Stone Pine Pinus Pinea L.

  • Cristina Celestino
  • Elena Carneros
  • Nuria González-Cabrero
  • Inmaculada Hernández
  • Mariano Toribio
Part of the Forestry Sciences book series (FOSC, volume 84)


Stone pine (Pinus pinea L.) is a Mediterranean native conifer species. It is used for protection against soil erosion, ecosystem restoration and farmland afforestation. The most important commercial application is the production of timber and pine nuts. The stone pine kernels are highly appreciated as part of the Mediterranean diet because of their high nutritional value. They are currently one of the most expensive dried fruits. Breeding programs of stone pine mainly focus on the improvement of cone production by planting selected genotypes in grafted orchards. Therefore the production of clonal rootstocks is desirable. This chapter describes protocols to regenerate stone pine plants by somatic embryogenesis from immature zygotic embryos, and for the cryopreservation of embryogenic lines. Protocols used in the attemps to induce somatic embryogenesis in tissues from adult trees are also described.


  1. Bonga JM (2004) The effect of various culture media on the formation of embryo-like structures in cultures derived from explants taken from mature Larix decidua. Plant Cell Tiss Organ Cult 77:43–48CrossRefGoogle Scholar
  2. Bonga JM, Klimaszewska KK, von Aderkas P (2010) Recalcitrance in clonal propagation, in particular of conifers. Plant Cell Tiss Org Cult 100:241–254CrossRefGoogle Scholar
  3. Bonga JM (2016) Conifer clonal propagation in tree improvement programs. In: Park YS, Bonga JM, Moon HK (eds) Vegetative propagation of forest trees. National Institute of Forest Science (NIFoS), Seoul, Korea, pp 3–46Google Scholar
  4. Calama R, Gordo FJ, Mutke S, Montero G (2008) An empirical ecological-type model for predicting stone pine (Pinus pinea L.) cone production in the Northern Plateau (Spain). For Ecol Manage 255:660–673CrossRefGoogle Scholar
  5. Carneros E (2009) Embriogénesis somática en pino piñonero (Pinus pinea L.). Ph.D. Thesis. University of Alcalá, Spain,
  6. Carneros E, Celestino C, Klimaszewska K, Park YS, Toribio M, Bonga JM (2009) Plant regeneration in Stone pine (Pinus pinea L.) by somatic embryogenesis. Plant Cell Tiss Organ Cult 98:165–178CrossRefGoogle Scholar
  7. Carneros E, Toribio M, Celestino C (2017a) Effect of ABA, the auxin antagonist PCIB and partial desiccation on stone pine somatic embryo maturation. Plant Cell Tiss Organ Cult 131:445–458. Scholar
  8. Carneros E, Hernández I, Toribio M, Díaz–Sala C, Celestino C (2017b) Effect of different cryoprotectant procedures on the recovery and maturation ability of cryopreserved Pinus pinea embryogenic lines of different ages. In Vitro Cell Dev Biol—Plant 53:469–477. Scholar
  9. Celestino C, Ruiz-Galea M, Alegre A, Toribio M (2012) Effect of shaking on growth, morphology and maturation ability of embryogenic suspension cultures of Pinus pinea L. In: Abstract of the 2nd international conference of the IUFRO working party 2.09.02, Brno, Czech Republic, 25–28 June, 2012, S1–11PGoogle Scholar
  10. Celestino C, Carneros E, Alegre J, Ruiz-Galea M, Toribio M (2015) Formation of embryogenic-like tissues from mature zygotic embryos of stone pine. In: Park YS, Bonga JM (eds) Proceeding of the 3rd international conference of the IUFRO unit 2.09.02 on the woody plant production integrating genetic and vegetative propagation technologies, Vitoria-Gasteiz, Spain, 8–12 September 2014, pp 11–21.
  11. Humánez A, Blasco M, Brisa C, Segura J, Arrillaga I (2012) Somatic embryogenesis from different tissues of Spanish populations of maritime pine. Plant Cell Tiss Organ Cult 111:373–383. Scholar
  12. Klimaszewska K, Park YS, Overton C, MacEacheron I, Bonga JM (2001) Optimized somatic embryogenesis in Pinus strobus L. In Vitro Cell Dev Biol—Plant 37:392–399. Scholar
  13. Klimaszewska K, Overton C, Stewart D, Rutledge RG (2011) Initiation of somatic embryos and regeneration of plants from primordial shoots of 10-year-old somatic white spruce and expression profiles of 11 genes followed during the tissue culture process. Planta 233:635–647CrossRefPubMedGoogle Scholar
  14. Klimaszewska K, Hargreaves C, Lelu-Walter MA, Trontin JF (2016) Advances in conifer somatic embryogenesis since year 2000. In: Germanà MA, Lambardi M (eds) In vitro embryogenesis in higher plants. Methods in molecular biology, vol 1359. Springer Science+Business Media, New York, pp 131–166CrossRefGoogle Scholar
  15. Litvay JD, Verma DC, Johnson MA (1985) Influence of a loblolly pine (Pinus taeda L.). Culture medium and its components on growth and somatic embryogenesis of the wild carrot (Daucus carota L.). Plant Cell Rep 4:325–328. Scholar
  16. Loewe MV, Delard RC, Balzarini M, Contreras AA, Navarro-Cerrillo RM (2015) Impact of climate and management variables on stone pine (Pinus pinea L.) growing in Chile. Agric For Meteorol 214–215:106–116Google Scholar
  17. Mutke S, Gordo J, Gil L (2000) The stone pine (Pinus pinea L.) breeding programme in Castile-Leon (Central Spain). FAO-CIHEAM Nucis Newslett 9:50–55Google Scholar
  18. Mutke S, Gordo J, Gil L (2005) Variability of Mediterranean Stone pine cone production: yield loss as response to climate change. Agric For Meteorol 132:263–272CrossRefGoogle Scholar
  19. Mutke S, Gordo J, Khouja ML, Fady B (2013a) Low genetic and high environmental diversity at adaptive traits in Pinus pinea from provenance test in France and Spain. Options Méditerr 105:73–79Google Scholar
  20. Mutke S, Pastor A, Picardo A (2013b) Toward a traceability of European pine nuts “from forest to fork”. Options Méditerr 105:105–109Google Scholar
  21. Mutke S, Piqué M, Calama R (eds) (2013c) Mediterranean stone pine for agroforestry. In: Options Méditerranéennes A, vol 105. CIHEAM, Zaragoza, Spain. ISBN: 2-85352-508-2Google Scholar
  22. Mutke S, Correia AC, Vila Verde C (eds) (2016) AgroPine 2016. In: 2nd international meeting on Mediterranean Stone Pine for agroforestry. Book of abstracts. INIAV, Oeiras, 75 p.
  23. Nergiz C, Dönmez I (2004) Chemical composition and nutritive value of Pinus pinea L. seeds. Food Chem 86:365–368CrossRefGoogle Scholar
  24. Park YS (2014) Conifer somatic embryogenesis and multi-varietal forestry. In: Fenning T (ed) Challenges and opportunities for the world’s forests in the 21st century, forestry sciences. Springer, Netherlands, Dordrecht, pp 425–439. Scholar
  25. Park YS, Klimaszewska K, Park JS, Mansfield SD (2010) Lodgepole pine: the first evidence of seed-based somatic embryogenesis and the expression of embryogenesis marker genes in shoot bud cultures of adult trees. Tree Physiol 30:1469–1478. Scholar
  26. Pullman GS, Johnson S (2002) Somatic embryogenesis in loblolly pine (Pinus taeda L.): improving culture initiation rates. Ann For Sci 59:663–668CrossRefGoogle Scholar
  27. Pullman GS, Bucalo K (2014) Pine somatic embryogenesis: analysis of seed tissue and medium to improve protocol development. New For 45:353–377CrossRefGoogle Scholar
  28. Saéz-Laguna E, Guevara MA, Díaz LM, Sánchez-Gómez D, Collada C, Aranda I, Cervera MT (2014) Epigenetic variability in the genetically uniform forest tree species Pinus pinea L. PLoS One 9(8):e103145. Scholar
  29. Schenk RU, Hildebrandt AC (1972) Medium and techniques for induction and growth of monocotyledonous and dicotyledonous plant cell cultures. Can J Bot 50:199–204. Scholar
  30. Strong WB (2006) Seasonal changes in seed reduction in lodgepole pine cones caused by feeding of Leptoglossus occidentalis (Hemiptera: Coreidae). Can Entomol 138(6):888–896CrossRefGoogle Scholar
  31. Trontin JF, Aronen T, Hargreaves C, Montalbán IA, Moncaleán P, Reeves C, Quoniou S, Lelu-Walter MA, Klimaszewska K (2016) International effort to induce somatic embryogenesis in adult pine trees. In: Park YS, Bonga JM, Moon HK (eds) Vegetative propagation of forest trees. National Institute of Forest Science (NIFoS), Seoul, Korea, pp 211–349Google Scholar
  32. Vendramin GG, Fady B, González-Martínez SC, Hu FS, Scotti I, Sebastiani F, Soto A, Petit RJ (2008) Genetically depauperate but widespread: the case of an emblematic Mediterranean pine. Evolution 62(3):680–688CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Cristina Celestino
    • 1
  • Elena Carneros
    • 1
  • Nuria González-Cabrero
    • 1
  • Inmaculada Hernández
    • 1
  • Mariano Toribio
    • 1
  1. 1.Research Institute of Madrid for Food, Agriculture and Rural Development (IMIDRA)Alcalá de Henares (Madrid)Spain

Personalised recommendations