar
  9. Keinonen-Mettälä K, Jalonen P, Eurola P, von Arnold S, von Weissenberg K (1996) Somatic embryogenesis of Pinus sylvestris. Scand J For Res 11:242–250CrossRefGoogle Scholar
  10. Klimaszewska K, Trontin J-F, Becwar MR, Devillard C, Park Y-S, Lelu-Walter M-A (2007) Recent progress in somatic embryogenesis of four Pinus spp. Tree For Sci Biotechnol 1(1):11–25Google Scholar
  11. Kvaalen H, Appelgren M (1999) Light quality influences germination, root growth and hypocotyl elongation in somatic embryos but not in seedlings of Norway spruce. In vitro Cell Dev Biol 35:437–441CrossRefGoogle Scholar
  12. Lelu-Walter M-A, Bastien C, Drugeault A, Gouez ML, Klimaszewska K (1999) Somatic embryogenesis and plantlet development in Pinus sylvestris and Pinus pinaster on medium with and without growth regulators. Physiol Plant 105:719–728CrossRefGoogle Scholar
  13. Lelu-Walter M-A, Bernier-Cardou M, Klimaszewska K (2008) Clonal plant production from self- and cross-pollinated seed families of Pinus sylvestris (L.) through somatic embryogenesis. Plant Cell Tiss Organ Cult 92:31–45CrossRefGoogle Scholar
  14. Lindgren D (2008) A way to utilize the advantages of clonal forestry for Norway spruce? Working papers of the Finnish Forest Research Institute 114: 08–15Google Scholar
  15. Merino I, Abrahamsson M, Sterck L, Craven-Bartle Canovas F, von Arnold S (2016) Transcript profiling for early stages during embryo development in Scots pine. BMC Plant Biol 16:255CrossRefPubMedPubMedCentralGoogle Scholar
  16. Nörgaard JV, Duran V, Johnsen Ö, Krogstrup P, Baldursson S, von Arnold S (1993) Variations in cryotolerance of embryogenic Picea abies cell lines and association to genetic, morphological and physiological factors. Can J For Res 23:2560–2567CrossRefGoogle Scholar
  17. Park YS, Lelu-Walter MA, Harvengt L, Trontin JF, MacEacheron I, Klimaszewska K, Bonga JM (2006) Initiation of somatic embryogenesis in Pinus banksiana, P. strobus, P. pinaster, and P. sylvestris at three laboratories in Canada and France. Plant Cell Tiss Organ Cult 86:87–101CrossRefGoogle Scholar
  18. Park Y-S, Beaulieu J, Bousquet J (2016) Multi-varietal forestry integrating genomic selection and somatic embryogenesis. In: Park Y-S, Bonga JM, Moon H-K (eds) Vegetative propagation of forest trees. National Institute of Forest Science (NiFos), Seoul, Korea, pp 302–322Google Scholar
  19. Pullman GS, Skryabina A (2007) Liquid medium and liquid overlays improve embryogenic tissue initiation in conifers. Plant Cell Rep 26:873–887CrossRefPubMedGoogle Scholar
  20. Pullman GS, Chase K-M, Skryabina A, Bucalo K (2008) Conifer embryonic tissue initiation: improvements by supplementation of medium with D-xylose and D-chiro-inositol. Tree Physiol 29:147–156CrossRefPubMedGoogle Scholar
  21. Raven PH, Evert RF, Eichhorn SE (1999) Biology of plants, 6th edn. © W.H. Freeman and Company/Worth Publishers. W.H. Freeman and Company, New York, USAGoogle Scholar
  22. Swedish Forest Agency (2014) Swedish statistical yearbook of forestry. [online] (2014) Available from 1 Jan 2016
  23. von Arnold S, Clapham D (2008) Spruce embryogenesis. In: Suarez MF, Bozhkov PV (eds) Methods in molecular biology, plant embryogenesis. Humana Press, Totowa, NJ, vol. 427, pp 31–47Google Scholar
  24. Walter C, Find JI, Grace LJ (2005) Somatic embryogenesis and genetic transformation in Pinus radiata. In: Jain SM, Gupta PK (eds) Protocols for somatic embryogenesis in woody plants. Springer, Netherlands, pp 11–24CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Malin Abrahamsson
    • 1
    Email author
  • David Clapham
    • 2
  • Sara von Arnold
    • 2
  1. 1.SweTree Technologies ABUmeåSweden
  2. 2.Department of Plant Biology, Uppsala BioCentreSwedish University of Agricultural SciencesUppsalaSweden

Personalised recommendations