Advertisement

Eucalypts (Eucalyptus globulus Labill.)

  • Elena Corredoira
  • Ana M. Vieitez
  • Antonio Ballester
Chapter
Part of the Forestry Sciences book series (FOSC, volume 84)

Abstract

Eucalyptus globulus has a great economic importance as its wood shows an excellent quality for cellulose and paper manufacture. Somatic embryogenesis (SE) provides many advantages including clonal mass propagation, cryopreservation of valuable germoplasm and genetic transformation. Here, protocols for SE induction from both immature zygotic embryos and shoot apex and leaf explants derived from mature E. globulus trees are described. The importance of the auxin type used to induce somatic embryos has been highlighted. Whereas naphthaleneacetic acid (NAA) is currently used on induction of SE from zygotic embryos, picloram was significantly more efficient in leaves and shoot apex explants than NAA. Protocols for embryo maintenance and plantlet conversion are also described the chapter.

References

  1. Aggarwal D, Sudhakara Reddy M, Kumar A (2016) Biotechnological approaches for the improvement of eucalypts. In: Anis M, Ahmad N (eds) Plant tissue culture: propagation, conservation and crop improvement. Springer, Singapore, pp 219–244CrossRefGoogle Scholar
  2. Assis TF, Fett-Neto AG, Couto A (2004) Current techniques and prospects for the clonal propagation of hardwoods with emphasis on Eucalyptus. In: Walter Ch, Carson M (eds) Plantation of forest biotechnology for the 21st century. Research Signpost, Kerala, India, pp 330–333Google Scholar
  3. Ballester A, Corredoira E, Vieitez AM (2016) Limitations of somatic embryogenesis in hardwood trees. In: Park YS, Bonga JM, Moon HK (eds) Vegetative propagation of trees. National Institute of Forest Sciences, Korea, pp 75–96Google Scholar
  4. Blakeway FC, Herman B, Watt MP (1993) Establishment of cell suspension cultures of E. grandis and E. grandis × camaldulensis. S Afr J Bot 166:17–26Google Scholar
  5. Bonga JM (2017) Can explant choice help resolve recalcitrance problems in in vitro propagation, a problem still acute especially for adult conifers? Trees 31:781–789 CrossRefGoogle Scholar
  6. Bonga JM, Klimazewska KK, von Aderkas P (2010) Recalcitrance in clonal propagation, in particular in conifers. Plant Cell, Tissue Organ Cult 100:241–254CrossRefGoogle Scholar
  7. Chauhan RD, Veale A, Cathleen M, Strauss SH, Myburg AA (2014) Genetic transformation of Eucalyptus—challenges and future prospects. In: Ramawat KG, Mérillon J-M, Ahuja MR (eds) Tree biotechnology. CRC Press, NY, pp 392–445Google Scholar
  8. Corredoira E, Ballester A, Ibarra M, Vieitez AM (2015) Induction of somatic embryogenesis in leaf and shoot apex explants of shoot cultures derived from adult Eucalyptus globulus and E. saligna × E. maidenii trees. Tree Physiol 35:678–690CrossRefPubMedGoogle Scholar
  9. Correia S, Lopes ML, Canhoto JM (2011) Somatic embryogenesis induction system for cloning an adult Cyphomandra betacea (Cav.) Sendt. (tamarillo). Trees 25:1009–1020CrossRefGoogle Scholar
  10. Dobrowolska I, Andrade GM, Clapham D, Egertsdotter U (2016) Histological analysis reveals the formation of shoots rather than embryos in regenerating cultures of E. globulus. Plant Cell, Tissue Organ Cult 128:311–326.  https://doi.org/10.1007/s11240-016-1111-5CrossRefGoogle Scholar
  11. Feder N, O’Brien TP (1968) Plant microtechnique: some principles and new methods. Am J Bot 55:123–147CrossRefGoogle Scholar
  12. Gion JM, Chaumeil P, Plomion C (2015) EucaMaps: linking genetic maps and associated QTLs to the E. grandis genome. Tree Genet Genomes 11:795.  https://doi.org/10.1007/s11295-014-0795-0
  13. Grattapaglia D, Kirst M (2008) Eucalyptus applied genomics: from gene sequences to breeding tools. New Phytol 179:911–929CrossRefPubMedGoogle Scholar
  14. Grattapaglia D, Mamani EMC, Silva-Junior OB, Faria D (2015) A novel genome-wide microsatellite resource for species of Eucalyptus with linkage-to-physical correspondence on the reference genome sequence. Mol Ecol Resour 15:437–448.  https://doi.org/10.1111/1755-0998.12317CrossRefPubMedGoogle Scholar
  15. Iglesias-Trabad G, Carbaeira-Tenreiro R, Folgueiia-Lozano J (2009) Eucalyptus universalis. Global cultivated eucalypt forest map. Version 1.2 In: GIT Forestry Consulting’s EUCALYPTOLOGICS: information resources on Eucalyptus cultivation worldwideGoogle Scholar
  16. Jensen WA (1962) Botanical histochemistry. WH Freeman and Co., San FranciscoGoogle Scholar
  17. Marcon HS, Domingues DS, Silva JC, Borges RJ, Matioli FF, de MattosFontes MR et al (2015) Transcriptionally active LTR retrotransposons in Eucalyptus genus are differentially expressed and insertionally polymorphic. BMC Plant Biol 15:198.  https://doi.org/10.1186/s12870-015-0550-1CrossRefPubMedPubMedCentralGoogle Scholar
  18. Mankessi F, Saya AR, Toto M, Monteuuis O (2010) Propagation of E. urophylla × E. grandis clones by rooted cuttings: influence of genotype and cutting type on rooting ability. Propag Ornam Plants 10:42–49Google Scholar
  19. Martínez MT, Vieitez AM, Corredoira E (2015) Improved secondary embryo production in Quercus alba and Quercus rubra by activated charcoal, silver thiosulphate and sucrose: influence of embryogenic explant used for subculture. Plant Cell, Tissue Organ Cult 212:531–546CrossRefGoogle Scholar
  20. Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497CrossRefGoogle Scholar
  21. Myburg AA, Grattapaglia D, Tuskan GA, Hellsten U, Hayes RD, Grimwood J, Jenkins J, Lindquist E, Tice H, Bauer D, Goodstein DM, Dubchak I, Poliakov A, Mizrachi E, Kullan AR, Hussey SG, Pinard D, van der Merwe K, Singh P, van Jaarsveld I, Silva-Junior OB, Togawa RC, Pappas MR, Faria DA, Sansaloni CP, Petroli CD, Yang X, Ranjan P, Tschaplinski TJ, Ye CY, Li T, Sterck L, Vanneste K, Murat F, Soler M, Clemente HS, Saidi N, Cassan-Wang H, Dunand C, Hefer CA, Bornberg-Bauer E, Kersting AR, Vining K, Amarasinghe V, Ranik M, Naithani S, Elser J, Boyd AE, Liston A, Spatafora JW, Dharmwardhana P, Raja R, Sullivan C, Romanel E, Alves-Ferreira M, Külheim C, Foley W, Carocha V, Paiva J, Kudrna D, Brommonschenkel SH, Pasquali G, Byrne M, Rigault P, Tibbits J, Spokevicius A, Jones RC, Steane DA, Vaillancourt RE, Potts BM, Joubert F, Barry K, Pappas GJ, Strauss SH, Jaiswal P, Grima-Pettenati J, Salse J, Van de Peer Y, Rokhsar DS, Schmutz J (2014) The genome of E. grandis. Nature 509:356–362.  https://doi.org/10.1038/nature13308CrossRefGoogle Scholar
  22. Park YS, Beaulieu J, Bousquet J (2016) Multi-varietal forestry integrating genomic selection and somatic embryogenesis. In: Park YS, Bonga JM, Moon HK (eds) Vegetative propagation of trees. National Institute of Forest Sciences, Korea, pp 302–322Google Scholar
  23. Park YS, Bonga JM (2010) Application of somatic embryogenesis in forest management and research. In: Park YS, Bonga JM, Park SY, Moon HK (eds). In: Proceedings of the IUFRO Working Party 2.09.02: Somatic embryogenesis of trees. Advances in somatic embryogenesis in trees and its application for the future forests and plantations. 19–21 Aug 2010, pp 3–8. Suwon, Republic of KoreaGoogle Scholar
  24. Pinto G, Santos C, Neves L, Araújo C (2002) Somatic embryogenesis and plant regeneration in E. globulus Labill. Plant Cell Rep 21:208–213CrossRefGoogle Scholar
  25. Pinto G, Silva S, Park YS, Neves L, Araújo C, Santos C (2008) Factors influencing somatic embryogenesis induction in E. globulus Labill.: basal medium and anti-browning agents. Plant Cell, Tissue Organ Cult 95:79–88CrossRefGoogle Scholar
  26. Pinto G, Silva S, Loureiro J, Costa A, Dias MC, Araújo C, Neves L, Santos C (2011) Acclimatization of secondary somatic embryos derived plants of E. globulus Labill.: an ultrastructural approach. Trees 25:383–392CrossRefGoogle Scholar
  27. Pinto G, Araújo C, Santos C, Neves L (2013) Plant regeneration by somatic embryogenesis in Eucalyptus spp.: current status and future perspectives. Southern For 75:59–69Google Scholar
  28. Pinto G, Correia S, Corredoira E, Ballester A, Correia B, Neves L, Canhoto J (2016) In vitro culture of Eucalyptus: where do we stand? In: Park YS, Bonga JM, Moon HK (eds) Vegetative propagation of trees. National Institute of Forest Sciences, Korea, pp 441–462Google Scholar
  29. Qin Ch-L, Kirby EG (1990) Induction of shoots and embryo-like structures in cultures derived from juvenile and adult explants of Eucalyptus spp. Abstracts, In: VII international congress on plant tissue and cell culture, 24–29 June 1990, p 21. Amsterdam, The Netherlands, Abstract no. A 1–74Google Scholar
  30. Ribeiro T, Barrela R, Bergès H, Marques C, Loureiro J, Morais-Cecílio L, Paiva JAP (2016) Advancing Eucalyptus genomics: cytogenomics reveals conservation of Eucalyptus genomes. Front Plant Sci 7:510.  https://doi.org/10.3389/fpls.2016.00510CrossRefPubMedPubMedCentralGoogle Scholar
  31. Termignoni RR, Jobin CP, Morais L (1998) Somatic embryogenesis in Eucalyptus spp.: regeneration systems from elite clones. In: IX international congress on plant tissue and cell culture, book of abstracts, 14–19 June 1998, p 114. Jerusalem, IsraelGoogle Scholar
  32. Thompson D (2015) Challenges for the large-scale propagation of forest trees by somatic embryogenesis—a review. In: Park YS Bonga JM (eds) Proceedings of the 3rd international conference of the IUFRO unit 2.09.02 on Woody plant production integrating genetic and vegetative propagation technologies, 8–12 Sept 2015, pp 81–91. Vitoria-Gasteiz, SpainGoogle Scholar
  33. Watt MP, Blakeway FC, Cresswell CF, Herman B (1991) Somatic embryogenesis in E. grandis. S Afr For J 157:59–65Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Elena Corredoira
    • 1
  • Ana M. Vieitez
    • 1
  • Antonio Ballester
    • 1
  1. 1.Group of Biotechnology and Forestry Improvement, Department of Plant PhysiologyInstituto de Investigaciones Agrobiológicas de Galicia, CSICSantiago de CompostelaSpain

Personalised recommendations