Hybrid Larch (Larix × eurolepis Henry)

  • Anna KraftEmail author
  • Marianne Kadolsky
Part of the Forestry Sciences book series (FOSC, volume 84)


Somatic embryogenesis is a useful tool for the gerneration of biomass of fast growing and economically important species like Hybrid larch (Larix x eurolepis). In this chapter we present optimized protocols for the single steps of in vitro processes of somatic embryogenesis (initiation, maturation, germination and cryopreservation), as well as for a successful transfer to the field (including acclimatization) of Hybrid larch.



Parts of this work were financially supported by the German Federal Ministry of Food and Agriculture (BMEL) by decision of the German Bundestag through the Fachagentur Nachwachsende Rohstoffe (FNR), grant number 22034914.


  1. Becwar MR, Nagmani R, Wann SR (1990) Initiation of embryogenic cultures and somatic embryo development in loblolly pine (Pinustaeda). Can J For Res 20:810–817CrossRefGoogle Scholar
  2. Brassard N, Brissette L, Lord D, Laliberté S (1996) Elongation, rooting and acclimatization of micropropagated shoots from mature material of hybrid larch. Plant Cell, Tissue Organ Cult 44:37–44CrossRefGoogle Scholar
  3. Donnelly DJ, Tisdall L (1993) Acclimatization strategies for micropropagated plants. In: Ahuja MR (ed) Micropropagation of Woody Plants. Springer, Netherlands, pp 153–166CrossRefGoogle Scholar
  4. Ewald D (2007) Micropropagation of Larix Species via Organogenesis. In: Jain SM, Häggman H (eds) Protocols for Micropropagation of Woody Trees and Fruits. Springer, Netherlands, pp 125–136CrossRefGoogle Scholar
  5. George EF and others (1993) Plant propagation by tissue culture. Part 1: the technology. (Exegetics limited)Google Scholar
  6. Gutmann M, von Aderkas P, Label P, Lelu M-A (1996) Effects of abscisic acid on somatic embryo maturation of hybrid larch. J Exp Bot 47:1905–1917CrossRefGoogle Scholar
  7. Henry A, Flood MG (1919) The history of the dunkeld hybrid larch, Larix eurolepis, with notes on other hybrid conifers. Proc R Ir Acad [B] 35:55–66Google Scholar
  8. Klimaszewska K (1989) Plantlet development from immature zygotic embryos of hybrid larch through somatic embryogenesis. Plant Sci 63:95–103CrossRefGoogle Scholar
  9. Klimaszewska K, Ward C, Cheliak WM (1992) Cryopreservation and plant regeneration from embryogenic cultures of larch (Larix x urolepis) and black spruce (Picea mariana). J Exp Bot 43:73–79CrossRefGoogle Scholar
  10. Klimaszewska K, Hargreaves C, Lelu-Walter M-A, Trontin J-F (2016) Advances in conifer somatic embryogenesis since year 2000. In: Germana MA, Lambardi M (eds) In vitro embryogenesis in higher plants. Springer, New York, pp 131–166CrossRefGoogle Scholar
  11. Larsson-Stern M (2003) Aspects of hybrid larch (Larix × eurolepis Henry) as a potential tree species in southern Swedish forestryGoogle Scholar
  12. Lelu MA, Bastien C, Klimaszewska K, Ward C, Charest PJ (1994a) An improved method for somatic plantlet production in hybrid larch (Larix  x eptoeuropaea): Part 1. Somatic embryo maturation. Plant Cell, Tissue Organ Cult 36:107–115CrossRefGoogle Scholar
  13. Lelu MA, Klimaszewska K, Charest PJ (1994b) Somatic embryogenesis from immature and mature zygotic embryos and from cotyledons and needles of somatic plantlets of Larix. Can J For Res 24:100–106CrossRefGoogle Scholar
  14. Lelu-Walter M-A, Pâques LE (2009) Simplified and improved somatic embryogenesis of hybrid larches (Larix x eurolepis and Larix x marschlinsii). Perspectives for breeding. Ann For Sci 66:104CrossRefGoogle Scholar
  15. Li BL, Wyckoff GW (1994) Breeding strategies for Larix decidua, L. leptolepis and their hybrids in the United States. For Genet 1:65–72Google Scholar
  16. Pan MJ, van Staden J (1998) The use of charcoal in in vitro culture—A review. Plant Growth Regul 26:155–163CrossRefGoogle Scholar
  17. Pâques LE (1989) A critical review of larch hybridization and its incidence on breeding strategies. Ann Sci For 46:141–153CrossRefGoogle Scholar
  18. Pâques LE (1992) Performance of vegetatively propagated Larix decidua. In: kaempferi L, laricina hybrids L (eds), Annales des sciences forestières, vol 49, Issue 1. INRA/EDP Sciences, pp 63–74Google Scholar
  19. Pâques LE, Millier F, Rozenberg P (2009) Selection perspectives for genetic improvement of wood stiffness in hybrid larch (Larix × eurolepis Henry). Tree Genet Genomes 6:83–92CrossRefGoogle Scholar
  20. Pâques LE, Foffová E, Heinze B, Lelu-Walter M-A, Liesebach M, Philippe G (2013) Larches (Larix sp.). In: Pâques LE (ed), Forest tree breeding in Europe. Springer, Netherlands, pp 13–122CrossRefGoogle Scholar
  21. von Arnold S, Sabala I, Bozhkov P, Dyachok J, Filonova L (2002) Developmental pathways of somatic embryogenesis. Plant Cell, Tissue Organ Cult 69:233–249CrossRefGoogle Scholar
  22. Zoglauer DK, Behrendt U, Rahmat A, Ross H, Taryono (2003) Somatic embryogenesis—the gate to biotechnology in conifers. In: Laimer UPDM, Rücker UDDW (eds), Plant tissue culture. Springer, Vienna, pp 175–202CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Biology, AG Botany & ArboretumHumboldt-Universität zu BerlinBerlinGermany
  2. 2.Wood and Forestry Competence Centre, Ref.42 Forest Genetics and Forest Plant BreedingStaatsbetrieb SachsenforstPirna OT GraupaGermany

Personalised recommendations