Advertisement

Quercus Ilex L.

  • Aranzazu Gomez-Garay
  • José Antonio Manzanera
  • Pilar S. Testillano
  • Beatriz Pintos
Chapter
Part of the Forestry Sciences book series (FOSC, volume 84)

Abstract

Holm oak (Quercus ilex L.) is the predominant tree species in many natural communities of the West Mediterranean. The dominant structure in the natural areas of this species is as wooded meadows, and its main economic importance is the agroforestry system. This structure is well known in Mediterranean countries and receives specific names, such as “dehesa” in Spanish, “montado” in Portuguese, etc. This agroforestry system is oriented to livestock production (mainly beef and Iberian pork) and hunting. Holm oak trees provide acorns as quality food for livestock and game, and sometimes for symbiotic cultures of truffle, which are becoming of high economic importance. Nevertheless, basic research on this species has been scarce.

Notes

Acknowledgements

Work partially supported by projects (AGL2014-52028-R and AGL2017-82447-R) funded by Spanish MINECO and European ERDF/FEDER.

References

  1. Amssa M, De Buyser J, Henry Y (1980) Origine des plantesdiploides obtenues par culture in vitro d’antheres de ble tendre (Triticum aestivum L.): influence du pretraitement au froid et de la culture in vitro sur le doublement. C R Acad Sci Paris 290:1095–1097Google Scholar
  2. Bellarosa R (1989) Oak (Quercus spp.). In: Bajaj YPS (ed) Biotechnology in agriculture and forestry, vol 5, Trees II, (pp 387–401). Springer, Berlin, HeidelbergCrossRefGoogle Scholar
  3. Bueno MA, Gómez A, Boscaiu M, Manzanera JA, Vicente O (1997) Stress-induced formation of haploid plants through anther culture in cork oak (Quercus suber). Physiol Plant 99(2):335–341CrossRefGoogle Scholar
  4. Bueno MA, Gomez A, Sepulveda F, Seguí JM, Testillano PS, Manzanera JA, Risueño MC (2003) Microspore-derived embryos from Quercus suber anthers mimic zygotic embryos and maintain haploidy in long-term anther culture. J Plant Physiol 160(8):953–960CrossRefPubMedGoogle Scholar
  5. Corcobado T, Cubera E, Pérez-Sierra A, Jung T, Solla A (2010) First report of Phytophthora gonapodyides involved in the decline of Quercus ilex in xeric conditions in Spain. New Dis Rep 22:33CrossRefGoogle Scholar
  6. Cornu D, Delran S, Garbaye J, Le Tacon F (1977) Research of the best rooting conditions for green shoots of oak (Q. petraea (M) Liebl.) and beech (Fagus sylvatica L.). Ann Sci For 34:1–16 (in French)CrossRefGoogle Scholar
  7. Deutsch F, Kumlehn J, Ziegenhagen B, Fladung M (2004) Stable haploid poplar callus lines from immature pollen culture. Physiol Plant 120(4):613–622CrossRefPubMedGoogle Scholar
  8. Duncan EJ, Heberle E (1976) Effect of temperature shock on nuclear phenomena in microspores of Nicotiana tabacum and consequently on plantlet production. Protoplasma 90(1–2):173–177CrossRefGoogle Scholar
  9. Féraud-Keller C, Espagnac H (1989) Conditions for the appearance of somatic embryogenesis on callus from leaf tissue cultures of holm oak (Quercus ilex). Can J Bot 67:1066–1070 (in French)CrossRefGoogle Scholar
  10. Gomez A, Pintos B, Aguiriano E, Manzanera JA, Bueno MA (2001) SSR markers for Quercus suber tree identification and embryo analysis. J Hered 92(3):292–295CrossRefPubMedGoogle Scholar
  11. Gómez A, López JA, Pintos B, Camafeita E, Bueno MA (2009) Proteomic analysis from haploid and diploid embryos of Quercus suber L. identifies qualitative and quantitative differential expression patterns. Proteomics 9(18):4355–4367CrossRefPubMedGoogle Scholar
  12. Gomez-Garay A, Manzanera JA, Pintos B (2014) Embryogenesis in Oak species. A review. For Syst 23(2):191–198Google Scholar
  13. L’Helgoual’ch M, Espagnac H (1987) First observations on the adventitious rhizogenic capacity of holm oak (Quercus ilex L.). Ann Sci For 44:325–334 (in French)Google Scholar
  14. Lippert D, Zhuang J, Ralph S, Ellis DE, Gilbert M, Olafson R et al (2005) Proteome analysis of early somatic embryogenesis in Picea glauca. Proteomics 5(2):461–473CrossRefPubMedGoogle Scholar
  15. Mauri PV, Manzanera JA (2003) Induction, maturation and germination of holm oak (Quercus ilex L.) somatic embryos. PCTOC 74(3):229–235Google Scholar
  16. Mauri PV, Manzanera JA (2004) Effect of abscisic acid and stratification on somatic embryo maturation and germination of Holm oak (Quercus ilex L). In Vitro Cell Dev Biol Plant 40(5):495–498CrossRefGoogle Scholar
  17. Mauri PV, Manzanera JA (2005) Protocol of somatic embryogenesis: Holm oak (Quercus ilex L.). In: Jain M, Gupta PK (eds) Protocol for somatic embryogenesis in woody plants, Springer, pp. 469–482. ISBN-10 1-4020-2985Google Scholar
  18. Mauri PV, Manzanera JA (2011) Somatic embryogenesis of holm oak (Quercus ilex L.): ethylene production and polyamine content. Acta Physiol Plant 33:717–723CrossRefGoogle Scholar
  19. Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15(3):473–497CrossRefGoogle Scholar
  20. Pintos B, Manzanera JA, Bueno MA (2007) Antimitotic agents increase the production of doubled-haploid embryos from cork oak anther culture. J Plant Physiol 164(12):1595–1604CrossRefPubMedGoogle Scholar
  21. Pintos B, Sánchez N, Bueno MA, Navarro R, Jorrín J, Manzanera JA, Gómez-Garay A (2013) Induction of Quercus ilex L. haploid and doubled-haploid embryos from anther cultures by temperature-stress. Silvae Genet 62(4–5):210–218CrossRefGoogle Scholar
  22. Romero MA, Sánchez JE, Jiménez JJ, Belbahri L, Trapero A, Lefort F, Sánchez ME (2007) New pythium taxa causing root rot on mediterranean Quercus species in south-west Spain and Portugal. J Phytopathol 155:289–295CrossRefGoogle Scholar
  23. Sghaier-Hammami B, Drira N, Jorrín-Novo JV (2009) Comparative 2-DE proteomic analysis of date palm (Phoenix dactylifera L.) somatic and zygotic embryos. J Proteomics 73(1):161–177CrossRefPubMedGoogle Scholar
  24. Solla A, García L, Pérez A, Cordero A, Cubera E, Moreno G (2009) Evaluating potassium phosphonate injections for the control of Quercus ilex decline in SW Spain: implications of low soil contamination by Phytophthora cinnamomi and low soil water content on the effectiveness of treatments. Phytoparasitica 37:303–316CrossRefGoogle Scholar
  25. Sommer HE, Brown CL, Kormanik PP (1975) Differentiation of plantlets in longleaf pine (Pinus palustris Mill.) tissue cultured in vitro. Bot Gaz 136(2):196–200CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Aranzazu Gomez-Garay
    • 1
  • José Antonio Manzanera
    • 2
  • Pilar S. Testillano
    • 3
  • Beatriz Pintos
    • 1
  1. 1.Biological Science Faculty, Department of Genetics, Physiology and MicrobiologyComplutense University of Madrid (UCM)MadridSpain
  2. 2.School of Forestry and Natural ResourcesTechnical University of Madrid (UPM)MadridSpain
  3. 3.Biotechnology of Crop PlantsBiological Research Centre (CIB-CSIC)MadridSpain

Personalised recommendations