Advertisement

Pinus radiata (D. Don) Somatic Embryogenesis

  • Itziar A. Montalbán
  • Paloma Moncaleán
Chapter
Part of the Forestry Sciences book series (FOSC, volume 84)

Abstract

Radiata pine ( Pinus radiata D. Don) is one of the most widely planted exotic pine species in rainfall environments of the Southern hemisphere (Yan et al. 2006). Its fast growth has stimulated an exhaustive study of wood production, and the development of breeding programs (Espinel et al. 1995; Codesido and Fernández-López 2009). Although utility of in vitro organogenesis has been proven for clonal propagation of this species (Aitken-Christie et al. 1985), a limitation of this method is the high cost of the process for mass production commercially.

Notes

Acknowledgements

This research was funded by MINECO (Spanish Government) project (AGL2013-4700-C4-2R; AGL2016-76143-C4-3R) and DECO (Basque Government). Thanks to CYTED (Programa iberoamericano de Ciencia y Tecnología para el desarrollo) for founding BIOALI net and make possible the establishment of successful international collaborations.

References

  1. Aitken-Christie J, Singh AP, Davies H (1988) Multiplication of meristematic tissue: a new tissue culture system for radiata pine. In: Hanover JW, Keathley DE (eds) Genetic manipulation of woody plants. Plenum Publishing Corp, New York, pp 413–432CrossRefGoogle Scholar
  2. Aitken-Christie J, Singh AP, Horgan KJ, Thorpe T (1985) Explant developmental state and shoot formation in Pinus radiata cotyledons. Bot Gaz 146:190–203CrossRefGoogle Scholar
  3. Aquea F, Arce-Johnson P (2008) Identification of genes expressed during early somatic embryogenesis in Pinus radiata. Plant Physiol Biochem 46(5–6):559–568CrossRefPubMedGoogle Scholar
  4. Arakawa T, Carpenter JF, Kita YA, Crowe JH (1990) The basis for toxicity of certain cryoprotectans-a hypothesis. Cryobiol 27:401–415CrossRefGoogle Scholar
  5. Barra-Jiménez A, Aronen TS, Alegre J, Toribio M (2015) Cryopreservation of embryogenic tissues from mature holm oak trees. Cryobiol 70(3):217–225CrossRefGoogle Scholar
  6. Bomal C, Tremblay FM (2000) Dried cryopreserved somatic embryos of two Picea species provide suitable material for direct plantlet regeneration and germplasm storage. Ann Bot 86:177–183CrossRefGoogle Scholar
  7. Breton D, Harvengt L, Trontin JF, Bouvet A, Favre JM (2006) Long-term subculture randomly affects morphology and subsequent maturation of early somatic embryos in maritime pine. Plant Cell Tiss Org Cult 87:95–108CrossRefGoogle Scholar
  8. Codesido V, Fernández-López J (2009) Juvenile radiata pine clonal seed orchard management in Galicia (NW Spain). Eur J For Res 133(1):177–190CrossRefGoogle Scholar
  9. Espinel S, Aragonés A, Ritter E (1995) Performance of different provenances and of the local-population of the Monterrey pine (Pinus radiata D.-Don) in Northern Spain. Ann Sci For 52(5):515–519CrossRefGoogle Scholar
  10. Fehér A (2015) Somatic embryogenesis—stress-induced remodeling of plant cell fate. Biochim Biophys Acta 1849:385–402CrossRefPubMedGoogle Scholar
  11. Gale S, John A, Benson EE (2007) Cryopreservation of Picea sitchensis (sitka spruce) embryogenic suspensor masses. Cryo Lett. 28:225–239Google Scholar
  12. García-Mendiguren O, Montalbán IA, Goicoa T, Ugarte MD, Moncaleán P (2016) Environmental conditions at the initial stages of Pinus radiata somatic embryogenesis affect the production of somatic embryos. Trees-Struct Funct 30(3):949–958CrossRefGoogle Scholar
  13. García-Mendiguren O, Montalbán IA, Stewart D, Klimaszewska K, Moncaleán P, Rutledge B (2015) Gene expression profiling of shoot-derived calli from adult radiata pine and zygotic embryo-derived embryonal masses. PLoS ONE 10–6:1–19Google Scholar
  14. Hargreaves CL, Grace LJ, Holden DG (2002) Nurse culture for efficient recovery of cryopreserved Pinus radiata D. Don embryogenic cell lines. Plant Cell Rep 21:40–45CrossRefGoogle Scholar
  15. Hargreaves C, Grace L, van der Mass S, Reeves C, Holden G, Menzies M, Kumar S, Foggo M (2004) Cryopreservation of Pinus radiata zygotic embryo cotyledons: effect of storage duration on adventitious shoot formation and plant growth after 2 years in the field. Can J For Res 34(3):600–608CrossRefGoogle Scholar
  16. Hargreaves CL, Reeves CB, Find JI, Gough K, Josekutty P, Skudder DB, Van der Maas SA, Sigley MR, Menzies MI, Low CB, Mullin TJ (2009) Improving initiation, genotype capture, and family representation in somatic embryogenesis of Pinus radiata by a combination of zygotic embryo maturity, media, and explant preparation. Can J For Res 39:1566–1574CrossRefGoogle Scholar
  17. Krajnakova J, Sutela S, Aronen T, Gomory D, Vianello A, Haggman H (2011) Long-term cryopreservation of Greek fir embryogenic cell lines: Recovery, maturation and genetic fidelity. Cryobiol 63:17–25CrossRefGoogle Scholar
  18. Klimaszewska K, Bernier-Cardou M, Cyr DR, Sutton BCS (2000) Influence of gelling agents on culture medium gel strength, water availability, tissue water potential, and maturation response in embryogenic cultures of Pinus strobus L. In Vitro Cell Dev Biol Plant 36:279–286CrossRefGoogle Scholar
  19. Kong L, von Aderkas P (2011) A novel method of cryopreservation without a cryoprotectant for immature somatic embryos of conifer. Plant Cell Tiss Org Cult 206(1):115–125CrossRefGoogle Scholar
  20. Kvaalen H, Johnsen O (2007) Timing of bud set in Picea abies is regulated by a memory of temperature during zygotic and somatic embryogenesis. New Phytol 177:49–59PubMedGoogle Scholar
  21. Lelu-Walter MA, Bernier-Cardou M, Klimaszewska K (2008) Clonal plant production from self- and cross-pollinated seed families of Pinus sylvestris (L.) through somatic embryogenesis. Plant Cell Tiss Org Cult 92:31–45CrossRefGoogle Scholar
  22. Montalbán IA, De Diego N, Moncaleán P (2010) Bottlenecks in Pinus radiata somatic embryogenesis: improving maturation and germination. Trees-Struct Funct 24:1061–1071CrossRefGoogle Scholar
  23. Montalbán IA, De Diego N, Moncaleán P (2012) Enhancing initiation and proliferation in radiata pine (Pinus radiata D. Don) somatic embryogenesis through seed family screening, zygotic embryo staging and media adjustments. Acta Physiol Plant 34:451–460CrossRefGoogle Scholar
  24. Montalbán IA, Novák O, Rolčik J, Strnad M, Moncaleán P (2013) Endogenous cytokinin and auxin profiles during in vitro organogenesis from vegetative buds of Pinus radiata adult trees. Physiol Plant 148:214–231CrossRefPubMedGoogle Scholar
  25. Montalbán IA, García-Mendiguren O, Goicoa T, Ugarte MD, Moncaleán P (2015) Cold storage of initial plant material affects positively somatic embryogenesis in Pinus radiata. New Forest 46:309–317CrossRefGoogle Scholar
  26. Morel A, Teyssier C, Trontin J-F, Eliášová K, Pešek B, Beaufour M, Morabito D, Boizot N, Le Metté C, Belal-Bessai L, Reymond I, Harvengt L, Cadene M, Corbineau F, Vágner M, Label P, Lelu- Walter M-A (2014) Early molecular events involved in Pinus pinaster Ait. somatic embryo development under reduced water availability: transcriptomic and proteomic analyses. Physiol Plant 152:184–201CrossRefPubMedGoogle Scholar
  27. Neilson KA, Gammulla CG, Mirzaei M, Imin N, Haynes PA (2010) Proteomic analysis of temperature stress in plants. Proteomics 10:828–845CrossRefPubMedGoogle Scholar
  28. Park YS (2002) Implementation of conifer somatic embryogenesis in clonal forestry: technical requirements and deployment considerations. Ann Forest Sci 59:651–656CrossRefGoogle Scholar
  29. Pullman GS, Gupta PK, Timmis R, Carpenter C, Kreitinger M, Welty E (2005) Improved Norway spruce somatic embryo development through the use of abscisic acid combined with activated carbon. Plant Cell Rep 24(5):271–279CrossRefPubMedGoogle Scholar
  30. Quoirin M, Lepoivre P (1977) Études des milieux adaptés aux cultures in vitro de Prunus. Acta Hort 78:437–442CrossRefGoogle Scholar
  31. Salaj T, Matusíková I, Swennen R, Panis B, Salaj J (2012) Long-term maintenance of Pinus nigra embryogenic cultures through cryopreservation. Acta Physiol Plant 34:227–233CrossRefGoogle Scholar
  32. Smith DR, Walter C, Warr AA, Hargreaves CL, Grace LJ (1994) Somatic embryogenesis joins the plantation forestry revolution in New Zealand. In: Biological sciences symposium, TAPPI Proceedings, Minneapolis, USA, pp 19–29Google Scholar
  33. Teyssier C, Grondin C, Bonhomme L, Lomenech AM, Vallance M, Morabito D, Label P, Lelu-Walter MA (2011) Increased gelling agent concentration promotes somatic embryo maturation in hybrid larch (Larix X eurolepsis): a 2-DE proteomic analysis. Physiol Plant 141:152–165CrossRefPubMedGoogle Scholar
  34. Von Aderkas P, Bonga JM (2000) Influencing micropropagation and somatic embryogenesis in mature trees by manipulation of phase change, stress and culture environment. Tree Physiol 20:921–928CrossRefGoogle Scholar
  35. Walter C, Find JI, Grace LJ (2005) Somatic embryogenesis and genetic transformation in Pinus radiata. In: Jain SM, Gupta PK (eds), Protocol for somatic embryogenesis in woody plants. Forestry sciences, vol 77. Springer, Dordrecht, pp 491–504Google Scholar
  36. Yan H, Bi HQ, Li RW, Eldridge R, Wu ZX, Li Y, Simpson J (2006) Assessing climatic suitability of Pinus radiata (D. Don) for summer rainfall environment of southwest China. Forest Ecol Manag 234(1–3):199–208CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Plant ProductionCentro de Arkaute, Neiker-TecnaliaVitoria-GasteizSpain

Personalised recommendations