Advertisement

Fraser Fir (Abies fraseri [Pursh] Poir.)

  • Gerald S. Pullman
  • John Frampton
Chapter
Part of the Forestry Sciences book series (FOSC, volume 84)

Abstract

Fraser fir ( Abies fraseri [Pursh] Poir.) is a coniferous species native to the Southern Appalachian Mountains of the Eastern United States. Fraser fir has high economic and recreational value but is vulnerable to extinction due to introduced pests and global warming. Somatic embryogenesis may assist in the clonal production of Christmas trees and conservation of rare and valuable germplasm via cryopreservation. Improved protocols for embryogenic tissue initiation, culture capture and growth, somatic embryo development and maturation and cryogenic storage are presented based on the findings of Pullman (47:453–480, 2016).

Notes

Acknowledgements

We thank the NC Christmas Tree Association and Institute of Paper Science and Technology at Georgia Tech (Renewable Bioproducts Institute) for providing funding, materials and supplies. We also thank Katie Olsen, Taylor Fischer, Ulrika Egertsdotter, Robert Thomas, Lilian Matallana, and Kylie Bucalo for help in protocol development.

References

  1. Aitken-Christie J, Parkes BD (1996) Improved embryogenesis process for initiation and maturation. International application under the Patent Cooperation Treaty (PCT). WO 96/37096. International publication date: 28 Nov 1996Google Scholar
  2. Aronen TS, Krajnakova J, Haggman HM, Ryynanen LA (1999) Genetic fidelity of cryopreserved embryogenic cultures of open-pollinated Abies cephalonica. Plant Sci 142:163–172CrossRefGoogle Scholar
  3. Aurich C, Rupps A, Zoglauer K (2014) Embryo maturation ability is subjected to line ageing—a way to assure the quality of somatic embryos of Nordmann fir. In: Park YS, Bonga JM (eds) Proceedings of the 3rd international conference of the IUFRO unit 2.09.02 on Woody plant production integrating genetic and vegetative propagation technologies, Vitoria-Gasteiz, Spain, 8–12 Sept 2014, pp 127–128. Published online: www.iufro.org/download/file/18208/5477/20902-vitoria-gasteiz14-proceedings_pdf. Accessed 5 Jan 2017
  4. Breton D, Harvengt L, Trontin JF, Bouvet A, Favre JM (2006) Long-term subculture randomly affects morphology and subsequent maturation of early somatic embryos in maritime pine Plant Cell. Tissue Organ Cult 87:95–108CrossRefGoogle Scholar
  5. De Silva V, Bostwick D, Burns KL, Oldham CD, Skryabina A, Sullards MC, Wu D, Zhang Y, May SW, Pullman GS (2008) Isolation and characterization of a molecule stimulatory to growth of early-stage somatic embryos from early-stage female gametophyte tissue of loblolly pine. Plant Cell Rep 27:633–646CrossRefPubMedGoogle Scholar
  6. Fenning TM, Walter C, Gartland KMA (2008) Forest biotech and climate change. Nat Biotech 26:615–617CrossRefGoogle Scholar
  7. Guevin TG, Kirby EG (1997) Induction of embryogenesis in cultured mature zygotic embryos of Abies fraseri (Pursh) Poir. Plant Cell, Tissue Organ Cult 49:219–222CrossRefGoogle Scholar
  8. Handley L III (1997) Method for regeneration of coniferous plants by somatic embryogenesis in culture media containing abscisic acid. US Patent 5,677,185, 14 Oct 1997Google Scholar
  9. Handley L III (1999) Method for regeneration of coniferous plants by somatic embryogenesis in culture media containing abscisic acid. US Patent 5,856,191, 5 Jan 1999Google Scholar
  10. Hibbert-Frey H, Frampton J, Blazich FA, Hinesley LE (2010) Grafting Fraser fir (Abies fraseri): effect of grafting date, shade, and irrigation. HortScience 45:617–620Google Scholar
  11. Hibbert-Frey H, Frampton J, Blazich F, Hundley D, Hinesley E (2011) Grafting Fraser fir: effect of scion origin (crown position and branch order). HortScience 46:91–94Google Scholar
  12. Hinesley E, Frampton J (2002) Grafting Fraser fir onto rootstocks of selected Abies species. HortScience 37:815–818Google Scholar
  13. IUCN (2009) IUCN Red List of Threatened Species. Version 2014.3. www.iucnredlist.org. Accessed 5 Jan 2017
  14. Jasik J, Salajova T, Kormutak A, Salaj J (1999) Somatic embryogenesis in hybrid firs. In: Jain SM, Gupta PK, Newton RJ (eds) Somatic embryogenesis in woody plants, vol 4. Kluwer Academic, The Netherlands, pp 505–523CrossRefGoogle Scholar
  15. Kapik RH, Dinus RJ, Dean JF (1995) Abscisic acid and zygotic embryogenesis in Pinus taeda. Tree Physiol 15:409–485CrossRefGoogle Scholar
  16. Kim YW, Newton R, Frampton J, Han KH (2009) Embryogenic tissue initiation and somatic embryogenesis in Fraser fir (Abies fraseri [Pursh] Poir.). In Vitro Cell Dev Biol Plant 45:400–406CrossRefGoogle Scholar
  17. Korecky J, Vitamvas J (2011) Somatic embryogenesis of the hybrid Abies cilicica x Abies cephalonica. J For Sci 57:401–408CrossRefGoogle Scholar
  18. Krajnakova J, Sutela S, Aronen T, Gomory D, Vianello A, Haggman H (2011) Long-term cryopreservation of Greek fir embryogenic cell lines: recovery, maturation and genetic fidelity. Cryobiology 63:17–25CrossRefPubMedGoogle Scholar
  19. Kvaalen H, Daehlen OG, Rognstad AT, Gronstad B, Egertsdotter U (2005) Somatic embryogenesis for plant production of Abies lasiocarpa. Can J For Res 35:1053–1060CrossRefGoogle Scholar
  20. Liao YK, Juan I-P (2015) Improving the germination of somatic embryos of Picea morrisonicola Hayata: effects of cold storage and partial drying. J For Res 20:114–124CrossRefGoogle Scholar
  21. Ma X, Bucalo K, Determann RO, Cruse-Sanders JM, Pullman GS (2012) Somatic embryogenesis, plant regeneration and cryopreservation for Torreya taxifolia, a highly endangered coniferous species. In Vitro Cell Dev Biol Plant 48:324–334CrossRefGoogle Scholar
  22. Malabadi R, Nataraja K (2007) 24-Epibrassinolide induces somatic embryogenesis in Pinus wallichiana A. B. Jacks. J Plant Sci 2:171–178CrossRefGoogle Scholar
  23. McManamay RH, Resler LM, Campbell JB, McManamayl RA (2011) Assessing the impacts of balsam woolly adelgid (Adelge piceae Ratz.) and anthropogenic disturbance on the stand structure and mortality of Fraser fir [Abies fraseri (Pursh) Poir.] in the Black Mountains, North Carolina. Castanea 76:1–19CrossRefGoogle Scholar
  24. Misson JP, Druart P, Panis B, Watillon B (2006) Contribution to the study of the maintenance of somatic embryos of Abies nordmanniana LK: culture media and cryopreservation method. Propag Ornam Plants 6:17–23Google Scholar
  25. Nørgaard JV, Krogstrup P (1995) Somatic embryogenesis in Abies spp. In: Mohan JS, Gupta PK, Newton RJ (eds) Somatic embryogenesis in woody plants, vol 3. Kluwer, The Netherlands, pp 341–355CrossRefGoogle Scholar
  26. Norgaard JV, Baldursson S, Krogstrup P (1993) Genotypic differences in the ability of embryogenic Abies nordmanniana cultures to survive cryopreservation. Silvae Genet 42:93–97Google Scholar
  27. North Carolina Cooperative Extension (2017) Christmas trees. https://christmastrees.ces.ncsu.edu. Accessed 12 Jan 2017
  28. Pullman GS, Bucalo K (2011) Pine somatic embryogenesis using zygotic embryos as explants. In: Thorpe T, Yeung E (eds) Plant embryo culture: methods and protocols. Humana Press, New York, pp 267–291CrossRefGoogle Scholar
  29. Pullman GS, Bucalo K (2014) Pine somatic embryogenesis: analyses of seed tissue and medium to improve protocol development. New Forest 45:353–377CrossRefGoogle Scholar
  30. Pullman GS, Skryabina A (2007) Liquid medium and liquid overlays improve embryogenic tissue initiation in conifers. Plant Cell Rep 26:873–887CrossRefPubMedGoogle Scholar
  31. Pullman GS, Webb DT (1994) An embryo staging system for comparison of zygotic and somatic embryo development. In: TAPPI R&D Division Biological Sciences Symposium, TAPPI Press, Atlanta, GA, pp 31–34Google Scholar
  32. Pullman GS, Johnson S, Peter G, Cairney J, Xu N (2003a) Improving loblolly pine somatic embryo maturation: comparison of somatic and zygotic embryo morphology, germination, and gene expression. Plant Cell Rep 21:747–758PubMedGoogle Scholar
  33. Pullman GS, Namjoshi K, Zhang Y (2003b) Somatic embryogenesis in loblolly pine (Pinus taeda L.): improving culture initiation with abscisic acid and silver nitrate. Plant Cell Rep 22:85–95CrossRefPubMedGoogle Scholar
  34. Pullman GS, Zhang Y, Phan B (2003c) Brassinolide improves embryogenic tissue initiation in conifers and rice. Plant Cell Rep 22:96–104CrossRefPubMedGoogle Scholar
  35. Pullman GS, Johnson S, Van Tassel S, Zhang Y (2005a) Somatic embryogenesis in loblolly pine (Pinus taeda L.) and Douglas fir (Pseudotsuga menziesii): improving culture initiation and growth with MES pH buffer, biotin, and folic acid. Plant Cell, Tissue Organ Cult 80:91–103CrossRefGoogle Scholar
  36. Pullman GS, Mein J, Johnson S, Zhang Y (2005b) Gibberellin inhibitors improve embryogenic tissue initiation in conifers. Plant Cell Rep 23:596–605CrossRefPubMedGoogle Scholar
  37. Pullman GS, Johnson S, Bucalo K (2009) Douglas fir embryogenic tissue initiation. Plant Cell, Tissue Organ Cult 96:75–84CrossRefGoogle Scholar
  38. Pullman GS, Zeng X, Copeland-Kemp B, Crockett J, Lucrezi J, May SW, Bucalo K (2015) Conifer somatic embryogenesis: improvements by supplementation of medium with oxidation-reduction agents. Tree Physiol 35:209–224CrossRefPubMedGoogle Scholar
  39. Pullman GS, Olson K, Fischer T, Egertsdotter U, Frampton J, Bucalo K (2016) Fraser fir somatic embryogenesis: high frequency initiation, maintenance, embryo development, germination and cryopreservation. New Forest 47:453–480CrossRefGoogle Scholar
  40. Rajbhandari N, Stomp A (1997) Embryogenic callus induction in Fraser fir. HortScience 32:737–738Google Scholar
  41. Rosier CL, Frampton J, Goldfarb B, Blazich FA, Wise FC (2004) Growth stage, auxin type, and concentration influence rooting stem cuttings of Fraser fir. HortScience 39:1397–1402Google Scholar
  42. Rosier C, Frampton J, Goldfarb B, Blazich FA, Wise FC (2005) Effects of stumping height, auxin and crown position on the rooting of Fraser fir cuttings. HortScience 40:771–777Google Scholar
  43. Salaj T, Vookova B, Salaj J (2005) Protocols for somatic embryogenesis in hybrid firs. In: Jain SM, Gupta PK (eds) Protocols for somatic embryogenesis in woody plants. Springer, The Netherlands, pp 483–496CrossRefGoogle Scholar
  44. Salaj T, Matusikova I, Panis B, Swennen R, Salaj J (2010) Recovery and characterization of hybrid firs (Abies alba × A. cephalonica, Abies alba × A. numidica) embryogenic tissue after cryopreservation. CryoLetters 31:206–217PubMedGoogle Scholar
  45. Salajova T, Jasik J, Kormutak A, Salaj J, Hakman I (1996) Embryogenic culture initiation and somatic embryo development in hybrid firs (Abies alba × Abies cephalonica, and Abies alba × Abies numidica). Plant Cell Rep 15:527–530PubMedGoogle Scholar
  46. Schuller A, Reuther G, Geier T (1989) Somatic embryogenesis from seed explants of Abies alba. Plant Cell, Tissue Organ Cult 17:53–58Google Scholar
  47. Silva AMN, Kong XL, Parkin MC, Cammack R, Hider RC (2009) Iron(III) citrate speciation in aqueous solution. Dalton Trans 8616–8625:2009Google Scholar
  48. Timmis R (1998) Bioprocessing for tree production in the forest industry: conifer somatic embryogenesis. Biotechnol Prog 14:156–166CrossRefGoogle Scholar
  49. Vondrakova Z, Eliasova K, Fischerova L, Vagner M (2011) The role of auxins in somatic embryogenesis of Abies alba. Cent Eur J Biol 6:587–596Google Scholar
  50. Vookova B, Kormutak A (2014) Study of Abies somatic embryogenesis and its application. Dendrobiology 71:149–157Google Scholar
  51. Welty DE (2000) Method for storing and improving the survival rate of conifer somatic embryo germinants. US Patent 6,134,830, 24 Oct 2000Google Scholar
  52. Wu D, Sullards MC, Oldham DD, Gelbaum L, Pullman GS, May SW (2012) Myo-inositol hexakisphosphate, isolated from female gametophyte tissue of loblolly pine, inhibits growth of early-stage somatic embryos. New Phytol 193:313–326CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Biological SciencesRenewable Bioproducts Institute, Georgia Institute of TechnologyAtlantaUSA
  2. 2.Department of Forestry and Environmental ResourcesN.C. State UniversityRaleighUSA

Personalised recommendations