Oxygen Management and Prevention of Cerebral Ischemia

  • Ashley Ralston
  • M. Ross BullockEmail author


In this chapter, we discuss the current practices, controversies, and current and future research concerning oxygen management of severe traumatic brain injury (TBI) patients in the intensive care unit (ICU). Prevention of secondary injuries is paramount to the care of TBI patients, so understanding the different mechanisms of secondary injury in TBI patients (including ischemia, mitochondrial damage, and free radical formation) will contribute to their prevention, with the ultimate goal of improving neurologic outcomes. Although many of the data regarding brain tissue oxygen monitoring and directed management are still controversial, different techniques and systems used for monitoring have been proven safe and potentially beneficial. Recent studies investigate the unique option of hyperbaric hyperoxia treatment for severely injured TBI patients, with promising early results.


Traumatic brain injury Oxygen monitoring Hyperbaric hyperoxia Mitochondrial damage Free oxygen radical generation Ischemia 


  1. 1.
    Gerber LM, Chiu YL, Carney N, Hartl R, Ghajar J. Marked reduction in mortality in patients with severe traumatic brain injury. J Neurosurg. 2013;119(6):1583–90.CrossRefGoogle Scholar
  2. 2.
    Lawrence T, Helmy A, Bouamra O, Woodford M, Lecky F, Hutchinson PJ. Traumatic brain injury in England and Wales: prospective audit of epidemiology, complications and standardised mortality. BMJ Open. 2016;6(11):e012197.CrossRefGoogle Scholar
  3. 3.
    Corrigan F, Mander KA, Leonard AV, Vink R. Neurogenic inflammation after traumatic brain injury and its potentiation of classical inflammation. J Neuroinflammation. 2016;13(1):264.CrossRefGoogle Scholar
  4. 4.
    Yonutas HM, Vekaria HJ, Sullivan PG. Mitochondrial specific therapeutic targets following brain injury. Brain Res. 2016;1640(Pt A):77–93.CrossRefGoogle Scholar
  5. 5.
    Diringer MN, Aiyagari V, Zazulia AR, Videen TO, Powers WJ. Effect of hyperoxia on cerebral metabolic rate for oxygen measured using positron emission tomography in patients with acute severe head injury. J Neurosurg. 2007;106(4):526–9.CrossRefGoogle Scholar
  6. 6.
    Diringer MN. Hyperoxia: good or bad for the injured brain? Curr Opin Crit Care. 2008;14(2):167–71.CrossRefGoogle Scholar
  7. 7.
    Lin CM, Lin MC, Huang SJ, Chang CK, Chao DP, Lui TN, et al. A prospective randomized study of brain tissue oxygen pressure-guided management in moderate and severe traumatic brain injury patients. Biomed Res Int. 2015;2015:529580.PubMedPubMedCentralGoogle Scholar
  8. 8.
    Valadka AB, Gopinath SP, Contant CF, Uzura M, Robertson CS. Relationship of brain tissue po2 to outcome after severe head injury. Crit Care Med. 1998;26(9):1576–81.CrossRefGoogle Scholar
  9. 9.
    Carney N, Totten AM, O’Reilly C, Ullman JS, Hawryluk GW, Bell MJ, et al. Guidelines for the management of severe traumatic brain injury, fourth edition. Neurosurgery. 2016;80(1):6–15.Google Scholar
  10. 10.
    Haddad SH, Arabi YM. Critical care management of severe traumatic brain injury in adults. Scand J Trauma Resusc Emerg Med. 2012;20:12.CrossRefGoogle Scholar
  11. 11.
    Jallo J, Loftus CM. Neurotrauma and critical care of the brain. New York: Thieme; 2009.CrossRefGoogle Scholar
  12. 12.
    Demchenko IT, Welty-Wolf KE, Allen BW, Piantadosi CA. Similar but not the same: normobaric and hyperbaric pulmonary oxygen toxicity, the role of nitric oxide. Am J Physiol Lung Cell Mol Physiol. 2007;293(1):L229–38.CrossRefGoogle Scholar
  13. 13.
    Schaal S, Beiran I, Rubinstein I, Miller B, Dovrat A. Lenticular oxygen toxicity. Invest Ophthalmol Vis Sci. 2003;44(8):3476–84.CrossRefGoogle Scholar
  14. 14.
    Rincon F, Kang J, Vibbert M, Urtecho J, Athar MK, Jallo J. Significance of arterial hyperoxia and relationship with case fatality in traumatic brain injury: a multicentre cohort study. J Neurol Neurosurg Psychiatry. 2014;85(7):799–805.CrossRefGoogle Scholar
  15. 15.
    Wang CH, Huang CH, Chang WT, Tsai MS, Lu TC, Yu PH, et al. Association between early arterial blood gas tensions and neurological outcome in adult patients following in-hospital cardiac arrest. Resuscitation. 2015;89:1–7.CrossRefGoogle Scholar
  16. 16.
    Plafki C, Peters P, Almeling M, Welslau W, Busch R. Complications and side effects of hyperbaric oxygen therapy. Aviat Space Environ Med. 2000;71(2):119–24.PubMedGoogle Scholar
  17. 17.
    Menzel M, Doppenberg EM, Zauner A, Soukup J, Reinert MM, Bullock R. Increased inspired oxygen concentration as a factor in improved brain tissue oxygenation and tissue lactate levels after severe human head injury. J Neurosurg. 1999;91(1):1–10.CrossRefGoogle Scholar
  18. 18.
    Magnoni S, Ghisoni L, Locatelli M, Caimi M, Colombo A, Valeriani V, et al. Lack of improvement in cerebral metabolism after hyperoxia in severe head injury: a microdialysis study. J Neurosurg. 2003;98(5):952–8.CrossRefGoogle Scholar
  19. 19.
    Figaji AA, Fieggen AG, Argent AC, Leroux PD, Peter JC. Does adherence to treatment targets in children with severe traumatic brain injury avoid brain hypoxia? A brain tissue oxygenation study. Neurosurgery. 2008;63(1):83–91; discussion 91–82.CrossRefGoogle Scholar
  20. 20.
    Longhi L, Pagan F, Valeriani V, Magnoni S, Zanier ER, Conte V, et al. Monitoring brain tissue oxygen tension in brain-injured patients reveals hypoxic episodes in normal-appearing and in peri-focal tissue. Intensive Care Med. 2007;33(12):2136–42.CrossRefGoogle Scholar
  21. 21.
    Hlatky R, Valadka AB, Goodman JC, Contant CF, Robertson CS. Patterns of energy substrates during ischemia measured in the brain by microdialysis. J Neurotrauma. 2004;21(7):894–906.CrossRefGoogle Scholar
  22. 22.
    Stahl N, Mellergard P, Hallstrom A, Ungerstedt U, Nordstrom CH. Intracerebral microdialysis and bedside biochemical analysis in patients with fatal traumatic brain lesions. Acta Anaesthesiol Scand. 2001;45(8):977–85.CrossRefGoogle Scholar
  23. 23.
    Nordstrom CH, Nielsen TH, Schalen W, Reinstrup P, Ungerstedt U. Biochemical indications of cerebral ischaemia and mitochondrial dysfunction in severe brain trauma analysed with regard to type of lesion. Acta Neurochir. 2016;158(7):1231–40.CrossRefGoogle Scholar
  24. 24.
    Magnoni S, Mac Donald CL, Esparza TJ, Conte V, Sorrell J, Macri M, et al. Quantitative assessments of traumatic axonal injury in human brain: concordance of microdialysis and advanced MRI. Brain. 2015;138(Pt 8):2263–77.CrossRefGoogle Scholar
  25. 25.
    Vespa P, Bergsneider M, Hattori N, Wu HM, Huang SC, Martin NA, et al. Metabolic crisis without brain ischemia is common after traumatic brain injury: a combined microdialysis and positron emission tomography study. J Cereb Blood Flow Metab. 2005;25(6):763–74.CrossRefGoogle Scholar
  26. 26.
    Bergsneider M, Hovda DA, Shalmon E, Kelly DF, Vespa PM, Martin NA, et al. Cerebral hyperglycolysis following severe traumatic brain injury in humans: a positron emission tomography study. J Neurosurg. 1997;86(2):241–51.CrossRefGoogle Scholar
  27. 27.
    Glenn TC, Kelly DF, Boscardin WJ, McArthur DL, Vespa P, Oertel M, et al. Energy dysfunction as a predictor of outcome after moderate or severe head injury: indices of oxygen, glucose, and lactate metabolism. J Cereb Blood Flow Metab. 2003;23(10):1239–50.CrossRefGoogle Scholar
  28. 28.
    Tolias CM, Kumaria A, Bullock MR. Hyperoxia and traumatic brain injury. J Neurosurg. 2009;110(3):607–9; author reply 609–611.CrossRefGoogle Scholar
  29. 29.
    Kubas B, Lebkowski W, Lebkowska U, Kulak W, Tarasow E, Walecki J. Proton MR spectroscopy in mild traumatic brain injury. Pol J Radiol. 2010;75(4):7–10.PubMedPubMedCentralGoogle Scholar
  30. 30.
    Horska A, Barker PB. Imaging of brain tumors: MR spectroscopy and metabolic imaging. Neuroimaging Clin N Am. 2010;20(3):293–310.CrossRefGoogle Scholar
  31. 31.
    Ghosh A, Highton D, Kolyva C, Tachtsidis I, Elwell CE, Smith M. Hyperoxia results in increased aerobic metabolism following acute brain injury. J Cereb Blood Flow Metab. 2016;37(8):2910–20.CrossRefGoogle Scholar
  32. 32.
    Coles JP, Fryer TD, Smielewski P, Rice K, Clark JC, Pickard JD, et al. Defining ischemic burden after traumatic brain injury using 15O pet imaging of cerebral physiology. J Cereb Blood Flow Metab. 2004;24(2):191–201.CrossRefGoogle Scholar
  33. 33.
    Newcombe VF, Williams GB, Outtrim JG, Chatfield D, Gulia Abate M, Geeraerts T, et al. Microstructural basis of contusion expansion in traumatic brain injury: insights from diffusion tensor imaging. J Cereb Blood Flow Metab. 2013;33(6):855–62.CrossRefGoogle Scholar
  34. 34.
    Nortje J, Coles JP, Timofeev I, Fryer TD, Aigbirhio FI, Smielewski P, et al. Effect of hyperoxia on regional oxygenation and metabolism after severe traumatic brain injury: preliminary findings. Crit Care Med. 2008;36(1):273–81.CrossRefGoogle Scholar
  35. 35.
    Liu S, Liu Y, Deng S, Guo A, Wang X, Shen G. Beneficial effects of hyperbaric oxygen on edema in rat hippocampus following traumatic brain injury. Exp Brain Res. 2015;233(12):3359–65.CrossRefGoogle Scholar
  36. 36.
    Zhou Z, Daugherty WP, Sun D, Levasseur JE, Altememi N, Hamm RJ, et al. Protection of mitochondrial function and improvement in cognitive recovery in rats treated with hyperbaric oxygen following lateral fluid-percussion injury. J Neurosurg. 2007;106(4):687–94.CrossRefGoogle Scholar
  37. 37.
    Meng XE, Zhang Y, Li N, Fan DF, Yang C, Li H, et al. Hyperbaric oxygen alleviates secondary brain injury after trauma through inhibition of Tlr4/nf-kappab signaling pathway. Med Sci Monit. 2016;22:284–8.CrossRefGoogle Scholar
  38. 38.
    Micarelli A, Jacobsson H, Larsson SA, Jonsson C, Pagani M. Neurobiological insight into hyperbaric hyperoxia. Acta Physiol (Oxf). 2013;209(1):69–76.CrossRefGoogle Scholar
  39. 39.
    Rockswold SB, Rockswold GL, Zaun DA, Zhang X, Cerra CE, Bergman TA, et al. A prospective, randomized clinical trial to compare the effect of hyperbaric to normobaric hyperoxia on cerebral metabolism, intracranial pressure, and oxygen toxicity in severe traumatic brain injury. J Neurosurg. 2010;112(5):1080–94.CrossRefGoogle Scholar
  40. 40.
    Rockswold SB, Rockswold GL, Zaun DA, Liu J. A prospective, randomized phase ii clinical trial to evaluate the effect of combined hyperbaric and normobaric hyperoxia on cerebral metabolism, intracranial pressure, oxygen toxicity, and clinical outcome in severe traumatic brain injury. J Neurosurg. 2013;118(6):1317–28.CrossRefGoogle Scholar
  41. 41.
    Graham DI, Ford I, Adams JH, Doyle D, Teasdale GM, Lawrence AE, et al. Ischaemic brain damage is still common in fatal non-missile head injury. J Neurol Neurosurg Psychiatry. 1989;52(3):346–50.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of NeurosurgeryUniversity of Miami-Miller School of MedicineMiamiUSA

Personalised recommendations