From Cooling to Exhumation: Setting the Reference Frame for the Interpretation of Thermochronologic Data

  • Marco G. MalusàEmail author
  • Paul G. Fitzgerald
Part of the Springer Textbooks in Earth Sciences, Geography and Environment book series (STEGE)


The reference frame for the interpretation of fission-track (FT) data is a thermal reference frame. Using thermochronology to constrain exhumation largely depends on understanding the linkage between this reference frame and Earth’s surface. The thermal frame of reference is dynamic, that is it is often neither stationary nor horizontal, as it is influenced by the shape of the topography, heat advection associated with rapid exhumation and mass redistribution across major faults. Here, we review the nomenclature and basic relationships related to cooling, uplift and exhumation and describe strategies to independently constrain the paleogeothermal gradient at the time of exhumation. In some cases, cooling may not be related to exhumation, but can be used instead to constrain the thermal evolution of the upper crust and the emplacement depth of magmatic rocks. In general terms, useful constraints on exhumation are often only directly provided by thermochronologic ages that are set during undisturbed exhumational cooling across the closure temperature isothermal surface. Thermochronologic ages from minerals crystallised at temperatures less than the closure temperature, e.g. in volcanic rocks and shallow intrusions, provide no direct constraint on exhumation.



This work benefited from insightful reviews by Phil Armstrong and Kurt Stüwe, and from comments by Suzanne Baldwin and students from Syracuse University.


  1. Agliardi F, Crosta GB, Frattini P, Malusà MG (2013) Giant non-catastrophic landslides and the long-term exhumation of the European Alps. Earth Planet Sci Lett 365:263–274CrossRefGoogle Scholar
  2. Allen PA, Allen JR (2005) Basin analysis: principles and applications. Blackwell, LondonGoogle Scholar
  3. Armstrong PA, Ehlers TA, Chapman DS et al (2003) Exhumation of the central Wasatch Mountains, Utah: 1. Patterns and timing of exhumation deduced from low‐temperature thermochronology data. J Geophys Res-Sol Ea 108(B3)Google Scholar
  4. Armstrong PA (2005) Thermochronometers in sedimentary basins. Rev Mineral Geochem 58(1):499–525CrossRefGoogle Scholar
  5. Asti R, Malusà MG, Faccenna C (2018) Supradetachment basin evolution unraveled by detrital apatite fission track analysis: the Gediz Graben (Menderes Massif, Western Turkey). Basin Res 30:502–521CrossRefGoogle Scholar
  6. Baldwin SL, Lister GS (1998) Thermochronology of the South Cyclades Shear Zone, Ios, Greece: Effects of ductile shear in the argon partial retention zone. J Geophys Res-Sol Ea 103(B4):7315–7336CrossRefGoogle Scholar
  7. Baldwin SL, Fitzgerald PG, Malusà MG (2018) Chapter 13. Crustal exhumation of plutonic and metamorphic rocks: constraints from fission-track thermochronology. In: Malusà MG, Fitzgerald PG (eds) Fission-track thermochronology and its application to geology. Springer, BerlinGoogle Scholar
  8. Bernet M, Garver JI (2005) Fission-track analysis of detrital zircon. Rev Mineral Geochem 58(1):205–237CrossRefGoogle Scholar
  9. Bernet M, van der Beek P, Pik R, Huyghe P, Mugnier JL, Labrin E, Szulc A (2006) Miocene to recent exhumation of the central Himalaya determined from combined detrital zircon fission-track and U/Pb analysis of Siwalik sediments, western Nepal. Basin Res 18(4):393–412CrossRefGoogle Scholar
  10. Blackwell D, Steele J, Brott C (1989) Heat flow in the Pacific Northwest. In: Touloukian Y, Judd W, Roy R (eds) Physical properties of rocks and minerals. McGraw-Hill, New York, pp 495–502Google Scholar
  11. Blisniuk PM, Stern LA (2005) Stable isotope paleoaltimetry: a critical review. Am J Sci 305(10):1033–1074CrossRefGoogle Scholar
  12. Braun J (2002) Quantifying the effect of recent relief changes on age–elevation relationships. Earth Planet Sci Lett 200(3):331–343CrossRefGoogle Scholar
  13. Braun J (2016) Strong imprint of past orogenic events on the thermochronological record. Tectonophysics 683:325–332CrossRefGoogle Scholar
  14. Braun J, van der Beek P, Batt G (2006) Quantitative thermochronology: numerical methods for the interpretation of thermochronological data. Cambridge University Press, CambridgeGoogle Scholar
  15. Braun J, Stippich C, Glasmacher UA (2016) The effect of variability in rock thermal conductivity on exhumation rate estimates from thermochronological data. Tectonophysics 690:288–297CrossRefGoogle Scholar
  16. Bray RJ, Green PF, Duddy IR (1992) Thermal history reconstruction using apatite fission track analysis and vitrinite reflectance: a case study from the UK East Midlands and Southern North Sea. In: Hardman RFP (ed) Exploration Britain: geological insights for the next decade. Geol Soc, pp 3–25CrossRefGoogle Scholar
  17. Brown RW (1991) Backstacking apatite fission-track” stratigraphy”: a method for resolving the erosional and isostatic rebound components of tectonic uplift histories. Geology 19(1):74–77CrossRefGoogle Scholar
  18. Brown RW, Rust DJ, Summerfield MA, Gleadow AJ, De Wit MC (1990) An Early Cretaceous phase of accelerated erosion on the south-western margin of Africa: evidence from apatite fission track analysis and the offshore sedimentary record. Int J Rad Appl Instr, Part D, Nucl Tracks Rad Meas 17(3):339–350CrossRefGoogle Scholar
  19. Brun JP, Faccenna C (2008) Exhumation of high-pressure rocks driven by slab rollback. Earth Planet Sci Lett 272:1–7CrossRefGoogle Scholar
  20. Burbank DW (2002) Rates of erosion and their implications for exhumation. Mineral Mag 66(1):25–52CrossRefGoogle Scholar
  21. Burbank DW, Anderson RS (2001) Tectonic geomorphology. Wiley, New YorkGoogle Scholar
  22. Burbank DW, Leland J, Fielding E, Anderson RS, Brozovic N, Reid MR, Duncan C (1996) Bedrock incision, rock uplift and threshold hillslopes in the northwestern Himalayas. Nature 379(6565):505–510CrossRefGoogle Scholar
  23. Burtner RL, Negrini A (1994) Thermochronology of the Idaho-Wyoming thrust belt during the Sevier Orogeny: a new, calibrated, multiprocess model. Am Assoc Petrol Geol Bull 78:1586–1612Google Scholar
  24. Calk LC, Naeser CW (1973) The thermal effect of a basalt intrusion on fission tracks in quartz monzonite. J Geol 81(2):189–198CrossRefGoogle Scholar
  25. Carrapa B, Wijbrans J, Bertotti G (2003) Episodic exhumation in the Western Alps. Geology 31(7):601–604CrossRefGoogle Scholar
  26. Cavazza W, Zattin M, Ventura B, Zuffa GG (2001) Apatite fission-track analysis of Neogene exhumation in northern Corsica (France). Terra Nova 13(1):51–57CrossRefGoogle Scholar
  27. Chapman DS (1986) Thermal gradients in the continental crust. Geol Soc London Spec Publ 24(1):63–70CrossRefGoogle Scholar
  28. Corcoran DV, Doré AG (2005) A review of techniques for the estimation of magnitude and timing of exhumation in offshore basins. Earth-Sci Rev 72(3):129–168CrossRefGoogle Scholar
  29. Cox SF (2010) The application of failure mode diagrams for exploring the roles of fluid pressure and stress states in controlling styles of fracture-controlled permeability enhancement in faults and shear zones. Geofluids 10:217–233Google Scholar
  30. Dahl PS (1997) A crystal-chemical basis for Pb retention and fission-track annealing systematics in U-bearing minerals, with implications for geochronology. Earth Planet Sci Lett 150(3):277–290CrossRefGoogle Scholar
  31. Danišík M, Kuhlemann J, Dunkl I, Székely B, Frisch W (2007) Burial and exhumation of Corsica (France) in the light of fission track data. Tectonics 26(1)Google Scholar
  32. Danišík M, Kuhlemann J, Dunkl I, Evans NJ, Székely B, Frisch W (2012) Survival of ancient landforms in a collisional setting as revealed by combined fission track and (U-Th)/He thermochronometry: a case study from Corsica (France). J Geol 120(2):155–173CrossRefGoogle Scholar
  33. Di Vincenzo G, Viti C, Rocchi S (2003) The effect of chlorite interlayering on 40Ar–39Ar biotite dating: an 40Ar–39Ar laser-probe and TEM investigations of variably chloritised biotites. Contrib Mineral Petr 145:643–658CrossRefGoogle Scholar
  34. Dodson MH (1973) Closure temperature in cooling geochronological and petrological systems. Contrib Mineral Petr 40(3):259–274CrossRefGoogle Scholar
  35. Ehlers TA (2005) Crustal thermal processes and the interpretation of thermochronometer data. Rev Mineral Geochem 58(1):315–350CrossRefGoogle Scholar
  36. Ehlers TA, Chapman DS (1999) Normal fault thermal regimes: conductive and hydrothermal heat transfer surrounding the Wasatch fault, Utah. Tectonophysics 312(2):217–234CrossRefGoogle Scholar
  37. Ehlers TA, Farley KA (2003) Apatite (U-Th)/He thermochronometry: methods and applications to problems in tectonic and surface processes. Earth Planet Sci Lett 206:1–14CrossRefGoogle Scholar
  38. Ehlers TA, Willett SD, Armstrong PA, Chapman DS (2003) Exhumation of the central Wasatch Mountains, Utah: 2. Thermokinematic model of exhumation, erosion, and thermochronometer interpretation. J Geophys Res-Sol Ea 108(B3)Google Scholar
  39. Ehlers TA, Chaudhri T, Kumar S, Fuller CW, Willett SD, Ketcham RA, Dunai TJ (2005) Computational tools for low-temperature thermochronometer interpretation. Rev Mineral Geochem 58(1):589–622CrossRefGoogle Scholar
  40. England P, Molnar P (1990) Surface uplift, uplift of rocks, and exhumation of rocks. Geology 18(12):1173–1177CrossRefGoogle Scholar
  41. Fellin MG, Picotti V, Zattin M (2005) Neogene to Quaternary rifting and inversion in Corsica: retreat and collision in the western Mediterranean. Tectonics 24(1)CrossRefGoogle Scholar
  42. Fellin MG, Vance JA, Garver JI, Zattin M (2006) The thermal evolution of Corsica as recorded by zircon fission-tracks. Tectonophysics 421(3):299–317CrossRefGoogle Scholar
  43. Fitzgerald PG (1992) The Transantarctic Mountains of southern Victoria Land: the application of apatite fission track analysis to a rift shoulder uplift. Tectonics 11(3):634–662CrossRefGoogle Scholar
  44. Fitzgerald PG (1994) Thermochronologic constraints on post-Paleozoic tectonic evolution of the central Transantarctic Mountains, Antarctica. Tectonics 13(4):818–836CrossRefGoogle Scholar
  45. Fitzgerald PG (2002) Tectonics and landscape evolution of the Antarctic plate since the breakup of Gondwana, with an emphasis on the West Antarctic Rift System and the Transantarctic Mountains. Roy Soc NZ Bull 35:453–469Google Scholar
  46. Fitzgerald PG, Gleadow AJ (1988) Fission-track geochronology, tectonics and structure of the Transantarctic Mountains in northern Victoria Land, Antarctica. Chem Geol 73(2):169–198Google Scholar
  47. Fitzgerald PG, Malusà MG (2018) Chapter 9. Concept of the exhumed partial annealing (retention) zone and age-elevation profiles in thermochronology. In: Malusà MG, Fitzgerald PG (eds) Fission-track thermochronology and its application to geology. Springer, BerlinGoogle Scholar
  48. Fitzgerald PG, Stump E, Redfield TF (1993) Late Cenozoic uplift of Denali and its relation to relative plate motion and fault morphology. Science 259(5094):497–499CrossRefGoogle Scholar
  49. Fitzgerald PG, Sorkhabi RB, Redfield TF, Stump E (1995) Uplift and denudation of the central Alaska Range: a case study in the use of apatite fission track thermochronology to determine absolute uplift parameters. J Geophys Res-Sol Ea 100(B10):20175–20191CrossRefGoogle Scholar
  50. Fitzgerald PG, Baldwin SL, Webb LE, O’Sullivan PB (2006) Interpretation of (U–Th)/He single grain ages from slowly cooled crustal terranes: a case study from the Transantarctic Mountains of southern Victoria Land. Chem Geol 225(1):91–120CrossRefGoogle Scholar
  51. Fitzgerald PG, Duebendorfer EM, Faulds JE, O’Sullivan PB (2009) South Virgin–White Hills detachment fault system of SE Nevada and NW Arizona: applying apatite fission track thermochronology to constrain the tectonic evolution of a major continental detachment fault. Tectonics 28, Scholar
  52. Fleischer RL, Price PB, Walker RM (1975) Nuclear tracks in solids: principles and applications. University of California PressGoogle Scholar
  53. Flowers RM, Ketcham RA, Shuster DL, Farley KA (2009) Apatite (U–Th)/He thermochronometry using a radiation damage accumulation and annealing model. Geochim Cosmochim Ac 73(8):2347–2365CrossRefGoogle Scholar
  54. Foeken J, Persano C, Stuart FM, Ter Voorde M (2007) Role of topography in isotherm perturbation: Apatite (U‐Th)/He and fission track results from the Malta tunnel, Tauern Window, Austria. Tectonics 26(3).
  55. Foster DA, John BE (1999) Quantifying tectonic exhumation in an extensional orogen with thermochronology: examples from the southern Basin and Range Province. Geol Soc London Spec Publ 154(1):343–364CrossRefGoogle Scholar
  56. Foster DA, Gleadow AJ, Reynolds SJ, Fitzgerald PG (1993) Denudation of metamorphic core complexes and the reconstruction of the transition zone, west central Arizona: constraints from apatite fission track thermochronology. J Geophys Res-Sol Ea 98:2167–2185CrossRefGoogle Scholar
  57. Gallagher K, Brown R (1997) The onshore record of passive margin evolution. J Geol Soc London 154(3):451–457CrossRefGoogle Scholar
  58. Gallagher K, Hawkesworth CJ, Mantovani MSM (1994) The denudation history of the onshore continental margin of SE Brazil inferred from apatite fission track data. J Geophys Res-Sol Ea 99:18117–18145CrossRefGoogle Scholar
  59. Gallagher K, Stephenson J, Brown R, Holmes C, Fitzgerald PG (2005) Low temperature thermochronology and modeling strategies for multiple samples 1: vertical profiles. Earth Planet Sci Lett 237:193–208CrossRefGoogle Scholar
  60. Gautheron C, Tassan-Got L, Barbarand J, Pagel M (2009) Effect of alpha-damage annealing on apatite (U–Th)/He thermochronology. Chem Geol 266(3):157–170CrossRefGoogle Scholar
  61. Gleadow AJW (1990) Fission track thermochronology—reconstructing the thermal and tectonic evolution of the crust. Pacific Rim Congress III. Austr Inst Min Met, Gold Coast, Qld, pp 15–21Google Scholar
  62. Gleadow, AJW, Brown RW (2000) Fission-track thermochronology and the long-term denudational response to tectonics. In: Summerfield MA (ed) Geomorphology and global tectonics, John Wiley & Sons, p 57–75Google Scholar
  63. Gleadow AJW, Duddy IR (1981) A natural long-term track annealing experiment for apatite. Nucl Tracks 5(1):169–174CrossRefGoogle Scholar
  64. Gleadow AJW, Fitzgerald PG (1987) Uplift history and structure of the Transantarctic Mountains: new evidence from fission track dating of basement apatites in the Dry Valleys area, southern Victoria Land. Earth Planet Sci Lett 82(1):1–14CrossRefGoogle Scholar
  65. Gleadow AJW, Duddy IR, Green PF, Lovering JF (1986) Confined fission track lengths in apatite: a diagnostic tool for thermal history analysis. Contrib Mineral Petr 94(4):405–415CrossRefGoogle Scholar
  66. Gleadow AJW, Kohn BP, Brown RW, O’Sullivan PB (2002) Fission track thermotectonic imaging of the Australian continent. Tectonophysics 349(1):5–21CrossRefGoogle Scholar
  67. Green PF (1985) Comparison of zeta calibration baselines for fission-track dating of apatite, zircon and sphene. Chem Geol 58(1–2):1–22Google Scholar
  68. Harrison TM, McDougall I (1980) Investigations of an intrusive contact, northwest Nelson, New Zealand - I. Thermal, chronological and isotopic constraints. Geochim Cosmochim Acta 44(12):1985–2003CrossRefGoogle Scholar
  69. Hodges KV, Ruhl KW, Wobus CW, Pringle MS (2005) 40Ar/39Ar thermochronology of detrital minerals. Rev Mineral Geochem 58(1):239–257CrossRefGoogle Scholar
  70. House MA, Kohn BP, Farley KA, Raza A (2002) Evaluating thermal history models for the Otway Basin, southeastern Australia, using (U + Th)/He and fi ssion-track data from borehole apatites. Tectonophysics 349:277–295CrossRefGoogle Scholar
  71. Huntington KW, Ehlers TA, Hodges KV, Whipp DM (2007) Topography, exhumation pathway, age uncertainties, and the interpretation of thermochronometer data. Tectonics 26(4)CrossRefGoogle Scholar
  72. Hurford AJ (1991) Uplift and cooling pathways derived from fission track analysis and mica dating: a review. Geol Rundsch 80(2):349–368CrossRefGoogle Scholar
  73. Hurford AJ (2018) Chapter 1. An historical perspective on fission-track thermochronology. In: Malusà MG, Fitzgerald PG (eds) Fission-track thermochronology and its application to geology. Springer, BerlinGoogle Scholar
  74. Husson L, Moretti I (2002) Thermal regime of fold and thrust belts—an application to the Bolivian sub Andean zone. Tectonophysics 345(1):253–280CrossRefGoogle Scholar
  75. Jäger E (1967) Die Bedeutung der Biotit-Alterswerte. In: Jäger E et al (eds) Rb–Sr Altersbestimmungen an Glimmern der Zentralalpen: Bern, Kümmerly & Frey: Beitr. Geol. Karte der Schweiz, NF, 134, pp 28–31Google Scholar
  76. Jaeger JC (1968) Cooling and solidification of igneous rocks. In: Hess HE, Poldervaart A (eds) Basalts: the poldervaart treatise on rocks of basaltic composition. John Wiley, New York, pp 503–536Google Scholar
  77. Jamieson RA, Beaumont C (2013) On the origin of orogens. Geol Soc Am Bull 125(11–12):1671–1702CrossRefGoogle Scholar
  78. Kellett DA, Grujic D, Coutand I, Cottle J, Mukul M (2013) The South Tibetan detachment system facilitates ultra rapid cooling of granulite-facies rocks in Sikkim Himalaya. Tectonics 32(2):252–270CrossRefGoogle Scholar
  79. Ketcham RA (2005) Forward and inverse modeling of low-temperature thermochronometry data. Rev Mineral Geochem 58(1):275–314Google Scholar
  80. Lachenbruch H (1986) Simple models for the estimation and measurement of frictional heating by an earthquake. USGS Open File Rep 86–508Google Scholar
  81. Lemoine M, de Graciansky PC (1988) Histoire d’une marge continentale passive: les Alpes occidentales au Mésozoque—introduction. Bull Soc Geol Fr 8:597–600Google Scholar
  82. Liao J, Malusà MG, Zhao L, Baldwin SL, Fitzgerald PG, Gerya T (2018) Divergent plate motion drives rapid exhumation of (ultra)high pressure rocks. Earth Planet Sci Lett 491:67–80CrossRefGoogle Scholar
  83. Lock J, Willett S (2008) Low-temperature thermochronometric ages in fold-and-thrust belts. Tectonophysics 456(3):147–162CrossRefGoogle Scholar
  84. Malusà MG, Vezzoli G (2006) Interplay between erosion and tectonics in the Western Alps. Terra Nova 18(2):104–108CrossRefGoogle Scholar
  85. Malusà MG, Fitzgerald PG (2018) Chapter 10. Application of thermochronology to geologic problems: bedrock and detrital approaches. In: Malusà MG, Fitzgerald PG (eds) Fission-track thermochronology and its application to geology. Springer, BerlinGoogle Scholar
  86. Malusà MG, Polino R, Zattin M, Bigazzi G, Martin S, Piana F (2005) Miocene to present differential exhumation in the Western Alps: insights from fission track thermochronology. Tectonics 24(3). Scholar
  87. Malusà MG, Philippot P, Zattin M, Martin S (2006) Late stages of exhumation constrained by structural, fluid inclusion and fission track analyses (Sesia–Lanzo unit, Western European Alps). Earth Planet Sci Lett 243(3):565–580CrossRefGoogle Scholar
  88. Malusà MG, Villa IM, Vezzoli G, Garzanti E (2011) Detrital geochronology of unroofing magmatic complexes and the slow erosion of Oligocene volcanoes in the Alps. Earth Planet Sci Lett 301(1):324–336CrossRefGoogle Scholar
  89. Malusà MG, Faccenna C, Baldwin SL, Fitzgerald PG, Rossetti F, Balestrieri ML, Ellero A, Ottria G, Piromallo C (2015) Contrasting styles of (U) HP rock exhumation along the Cenozoic Adria-Europe plate boundary (Western Alps, Calabria, Corsica). Geochem Geophys Geosyst 16(6):1786–1824CrossRefGoogle Scholar
  90. Malusà MG, Danišík M, Kuhlemann J (2016) Tracking the Adriatic-slab travel beneath the Tethyan margin of Corsica-Sardinia by low-temperature thermochronometry. Gondwana Res 31:135–149CrossRefGoogle Scholar
  91. Mancktelow NS (2008) Tectonic pressure: theoretical concepts and modelled examples. Lithos 103(1):149–177CrossRefGoogle Scholar
  92. Mancktelow NS, Grasemann B (1997) Time-dependent effects of heat advection and topography on cooling histories during erosion. Tectonophysics 270(3):167–195CrossRefGoogle Scholar
  93. Meesters A, Dunai TJ (2002) Solving the production–diffusion equation for finite diffusion domains of various shapes: Part II. Application to cases with α-ejection and nonhomogeneous distribution of the source. Chem Geol 186(3):347–363CrossRefGoogle Scholar
  94. Menzies M, Gallagher K, Yelland A, Hurford AJ (1997) Volcanic and nonvolcanic rifted margins of the Red Sea and Gulf of Aden: crustal cooling and margin evolution in Yemen. Geochim Cosmochim Ac 61(12):2511–2527CrossRefGoogle Scholar
  95. Metcalf JR, Fitzgerald PG, Baldwin SL, Muñoz JA (2009) Thermochronology of a convergent orogen: constraints on the timing of thrust faulting and subsequent exhumation of the Maladeta Pluton in the Central Pyrenean Axial Zone. Earth Planet Sci Lett 287(3):488–503CrossRefGoogle Scholar
  96. Mezger K, Krogstad EJ (1997) Interpretation of discordant U-Pb zircon ages: an evaluation. J Metamorph Geol 15(1):127–140CrossRefGoogle Scholar
  97. Miller SR, Fitzgerald PG, Baldwin SL (2010) Cenozoic range‐front faulting and development of the Transantarctic Mountains near Cape Surprise, Antarctica: thermochronologic and geomorphologic constraints. Tectonics 29(1). Scholar
  98. Miller SR, Baldwin SL, Fitzgerald PG (2012) Transient fluvial incision and active surface uplift in the Woodlark Rift of eastern Papua New Guinea. Lithosphere 4(2):131–149CrossRefGoogle Scholar
  99. Miller SR, Sak PB, Kirby E, Bierman PR (2013) Neogene rejuvenation of central Appalachian topography: evidence for differential rock uplift from stream profiles and erosion rates. Earth Planet Sci Lett 369:1–12CrossRefGoogle Scholar
  100. Mitchell SG, Reiners PW (2003) Influence of wildfires on apatite and zircon (U-Th)/He ages. Geology 31(12):1025–1028CrossRefGoogle Scholar
  101. Miyashiro A (1994) Metamorphic petrology. CRC Press, Boca RatonGoogle Scholar
  102. Morley ME, Gleadow AJW, Lovering JF (1980) Evolution of the Tasman Rift: apatite fission track dating evidence from the southeastern Australian continental margin. Gondwana Five, Balkema, Rotterdam, pp 289–293Google Scholar
  103. Murakami M (2010) Average shear work estimation of Nojima fault from fission-track analytical data. Earth Monthly 32:24–29 (in Japanese)Google Scholar
  104. Osadetz KG, Kohn BP, Feinstein PB, O’Sullivan PB (2002) Thermal history of Canadian Williston basin from apatite fission-track thermochronology-implications for petroleum systems and geodynamic history. Tectonophysics 349:221–249CrossRefGoogle Scholar
  105. Otsuki K, Monzawa N, Nagase T (2003) Fluidization and melting of fault gouge during seismic slip: identification in the Nojima fault zone and implications for focal earthquake mechanisms. J Geophys Res-Solid Ea 108(B4)Google Scholar
  106. Parrish RR (1983) Cenozoic thermal evolution and tectonics of the Coast Mountains of British Columbia: 1. Fission track dating, apparent uplift rates, and patterns of uplift. Tectonics 2(6):601–631CrossRefGoogle Scholar
  107. Poage MA, Chamberlain CP (2001) Empirical relationships between elevation and the stable isotope composition of precipitation and surface waters: considerations for studies of paleoelevation change. Am J Sci 301(1):1–15CrossRefGoogle Scholar
  108. Rahl JM, Haines SH, van der Pluijm BA (2011) Links between orogenic wedge deformation and erosional exhumation: evidence from illite age analysis of fault rock and detrital thermochronology of syn-tectonic conglomerates in the Spanish Pyrenees. Earth Planet Sci Lett 307:180–190CrossRefGoogle Scholar
  109. Rahn MK, Brandon MT, Batt GE, Garver JI (2004) A zero damage model for fission-track annealing in zircon. Am Mineral 89:473–484CrossRefGoogle Scholar
  110. Reiners PW, Brandon MT (2006) Using thermochronology to understand orogenic erosion. Annu Rev Earth Pl Sc 34:419–466CrossRefGoogle Scholar
  111. Reiners PW, Farley KA (2001) Influence of crystal size on apatite (U–Th)/He thermochronology: an example from the Bighorn Mountains. Wyoming. Earth Planet Sci Lett 188(3):413–420CrossRefGoogle Scholar
  112. Reiners PW, Thomson SN, McPhillips D, Donelick RA, Roering JJ (2007) Wildfire thermochronology and the fate and transport of apatite in hillslope and fluvial environments. J Geophys Res-Earth 112(F4)Google Scholar
  113. Reuber G, Kaus BJ, Schmalholz SM, White RW (2016) Nonlithostatic pressure during subduction and collision and the formation of (ultra) high-pressure rocks. Geology 44(5):343–346CrossRefGoogle Scholar
  114. Riccio SJ, Fitzgerald PG, Benowitz JA, Roeske SM (2014) The role of thrust faulting in the formation of the eastern Alaska Range: thermochronological constraints from the Susitna Glacier Thrust Fault region of the intracontinental strike-slip Denali Fault system. Tectonics 33(11):2195–2217CrossRefGoogle Scholar
  115. Ring U, Brandon MT, Willett SD, Lister GS (1999) Exhumation processes. Geol Soc London Spec Publ 154(1):1–27CrossRefGoogle Scholar
  116. Roberts HJ, Kelley SP, Dahl PS (2001) Obtaining geologically meaningful 40Ar–39Ar ages from altered biotite. Chem Geol 172:277–290CrossRefGoogle Scholar
  117. Roe GH (2005) Orographic precipitation. Annu Rev Earth Pl Sc 33:645–671CrossRefGoogle Scholar
  118. Rubatto D, Hermann J (2001) Exhumation as fast as subduction? Geology 29(1):3–6CrossRefGoogle Scholar
  119. Sandiford M, Powell R (1990) Some isostatic and thermal consequences of the vertical strain geometry in convergent orogens. Earth Planet Sci Lett 98(2):154–165CrossRefGoogle Scholar
  120. Sandiford M, Powell R (1991) Some remarks on high-temperature—low-pressure metamorphism in convergent orogens. J Metamorphic Geol 9(3):333–340CrossRefGoogle Scholar
  121. Schlatter A, Schneider D, Geiger A, Kahle HG (2005) Recent vertical movements from precise levelling in the vicinity of the city of Basel, Switzerland. Int J Earth Sci 94(4):507–514CrossRefGoogle Scholar
  122. Schlunegger F, Melzer J, Tucker G (2001) Climate, exposed source-rock lithologies, crustal uplift and surface erosion: a theoretical analysis calibrated with data from the Alps/North Alpine Foreland Basin system. Int J Earth Sci 90(3):484–499CrossRefGoogle Scholar
  123. Schmidt JL et al (2014) Little Devil’s postpile revisited: behavior of multiple thermochronometers in a contact aureole. In: Abstracts of the 14th international conference on thermochronology, Chamonix, France, 8–14 Sept 2014Google Scholar
  124. Scholz CH (2002) The mechanics of earthquakes and faulting, 2nd edn. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  125. Serpelloni E, Faccenna C, Spada G, Dong D, Williams SD (2013) Vertical GPS ground motion rates in the Euro-Mediterranean region: New evidence of velocity gradients at different spatial scales along the Nubia-Eurasia plate boundary. J Geophys Res-Sol Ea 118(11):6003–6024CrossRefGoogle Scholar
  126. Spear FS (1993) Metamorphic phase equilibria and PTt paths. Min Soc Am Monograph 1, 518 pGoogle Scholar
  127. Spotila JA (2005) Applications of low-temperature thermochronometry to quantification of recent exhumation in mountain belts. Rev Mineral Geochem 58(1):449–466CrossRefGoogle Scholar
  128. Stockli DF, Surpless BE, Dumitru TA, Farley KA (2002) Thermochronological constraints on the timing and magnitude of Miocene and Pliocene extension in the central Wassuk Range, western Nevada. Tectonics 21Google Scholar
  129. Stüwe K, Barr TD (1998) On uplift and exhumation during convergence. Tectonics 17(1):80–88CrossRefGoogle Scholar
  130. Stüwe K, Hintermüller M (2000) Topography and isotherms revisited: the influence of laterally migrating drainage divides. Earth Planet Sci Lett 184(1):287–303CrossRefGoogle Scholar
  131. Stüwe K, White L, Brown R (1994) The influence of eroding topography on steady-state isotherms. Application to fission track analysis. Earth Planet Sci Lett 124(1–4):63–74CrossRefGoogle Scholar
  132. Summerfield MA, Brown RW (1998) Geomorphic factors in the interpretation of fission-track data. In: De Corte F (ed) van den Haute P. Advances in fission-track geochronology, Springer, pp 269–284Google Scholar
  133. Tagami T (2012) Thermochronological investigation of fault zones. Tectonophysics 538–540:67–85CrossRefGoogle Scholar
  134. Tagami T. (2018) Chapter 12. Application of fission-track thermochronology to understand fault zones. In: Malusà MG, Fitzgerald PG (eds) Fission-track thermochronology and its application to geology. Springer, BerlinGoogle Scholar
  135. Ter Voorde M, De Bruijne CH, Cloetingh S, Andriessen PAM (2004) Thermal consequences of thrust faulting: simultaneous versus successive fault activation and exhumation. Earth Planet Sci Lett 223(3):395–413CrossRefGoogle Scholar
  136. Thomson SN (2002) Late Cenozoic geomorphic and tectonic evolution of the Patagonian Andes between latitudes 42 S and 46 S: an appraisal based on fission-track results from the transpressional intra-arc Liquiñe-Ofqui fault zone. Geol Soc Am Bull 114:1159–1173Google Scholar
  137. Villa IM (1998) Isotopic closure. Terra Nova 10(1):42–47CrossRefGoogle Scholar
  138. Villa IM (2010) Disequilibrium textures versus equilibrium modelling: geochronology at the crossroads. Geol Soc London Spec Publ 332:1–15CrossRefGoogle Scholar
  139. Wagner GA, Reimer GM (1972) Fission track tectonics: the tectonic interpretation of fission track apatite ages. Earth Planet Sci Lett 14(2):263–268CrossRefGoogle Scholar
  140. Wagner GA, van den Haute P (1992) Fission-Track Dating. Kluwer Acad, DordrechtCrossRefGoogle Scholar
  141. Wagner GA, Reimer GM, Jäger E (1977) Cooling ages derived by apatite fission track, mica Rb-Sr, and K-Ar dating: the uplift and cooling history of the central Alps. Mem Inst Geol Mineral Univ Padova 30:1–27Google Scholar
  142. Wagner GA, Gleadow AJW, Fitzgerald PG (1989) The significance of the partial annealing zone in apatite fission-track analysis: projected track length measurements and uplift chronology of the Transantarctic Mountains. Chem Geol 79(4):295–305Google Scholar
  143. Walcott RI (1998) Modes of oblique compression: late Cenozoic tectonics of the South Island of New Zealand. Rev Geophys 36(1):1–26CrossRefGoogle Scholar
  144. Whipp DM, Ehlers TA (2007) Influence of groundwater flow on thermochronometer-derived exhumation rates in the central Nepalese Himalaya. Geology 35:851–854CrossRefGoogle Scholar
  145. Whipple KX (2009) The influence of climate on the tectonic evolution of mountain belts. Nat Geosci 2(2):97–104CrossRefGoogle Scholar
  146. Whipple KX, Tucker GE (1999) Dynamics of the stream-power river incision model: implications for height limits of mountain ranges, landscape response timescales, and research needs. J Geophys Res-Sol Ea 104(B8):17661–17674CrossRefGoogle Scholar
  147. Whipple KX, Tucker GE (2002) Implications of sediment‐flux‐dependent river incision models for landscape evolution. J Geophys Res-Sol Ea 107(B2)Google Scholar
  148. Whitmarsh RB, Manatschal G, Minshull TA (2001) Evolution of magma-poor continental margins from rifting to seafloor spreading. Nature 413(6852):150–154CrossRefGoogle Scholar
  149. Wildman M, Beucher R, Cognè N (2018) Chapter 20. Fission track thermochronology applied to the geomorphological and geologic evolution of passive continental margins. In: Malusà MG, Fitzgerald PG (eds) Fission-track thermochronology and its application to geology. Springer, BerlinGoogle Scholar
  150. Willett SD (2010) Late Neogene erosion of the Alps: a climate driver? Annu Rev Earth Pl Sc 38:411–437CrossRefGoogle Scholar
  151. Wolf RA, Farley KA, Kass DM (1998) Modeling of the temperature sensitivity of the apatite (U–Th)/He thermochronometer. Chem Geol 148(1):105–114CrossRefGoogle Scholar
  152. Wölfler A, Stüwe K, Danišík M, Evans NJ (2012) Low temperature thermochronology in the Eastern Alps: implications for structural and topographic evolution. Tectonophysics 541:1–18CrossRefGoogle Scholar
  153. Yamato P, Burov E, Agard P, Le Pourhiet L, Jolivet L (2008) HP-UHP exhumation during slow continental subduction: self-consistent thermodynamically and thermomechanically coupled model with application to the Western Alps. Earth Planet Sci Lett 271(1):63–74CrossRefGoogle Scholar
  154. Zanchetta S, Malusà MG, Zanchi A (2015) Precollisional development and Cenozoic evolution of the Southalpine retrobelt (European Alps). Lithosphere 7(6):662–681Google Scholar
  155. Zarki-Jakni B, van der Beek P, Poupeau G, Sosson M, Labrin E, Rossi P, Ferrandini J (2004) Cenozoic denudation of Corsica in response to Ligurian and Tyrrhenian extension: results from apatite fission track thermochronology. Tectonics 23(1)CrossRefGoogle Scholar
  156. Zattin M, Massari F, Dieni I (2008) Thermochronological evidence for Mesozoic-Tertiary tectonic evolution in the Eastern Sardinia. Terra Nova 20(6):469–474CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Earth and Environmental SciencesUniversity of Milano-BicoccaMilanItaly
  2. 2.Department of Earth SciencesSyracuse UniversitySyracuseUSA

Personalised recommendations