What Is the Optimal Sedative Regimen in Severe Traumatic Brain Injury Patients?

  • Bradley A. BoucherEmail author


Sedatives play an important role in the management of severe traumatic brain injury (TBI) patients. Unfortunately, no ideal sedative is available for use in this critically ill patient subset. Therefore, selection of one agent over another is based on differential effects of the available agents on cerebral and systemic hemodynamics, as well as their comparative pharmacokinetic properties and side effect profiles. Despite a large number of undesirable side effects, including possible neurotoxicity, propofol remains the agent of choice for short-term sedation in TBI patients because of its rapid onset and offset. Benzodiazepines also play a role in the sedation of TBI patients, with midazolam being the most commonly used due to its short-acting properties. Nonetheless, concerns with the delirium development and prolonged effects with increasing duration of benzodiazepine use undoubtedly diminish their utility in severe TBI patients. Opiate narcotics including morphine, fentanyl, sufentanil, and remifentanil continue to be important analgosedative agents in TBI patients. Barbiturate use in TBI patients is primarily limited to pentobarbital for the treatment of refractory intracranial hypertension. The anesthetic induction agents, etomidate and ketamine, have limited roles in TBI patients because of their side effects, although there is renewed interest in ketamine as a possible neuroprotective agent based on its unique sedative mechanism of action. Dexmedetomidine is the newest sedative in clinical use and has been proposed as a viable agent for select TBI patients. However, before usurping the dominant role of propofol as the sedative of choice in TBI patients, randomized comparative clinical trials are needed. Monitoring of pain, sedation, and delirium is challenging in the TBI patient although there are tools available for evaluation of pain and sedation in the unresponsive patient. While recommended for other critically ill patients, the risk of daily sedation interruption is of great concern in TBI patients, in particular, those patients with elevated intracranial pressure. Consideration of pharmacokinetic alterations in severe TBI patients is yet another challenge in optimally dosing sedatives in severe TBI patients.


Traumatic brain injury Pain Sedation Propofol Benzodiazepines Opiates Barbiturates Ketamine Dexmedetomidine Etomidate 


  1. 1.
    Oddo M, Crippa IA, Mehta S, Menon D, Payen JF, Taccone FS, et al. Optimizing sedation in patients with acute brain injury. Crit Care. 2016;20(1):128.CrossRefGoogle Scholar
  2. 2.
    Flower O, Hellings S. Sedation in traumatic brain injury. Emerg Med Int. 2012;2012:637171.CrossRefGoogle Scholar
  3. 3.
    Urwin SC, Menon DK. Comparative tolerability of sedative agents in head-injured adults. Drug Saf. 2004;27(2):107–33.CrossRefGoogle Scholar
  4. 4.
    Roberts DJ, Hall RI, Kramer AH, Robertson HL, Gallagher CN, Zygun DA. Sedation for critically ill adults with severe traumatic brain injury: a systematic review of randomized controlled trials. Crit Care Med. 2011;39(12):2743–51.CrossRefGoogle Scholar
  5. 5.
    Chesnut RM, Marshall LF, Klauber MR, Blunt BA, Baldwin N, Eisenberg HM, et al. The role of secondary brain injury in determining outcome from severe head injury. J Trauma. 1993;34(2):216–22.CrossRefGoogle Scholar
  6. 6.
    Roberts DJ, Haroon B, Hall RI. Sedation for critically ill or injured adults in the intensive care unit: a shifting paradigm. Drugs. 2012;72(14):1881–916.CrossRefGoogle Scholar
  7. 7.
    Meierkord H, Boon P, Engelsen B, Gocke K, Shorvon S, Tinuper P, et al. EFNS guideline on the management of status epilepticus in adults. Eur J Neurol. 2010;17(3):348–55.CrossRefGoogle Scholar
  8. 8.
    Devlin JW, Roberts RJ. Pharmacology of commonly used analgesics and sedatives in the ICU: benzodiazepines, propofol, and opioids. Crit Care Clin. 2009;25(3):431–49, vii.CrossRefGoogle Scholar
  9. 9.
    Corbett SM, Montoya ID, Moore FA. Propofol-related infusion syndrome in intensive care patients. Pharmacotherapy. 2008;28(2):250–8.CrossRefGoogle Scholar
  10. 10.
    Cremer OL, Moons KG, Bouman EA, Kruijswijk JE, de Smet AM, Kalkman CJ. Long-term propofol infusion and cardiac failure in adult head-injured patients. Lancet. 2001;357(9250):117–8.CrossRefGoogle Scholar
  11. 11.
    Dengler B, Garvin R, Seifi A. Can therapeutic hypothermia trigger propofol-related infusion syndrome? J Crit Care. 2015;30(4):823–4.CrossRefGoogle Scholar
  12. 12.
    Krajcova A, Waldauf P, Andel M, Duska F. Propofol infusion syndrome: a structured review of experimental studies and 153 published case reports. Crit Care. 2015;19:398.CrossRefGoogle Scholar
  13. 13.
    Sebastiani A, Granold M, Ditter A, Sebastiani P, Golz C, Pottker B, et al. Posttraumatic propofol neurotoxicity is mediated via the pro-brain-derived neurotrophic factor-p75 neurotrophin receptor pathway in adult mice. Crit Care Med. 2016;44(2):e70–82.CrossRefGoogle Scholar
  14. 14.
    Thal SC, Timaru-Kast R, Wilde F, Merk P, Johnson F, Frauenknecht K, et al. Propofol impairs neurogenesis and neurologic recovery and increases mortality rate in adult rats after traumatic brain injury. Crit Care Med. 2014;42(1):129–41.CrossRefGoogle Scholar
  15. 15.
    Sanders RD, Hussell T, Maze M. Sedation & immunomodulation. Crit Care Clin. 2009;25(3):551–70, ix.CrossRefGoogle Scholar
  16. 16.
    Li M, Zhang Y, Wu KS, Hu YH. Assessment of the effect of continuous sedation with mechanical ventilation on adrenal insufficiency in patients with traumatic brain injury. J Investig Med. 2016;64(3):752–8.CrossRefGoogle Scholar
  17. 17.
    Roberts DJ, Faris PD, Zygun DA. Propofol for severe traumatic brain injury. J Neurosurg. 2014;120(1):289–90.CrossRefGoogle Scholar
  18. 18.
    Brain Trauma Foundation, American Association of Neurological Surgeons, Congress of Neurological Surgeons, Joint Section on Neurotrauma and Critical Care, AANS/CNS, Bratton SL, et al. Guidelines for the management of severe traumatic brain injury. XI. Anesthetics, analgesics, and sedatives. J Neurotrauma. 2007;24(Suppl 1):S71–6.Google Scholar
  19. 19.
    Kelly DF, Goodale DB, Williams J, Herr DL, Chappell ET, Rosner MJ, et al. Propofol in the treatment of moderate and severe head injury: a randomized, prospective double-blinded pilot trial. J Neurosurg. 1999;90(6):1042–52.CrossRefGoogle Scholar
  20. 20.
    Barr J, Fraser GL, Puntillo K, Ely EW, Gelinas C, Dasta JF, et al. Clinical practice guidelines for the management of pain, agitation, and delirium in adult patients in the intensive care unit. Crit Care Med. 2013;41(1):263–306.CrossRefGoogle Scholar
  21. 21.
    Ouimet S, Kavanagh BP, Gottfried SB, Skrobik Y. Incidence, risk factors and consequences of ICU delirium. Intensive Care Med. 2007;33(1):66–73.CrossRefGoogle Scholar
  22. 22.
    Van Rompaey B, Elseviers MM, Schuurmans MJ, Shortridge-Baggett LM, Truijen S, Bossaert L. Risk factors for delirium in intensive care patients: a prospective cohort study. Crit Care. 2009;13(3):R77.CrossRefGoogle Scholar
  23. 23.
    Ely EW, Shintani A, Truman B, Speroff T, Gordon SM, Harrell FE Jr, et al. Delirium as a predictor of mortality in mechanically ventilated patients in the intensive care unit. JAMA. 2004;291(14):1753–62.CrossRefGoogle Scholar
  24. 24.
    Shehabi Y, Riker RR, Bokesch PM, Wisemandle W, Shintani A, Ely EW, et al. Delirium duration and mortality in lightly sedated, mechanically ventilated intensive care patients. Crit Care Med. 2010;38(12):2311–8.CrossRefGoogle Scholar
  25. 25.
    Jacobi J, Fraser GL, Coursin DB, Riker RR, Fontaine D, Wittbrodt ET, et al. Clinical practice guidelines for the sustained use of sedatives and analgesics in the critically ill adult. Crit Care Med. 2002;30(1):119–41.CrossRefGoogle Scholar
  26. 26.
    Mehta S, McCullagh I, Burry L. Current sedation practices: lessons learned from international surveys. Crit Care Clin. 2009;25(3):471–88, vii–viii.CrossRefGoogle Scholar
  27. 27.
    Karabinis A, Mandragos K, Stergiopoulos S, Komnos A, Soukup J, Speelberg B, et al. Safety and efficacy of analgesia-based sedation with remifentanil versus standard hypnotic-based regimens in intensive care unit patients with brain injuries: a randomised, controlled trial [isrctn50308308]. Crit Care. 2004;8(4):R268–80.CrossRefGoogle Scholar
  28. 28.
    Boucher BA, Wood GC. Acute management of the brain injury patient. In: DiPiro JT, Talbert RL, Yee GC, Matze GR, Wells BG, Posey LM, editors. Pharmacotherapy: a pathophysiologic approach. New York: McGraw-Hill; 2014. p. 895–909.Google Scholar
  29. 29.
    Marshall GT, James RF, Landman MP, O’Neill PJ, Cotton BA, Hansen EN, et al. Pentobarbital coma for refractory intra-cranial hypertension after severe traumatic brain injury: mortality predictions and one-year outcomes in 55 patients. J Trauma. 2010;69(2):275–83.CrossRefGoogle Scholar
  30. 30.
    Wang X, Ding X, Tong Y, Zong J, Zhao X, Ren H, et al. Ketamine does not increase intracranial pressure compared with opioids: meta-analysis of randomized controlled trials. J Anesth. 2014;28(6):821–7.CrossRefGoogle Scholar
  31. 31.
    Zeiler FA, Teitelbaum J, West M, Gillman LM. The ketamine effect on ICP in traumatic brain injury. Neurocrit Care. 2014;21(1):163–73.CrossRefGoogle Scholar
  32. 32.
    Filanovsky Y, Miller P, Kao J. Myth: ketamine should not be used as an induction agent for intubation in patients with head injury. CJEM. 2010;12(2):154–7.CrossRefGoogle Scholar
  33. 33.
    Himmelseher S, Durieux ME. Revising a dogma: ketamine for patients with neurological injury? Anesth Analg. 2005;101(2):524–34, table of contents.CrossRefGoogle Scholar
  34. 34.
    James ML, Olson DM, Graffagnino C. A pilot study of cerebral and haemodynamic physiological changes during sedation with dexmedetomidine or propofol in patients with acute brain injury. Anaesth Intensive Care. 2012;40(6):949–57.PubMedGoogle Scholar
  35. 35.
    Erdman MJ, Doepker BA, Gerlach AT, Phillips GS, Elijovich L, Jones GM. A comparison of severe hemodynamic disturbances between dexmedetomidine and propofol for sedation in neurocritical care patients. Crit Care Med. 2014;42(7):1696–702.CrossRefGoogle Scholar
  36. 36.
    Pajoumand M, Kufera JA, Bonds BW, Devabhakthuni S, Boswell S, Hesselton K, et al. Dexmedetomidine as an adjunct for sedation in patients with traumatic brain injury. J Trauma Acute Care Surg. 2016;81(2):345–51.CrossRefGoogle Scholar
  37. 37.
    Schoeler M, Loetscher PD, Rossaint R, Fahlenkamp AV, Eberhardt G, Rex S, et al. Dexmedetomidine is neuroprotective in an in vitro model for traumatic brain injury. BMC Neurol. 2012;12:20.CrossRefGoogle Scholar
  38. 38.
    Longrois D, Quintin L. Dexmedetomidine: superiority trials needed? Anaesth Crit Care Pain Med. 2016;35(3):237–8.CrossRefGoogle Scholar
  39. 39.
    Malerba G, Romano-Girard F, Cravoisy A, Dousset B, Nace L, Levy B, et al. Risk factors of relative adrenocortical deficiency in intensive care patients needing mechanical ventilation. Intensive Care Med. 2005;31(3):388–92.CrossRefGoogle Scholar
  40. 40.
    Riker RR, Fugate JE, Participants in the International Multi-disciplinary Consensus Conference on Multimodality Monitoring. Clinical monitoring scales in acute brain injury: assessment of coma, pain, agitation, and delirium. Neurocrit Care. 2014;21(Suppl 2):S27–37.CrossRefGoogle Scholar
  41. 41.
    Schnakers C, Chatelle C, Vanhaudenhuyse A, Majerus S, Ledoux D, Boly M, et al. The nociception coma scale: a new tool to assess nociception in disorders of consciousness. Pain. 2010;148(2):215–9.CrossRefGoogle Scholar
  42. 42.
    Chatelle C, Majerus S, Whyte J, Laureys S, Schnakers C. A sensitive scale to assess nociceptive pain in patients with disorders of consciousness. J Neurol Neurosurg Psychiatry. 2012;83(12):1233–7.CrossRefGoogle Scholar
  43. 43.
    Kollef MH, Levy NT, Ahrens TS, Schaiff R, Prentice D, Sherman G. The use of continuous i.v. sedation is associated with prolongation of mechanical ventilation. Chest. 1998;114(2):541–8.CrossRefGoogle Scholar
  44. 44.
    Kress JP, Pohlman AS, O’Connor MF, Hall JB. Daily interruption of sedative infusions in critically ill patients undergoing mechanical ventilation. N Engl J Med. 2000;342(20):1471–7.CrossRefGoogle Scholar
  45. 45.
    Mehta S, Burry L, Cook D, Fergusson D, Steinberg M, Granton J, et al. Daily sedation interruption in mechanically ventilated critically ill patients cared for with a sedation protocol: a randomized controlled trial. JAMA. 2012;308(19):1985–92.CrossRefGoogle Scholar
  46. 46.
    Skoglund K, Enblad P, Marklund N. Effects of the neurological wake-up test on intracranial pressure and cerebral perfusion pressure in brain-injured patients. Neurocrit Care. 2009;11(2):135–42.CrossRefGoogle Scholar
  47. 47.
    Helbok R, Kurtz P, Schmidt MJ, Stuart MR, Fernandez L, Connolly SE, et al. Effects of the neurological wake-up test on clinical examination, intracranial pressure, brain metabolism and brain tissue oxygenation in severely brain-injured patients. Crit Care. 2012;16(6):R226.CrossRefGoogle Scholar
  48. 48.
    Bergeron N, Dubois MJ, Dumont M, Dial S, Skrobik Y. Intensive care delirium screening checklist: evaluation of a new screening tool. Intensive Care Med. 2001;27(5):859–64.CrossRefGoogle Scholar
  49. 49.
    Yu A, Teitelbaum J, Scott J, Gesin G, Russell B, Huynh T, et al. Evaluating pain, sedation, and delirium in the neurologically critically ill-feasibility and reliability of standardized tools: a multi-institutional study. Crit Care Med. 2013;41(8):2002–7.CrossRefGoogle Scholar
  50. 50.
    Boucher BA, Wood GC, Swanson JM. Pharmacokinetic changes in critical illness. Crit Care Clin. 2006;22(2):255–71, vi.CrossRefGoogle Scholar
  51. 51.
    Boucher BA, Hanes SD. Pharmacokinetic alterations after severe head injury. Clinical relevance. Clin Pharmacokinet. 1998;35(3):209–21.CrossRefGoogle Scholar
  52. 52.
    Pugh RN, Murray-Lyon IM, Dawson JL, Pietroni MC, Williams R. Transection of the oesophagus for bleeding oesophageal varices. Br J Surg. 1973;60(8):646–9.CrossRefGoogle Scholar
  53. 53.
    Cockcroft DW, Gault MH. Prediction of creatinine clearance from serum creatinine. Nephron. 1976;16(1):31–41.CrossRefGoogle Scholar
  54. 54.
    Jelliffe RW, Jelliffe SM. A computer program for estimation of creatinine clearance from unstable creatinine concentration. Math Biosci. 1972;14:17–24.CrossRefGoogle Scholar
  55. 55.
    Heinemeyer G, Roots I, Dennhardt R. Monitoring of pentobarbital plasma levels in critical care patients suffering from increased intracranial pressure. Ther Drug Monit. 1986;8(2):145–50.CrossRefGoogle Scholar
  56. 56.
    Boucher BA, Kuhl DA, Fabian TC, Robertson JT. Effect of neurotrauma on hepatic drug clearance. Clin Pharmacol Ther. 1991;50(5 Pt 1):487–97.CrossRefGoogle Scholar
  57. 57.
    McKindley DS, Boucher BA, Hess MM, Rodman JH, Feler C, Fabian TC. Effect of acute phase response on phenytoin metabolism in neurotrauma patients. J Clin Pharmacol. 1997;37(2):129–39.CrossRefGoogle Scholar
  58. 58.
    Cohen M, Sadhasivam S, Vinks AA. Pharmacogenetics in perioperative medicine. Curr Opin Anaesthesiol. 2012;25(4):419–27.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Clinical Pharmacy and Translational Science, College of PharmacyUniversity of Tennessee Health Science CenterMemphisUSA

Personalised recommendations