Advertisement

Stress-Induced Microspore Embryogenesis by Anther Culture of Quercus suber L.

  • Pilar S. Testillano
  • Beatriz Pintos
  • Aranzazu Gomez-Garay
  • María C. Risueño
Chapter
Part of the Forestry Sciences book series (FOSC, volume 84)

Abstract

In vivo, the microspore inside the anther divides and follows the gametophytic program to form the mature pollen grain. In vitro, upon the application of a stress treatment the microspore can be deviated towards a proliferation process leading to embryogenesis, the so-called microspore embryogenesis that can be induced in anther and isolated microspore cultures (Maluszynski et al. 2003).

Notes

Acknowledgements

This work has been supported by projects (BFU2011-23752, AGL2014-52028-R, AGL2017-82447-R) funded by the Spanish Ministry of Economy and Competitiveness, MINECO, and the European Regional Development Fund (ERDF/FEDER) of the European Commission.

References

  1. Bárány I, González-Melendi P, Fadón B, Mitykó J, Risueño MC, Testillano PS (2005) Microspore-derived embryogenesis in pepper (Capsicum annuum L.): subcellular rearrangements through development. Biol Cell 97:709–722CrossRefPubMedGoogle Scholar
  2. Bueno MA, Manzanera JA (2003) Oak anther culture. In: Maluszynski M, Kasha KJ, Forster BP, Szarejlo I (eds) Doubled haploid production in crop plants. Kluwer Academic Publishers, Dordrecht, pp 297–301CrossRefGoogle Scholar
  3. Bueno MA, Gómez A, Boscaiu M, Manzanera JA, Vicente O (1997) Stress-induced formation of haploid plants through anther culture in cork oak (Quercus suber). Physiol Plant 99:335–341CrossRefGoogle Scholar
  4. Bueno MA, Agundez MD, Gomez A, Carrascosa MJ, Manzanera JA (2000) Haploid origin of cork oak anther embryos detected by enzyme and RAPD gene markers. Int J Plant Sci 161:363–367CrossRefPubMedGoogle Scholar
  5. Bueno MA, Gomez A, Sepulveda F, Segui JM, Testillano PS, Manzanera JA, Risueno MC (2003) Microspore-derived embryos from Quercus suber anthers mimic zygotic embryos and maintain haploidy in long-term anther culture. J Plant Physiol 160:953–960CrossRefPubMedGoogle Scholar
  6. Chiancone B, Germanà MA (2016) Microspore embryogenesis through anther culture in Citrus clementina Hort. ex Tan. Methods Mol Biol 1359:475–487CrossRefPubMedGoogle Scholar
  7. Chiancone B, Karasawa MM, Gianguzzi V, Abdelgalel AM, Bárány I, Testillano PS, Marinoni DT, Botta R, Germanà MA (2015) Early embryo achievement through isolated microspore culture in Citrus clementina Hort. ex Tan., cvs. ‘Monreal Rosso’ and ‘Nules’. Front Plant Sci 6:413CrossRefPubMedPubMedCentralGoogle Scholar
  8. Corredoira E, Cano V, Bárány I, Solís MT, Rodríguez H, Vieitez AM, Risueño MC, Testillano PS (2017) Initiation of leaf somatic embryogenesis involves high pectin esterification, auxin accumulation and DNA demethylation in Quercus alba. J Plant Physiol 213:42–54CrossRefPubMedGoogle Scholar
  9. Germanà MA (2009) Haploids and doubled haploids in fruit trees. In: Forster B, Jain M, Touraev A (eds) Advances in haploid production in higher plants. Springer, New York, pp 241–263Google Scholar
  10. Germanà MA, Chiancone B, Padoan D, Bárány I, Risueño M, Testillano PS (2011) First stages of microspore reprogramming to embryogenesis through anther culture in Prunus armeniaca L. Env Exp Bot 71:152–157CrossRefGoogle Scholar
  11. Germanà MA, Chiancone B, Guarda NL, Testillano PS, Risueño M-C (2006) Development of multicellular pollen of Eriobotrya japonica Lindl. through anther culture. Plant Sci 171:718–725CrossRefGoogle Scholar
  12. Gómez A, Pintos B, Aguiriano E, Manzanera JA, Bueno MA (2001) SSR markers for Quercus suber tree identification and embryo analysis. J Heredity 92:292–295CrossRefGoogle Scholar
  13. Gómez-Garay A, López JA, Pintos B, Camafeita E, Bueno MA (2009) Proteomic analysis from haploid and diploid embryos of Quercus suber L. identifies qualitative and quantitative differential expression patterns. Proteomics 9:4355–4367CrossRefGoogle Scholar
  14. González-Melendi P, Testillano PS, Ahmadian P, Fadón B, Vicente O, Risueño MC (1995) In situ characterization of the late vacuolate microspore as a convenient stage to induce embryogenesis in Capsicum. Protoplasma 187:60–71CrossRefGoogle Scholar
  15. Höfer M (2004) In vitro androgenesis in apple—improvement of the induction phase. Plant Cell Rep 22:365–370CrossRefPubMedGoogle Scholar
  16. Maluszynski M, Kasha K, Forster B, Szarejko I (eds) (2003) Doubled haploid production in crop plants: a manual. Kluwer, DordrechtGoogle Scholar
  17. Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15:473–497CrossRefGoogle Scholar
  18. Pintos B, Manzanera JA, Bueno MA (2007) Antimitotic agents increase the production of doubled-haploid embryos from cork oak anther culture. J Plant Physiol 164:1595–1604CrossRefPubMedGoogle Scholar
  19. Pintos B, Manzanera JA, Bueno MA (2010) Oak somatic and gametic embryos maturation is affected by charcoal and specific aminoacids mixture. Ann For Sci 67:205CrossRefGoogle Scholar
  20. Prem D, Solís MT, Bárány I, Rodríguez-Sánz H, Risueño MC, Testillano PS (2012) A new microspore embryogenesis system under low temperature which mimics zygotic embryogenesis initials, expresses auxin and efficiently regenerates doubled-haploid plants in Brassica napus. BMC Plant Biol 12:127CrossRefPubMedPubMedCentralGoogle Scholar
  21. Ramírez C, Chiancone B, Testillano PS, García-Fojeda B, Germanà MA, Risueño MC (2003) First embryogenic stages of Citrus microspore-derived embryos. Acta Biol Cracov Ser Bot 45:53–58Google Scholar
  22. Ramírez C, Testillano PS, Pintos B, Moreno-Risueño MA, Bueno MA, Risueño MC (2004) Changes in pectins and MAPKs related to cell development during early microspore embryogenesis in Quercus suber L. Eur J Cell Biol 83:213–225CrossRefPubMedGoogle Scholar
  23. Rodríguez-Sanz H, Manzanera JA, Solís MT, Gómez-Garay A, Pintos B, Risueño MC, Testillano PS (2014) Early markers are present in both embryogenesis pathways from microspores and immature zygotic embryos in cork oak, Quercus suber L. BMC Plant Biol 14:224CrossRefPubMedPubMedCentralGoogle Scholar
  24. Solís M-T, Pintos B, Prado M-J, Bueno M-A, Raska I, Risueño M-C, Testillano PS (2008) Early markers of in vitro microspore reprogramming to embryogenesis in olive (Olea europaea L.). Plant Sci 174:597–605CrossRefGoogle Scholar
  25. Sommer HE, Brown CL, Kormanik PP (1975) Differentiation of plantles in longleaf pine (Pinus palustris Mill.) tissue culture in vitro. Bot Gazette 136:196–200CrossRefGoogle Scholar
  26. Testillano P, Georgiev S, Mogensen HL, Coronado MJ, Dumas C, Risueno MC, Matthys-Rochon E (2004) Spontaneous chromosome doubling results from nuclear fusion during in vitro maize induced microspore embryogenesis. Chromosoma 112:342–349CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Pilar S. Testillano
    • 1
  • Beatriz Pintos
    • 2
  • Aranzazu Gomez-Garay
    • 2
  • María C. Risueño
    • 1
  1. 1.Pollen Biotechnology of Crop Plants GroupBiological Research Centre, CIB-CSICMadridSpain
  2. 2.Department of Plant Biology I, Faculty of BiologyComplutense University of Madrid, UCMMadridSpain

Personalised recommendations