Advertisement

Fission-Track Thermochronology Applied to the Evolution of Passive Continental Margins

  • Mark Wildman
  • Nathan Cogné
  • Romain Beucher
Chapter
Part of the Springer Textbooks in Earth Sciences, Geography and Environment book series (STEGE)

Abstract

Passive continental margins (PCMs) form at divergent plate boundaries in response to continental breakup and subsequent formation of new oceanic basins. The onshore topography of PCMs is a key component to understand the evolution of extensional settings. The classic nomenclature of PCMs is derived from early investigations that suggested apparent tectonic stability after the initial phase of rifting and breakup. However, geological and geomorphic diversity of PCMs requires more complex models of rift and post-rift evolution. Fission-track (FT) thermochronology provides appropriate tools to decipher the long-term development of PCM topography and better resolve the spatial and temporal relationships between continental erosion and sediment accumulation in adjacent offshore basins. FT datasets have revealed complex spatial and temporal denudation histories across some PCMs and have shown that several kilometres of material may be removed from the onshore margin following rifting. Combining these data with geological and geomorphological observations, and with predictions from numerical modelling, suggests that PCMs may have experienced significant post-rift activity. Case histories illustrated in this chapter include the PCM of southeastern Africa and the conjugate PCMs of the North and South Atlantic.

Notes

Acknowledgements

We would like to thank Roderick Brown, David Chew, Kerry Gallagher, Cristina Persano and Fin Stuart for sharing their knowledge and experience in low-temperature thermochronology analysis, thermal history modelling and PCM evolution. We thank Kerry Gallagher for additional constructive comments on this work, and Peter van der Beek and Marco G. Malusà for their constructive and detailed reviews. We are grateful to Bart Hendriks for sharing databases of AFT data, to Lauren Wildman for collating data from additional sources, and to Andrea Licciardi for producing the maps for Figs. 20.5 and 20.6.

References

  1. Abbate E, Balestrieri ML, Bigazzi G (2002) Morphostructural development of the Eritrean rift flank (southern Red Sea) inferred from apatite fission track analysis. J Geophys Res B: Solid Earth 107:B11CrossRefGoogle Scholar
  2. Amaral G, Born H, Hadler JCN et al (1997) Fission track analysis of apatites from Sao Francisco craton and Mesozoic alkaline-carbonatite complexes from central and southeastern Brazil. J S Am Earth Sci 10(3–4):285–294CrossRefGoogle Scholar
  3. Andriessen PA, Bos ARJAN (1986) Post-caledonian thermal evolution and crustal uplift in the Eidfjord area, western Norway. Nor Geol Tidsskr 66(3):243–250Google Scholar
  4. Andriessen PAM (1990) Anomalous fission track apatite ages of the Precambrian basement in the Hunnedalen region, south-western Norway. Int J Rad Appl Instrum D 17(3):285–291Google Scholar
  5. Artemieva IM, Vinnik LP (2016) Density structure of the cratonic mantle in southern Africa: 1 implications for dynamic topography. Gondwana Res 39:204–216CrossRefGoogle Scholar
  6. Assine ML, Corrêa FS, Chang HK (2008) Migração de depocentros na Bacia de Santos: importância na exploração de hidrocarbonetos. Rev Brasil Geoci 38:111–127CrossRefGoogle Scholar
  7. Balestrieri ML, Abbate E, Bigazzi G et al (2009) Thermochronological data from Sudan in the frame of the denudational history of the Nubian Red Sea margin. Earth Surf Proc Land 34(9):1279–1290CrossRefGoogle Scholar
  8. Beauvais A, Bonnet NJ, Chardon D et al (2016) Very long-term stability of passive margin escarpment constrained by 40Ar/39Ar dating of K–Mn oxides. Geology 44(4):299–302CrossRefGoogle Scholar
  9. Becker K, Franke D, Trumbull R et al (2014) Asymmetry of high-velocity lower crust on the South Atlantic rifted margins and implications for the interplay of magmatism and tectonics in continental breakup. Solid Earth 5(2):1011CrossRefGoogle Scholar
  10. Bernard T, Steer P, Gallagher K et al (2016) Evidence for Eocene–Oligocene glaciation in the landscape of the east Greenland margin. Geology 44(11):895–898CrossRefGoogle Scholar
  11. Bierman PR, Caffee M (2001) Slow rates of rock surface erosion and sediment production across the Namib desert and escarpment, southern Africa. Am J Sci 301(4–5):326–358CrossRefGoogle Scholar
  12. Bird P, Ben-Avraham Z, Schubert, G et al (2006) Patterns of stress and strain rate in southern Africa. J Geophys Res B: Solid Earth 111(B08402)Google Scholar
  13. Bishop P (2007) Long-term landscape evolution: linking tectonics and surface processes. Earth Surf Proc Land 32(3):329–365CrossRefGoogle Scholar
  14. Blaich OA, Faleide JI, Tsikalas F et al (2013) Crustal-scale architecture and segmentation of the South Atlantic volcanic margin. Geol Soc London Spec Publ 369(1):167–183CrossRefGoogle Scholar
  15. Bonnet NJ, Beauvais A, Arnaud N et al (2016) Cenozoic lateritic weathering and erosion history of Peninsular India from 40Ar/39Ar dating of supergene K–Mn oxides. Chem Geo 446:33–53CrossRefGoogle Scholar
  16. Braun J (2018) A review of numerical modeling studies of passive margin escarpments leading to a new analytical expression for the rate of escarpment migration velocity. Gondwana Res 53:209–224CrossRefGoogle Scholar
  17. Braun J, Beaumont C (1989) A physical explanation of the relation between flank uplifts and the breakup unconformity at rifted continental margins. Geology 17(8):760–764CrossRefGoogle Scholar
  18. Braun J, Guillocheau F, Robin C et al (2014) Rapid erosion of the southern African plateau as it climbs over a mantle superswell. J Geophys Res B: Solid Earth 119(7):6093–6112CrossRefGoogle Scholar
  19. Braun J, van der Beek P (2004) Evolution of passive margin escarpments: what can we learn from low temperature thermochronology? J Geophys Res: Earth Sur 109(F4)Google Scholar
  20. Brown R, Summerfield M, Gleadow A et al (2014) Intracontinental deformation in southern Africa during the late Cretaceous. J Afr Earth Sci 100:20–41CrossRefGoogle Scholar
  21. Brown RW, Beucher R, Roper S et al (2013) Natural age dispersion arising from the analysis of broken crystals. Part I: theoretical basis and implications for the apatite (U–Th)/He thermochronometer. Geochim Cosmochim Acta 122:478–497CrossRefGoogle Scholar
  22. Brown RW, Rust DJ, Summerfield MA et al (1990) An early Cretaceous phase of accelerated erosion on the south-western margin of Africa: evidence from apatite fission track analysis and the offshore sedimentary record. Int J Rad Appl Instrum D 17(3):339–350Google Scholar
  23. Brown RW, Summerfield MA, Gleadow AJW (2002) Denudational history along a transect across the Drakensberg Escarpment of southern Africa derived from apatite fission track thermochronology. J Geophys Res Solid Earth 107(B12)CrossRefGoogle Scholar
  24. Brune S, Heine C, Pérez-Gussinyé M et al (2014) Rift migration explains continental margin asymmetry and crustal hyper-extension. Nat Comm 5:4014CrossRefGoogle Scholar
  25. Burke K, Gunnell Y (2008) The African erosion surface: a continental-scale synthesis of geomorphology, tectonics, and environmental change over the past 180 million years. Geol Soc Am Mem 201:1–66Google Scholar
  26. Burov E, Cloetingh SAPL (1997) Erosion and rift dynamics: new thermomechanical aspects of post-rift evolution of extensional basins. Earth Planet Sci Lett 150(1–2):7–26CrossRefGoogle Scholar
  27. Burov E, Gerya T (2014) Asymmetric three-dimensional topography over mantle plumes. Nature 513(7516):85–89CrossRefGoogle Scholar
  28. Cederbom C (2001) Phanerozoic, pre-Cretaceous thermotectonic events in southern Sweden revealed by fission track thermochronology. Earth Planet Sci Lett 188(1):199–209CrossRefGoogle Scholar
  29. Cederbom C, Larson SÅ, Tullborg EL et al (2000) Fission track thermochronology applied to Phanerozoic thermotectonic events in central and southern Sweden. Tectonophysics 316(1):153–167CrossRefGoogle Scholar
  30. Cloetingh S, Beekman F, Ziegler PA et al (2008) Post-rift compressional reactivation potential of passive margins and extensional basins. Geol Soc London Spec Publ 306(1):27–70CrossRefGoogle Scholar
  31. Cobbold PR, Meisling KE, Mount VS (2001) Reactivation of an obliquely rifted margin, Campos and Santos basins, southeastern Brazil. AAPG bull 85(11):1925–1944Google Scholar
  32. Cockburn HAP, Brown RW, Summerfield MA et al (2000) Quantifying passive margin denudation and landscape development using a combined fission-track thermochronology and cosmogenic isotope analysis approach. Earth Planet Sci Lett 179(3):429–435CrossRefGoogle Scholar
  33. Cogné N, Gallagher K, Cobbold PR (2011) Post-rift reactivation of the onshore margin of southeast Brazil: evidence from apatite (U–Th)/He and fission-track data. Earth Planet Sci Lett 309(1):118–130CrossRefGoogle Scholar
  34. Cogné N, Cobbold PR, Riccomini C et al (2013) Tectonic setting of the Taubaté Basin (southeastern Brazil): insights from regional seismic profiles and outcrop data. J South Amer Earth Sci 42:194–204CrossRefGoogle Scholar
  35. Cogné, N, Gallagher K, Cobbold PR et al (2012) Post-breakup tectonics in southeast Brazil from thermochronological data and combined inverse-forward thermal history modeling. J Geophys Res Solid Earth 117(B11)CrossRefGoogle Scholar
  36. Colli L, Stotz I, Bunge HP et al (2014) Rapid South Atlantic spreading changes and coeval vertical motion in surrounding continents: evidence for temporal changes of pressure-driven upper mantle flow. Tectonics 33(7):1304–1321CrossRefGoogle Scholar
  37. Contreras J, Zühlke R, Bowman S et al (2010) Seismic stratigraphy and subsidence analysis of the southern Brazilian margin (Campos, Santos and Pelotas basins). Mar Petr Geol 27(9):1952–1980CrossRefGoogle Scholar
  38. Danišík M (2018) Chapter 5. Integration of fission-track thermochronology with other geo-chronologic methods on single crystals. In: Malusà MG, Fitzgerald PG (eds) Fission-track thermochronology and its application to geology. SpringerGoogle Scholar
  39. Davids C, Wemmer K, Zwingmann H et al (2013) K–Ar illite and apatite fission track constraints on brittle faulting and the evolution of the northern Norwegian passive margin. Tectonophysics 608:196–211CrossRefGoogle Scholar
  40. de Oliveira Carmo I, Vasconcelos PM (2006) 40Ar/39Ar geochronology constraints on late Miocene weathering rates in Minas Gerais, Brazil. Earth Planet Sci Lett 241(1):80–94Google Scholar
  41. de Oliveira CHE, Jelinek AR, Chemale F et al (2016) Evidence of post-Gondwana breakup in southern Brazilian shield: insights from apatite and zircon fission track thermochronology. Tectonophysics 666:173–187CrossRefGoogle Scholar
  42. de Wit MCJ (1988) Aspects of the geomorphology of the north-western Cape, South Africa. In: Dardis GF, Moon BP (eds) Geomorphological studies in southern Africa. CRC Press, Rotterdam, pp 57–69Google Scholar
  43. Decker JE, Niedermann S, de Wit MJ (2011) Soil erosion rates in South Africa compared with cosmogenic 3 He-based rates of soil production. S Afr J Geol 114(3–4):475–488CrossRefGoogle Scholar
  44. Dempster TJ, Persano C (2006) Low-temperature thermochronology: resolving geotherm shapes or denudation histories? Geology 34:73–76CrossRefGoogle Scholar
  45. Divins DL (2003) Total sediment thickness of the world’s oceans & marginal seas. NOAA National Geophysical Data Center, Boulder COGoogle Scholar
  46. Dunlap WJ, Fossen H (1998) Early Paleozoic orogenic collapse, tectonic stability, and late Paleozoic continental rifting revealed through thermochronology of K-feldspars, southern Norway. Tectonics 17(4):604–620CrossRefGoogle Scholar
  47. Egholm DL, Nielsen SB, Pedersen VK et al (2009) Glacial effects limiting mountain height. Nature 460(7257):884–887CrossRefGoogle Scholar
  48. Fetter M (2009) The role of basement tectonic reactivation on the structural evolution of Campos basin, offshore Brazil: evidence from 3D seismic analysis and section restoration. Mar Petr Geol 26:873–886CrossRefGoogle Scholar
  49. Fitzgerald PG, Malusà MG (2018) Chapter 9. Concept of the exhumed partial annealing (retention) zone and age-elevation profiles in thermochronology. In: Malusà MG, Fitzgerald PG (eds) Fission-track thermochronology and its application to geology. SpringerGoogle Scholar
  50. Fitzgerald PG, Baldwin SL, Webb LE, O’Sullivan PB (2006) Interpretation of (U–Th)/He single grain ages from slowly cooled crustal terranes: a case study from the Transantarctic Mountains of southern Victoria Land. Chem Geol 225(1–2):91–120CrossRefGoogle Scholar
  51. Fleming A, Summerfield MA, Stone JO et al (1999) Denudation rates for the southern Drakensberg escarpment, SE Africa, derived from in-situ-produced cosmogenic 36C1: initial results. J Geol Soc 156(2):209–212CrossRefGoogle Scholar
  52. Flowers RM, Schoene B (2010) (U–Th)/He thermochronometry constraints on unroofing of the eastern Kaapvaal craton and significance for uplift of the southern African plateau. Geology 38(9):827–830CrossRefGoogle Scholar
  53. Franco-Magalhaes AOB, Cuglieri MAA, Hackspacher PC et al (2014) Long-term landscape evolution and post-rift reactivation in the southeastern Brazilian passive continental margin: Taubaté basin. Int J Earth Sci 103(2):441–453CrossRefGoogle Scholar
  54. Gallagher K, Brown R (1999) Denudation and uplift at passive margins: the record on the Atlantic margin of southern Africa. Phil Trans R Soc London Ser A 357(1753):835–859CrossRefGoogle Scholar
  55. Gallagher K, Brown R, Johnson C (1998) Fission track analysis and its applications to geological problems. Annu Rev Earth Planet Sci 26(1):519–572CrossRefGoogle Scholar
  56. Gallagher K, Hawkesworth CJ, Mantovani MSM (1994) The denudation history of the onshore continental margin of SE Brazil inferred from apatite fission track data. J Geophys Res Solid Earth 99(B9):18117–18145CrossRefGoogle Scholar
  57. Gallagher K, Hawkesworth CJ, Mantovani MSM (1995) Denudation, fission track analysis and the long-term evolution of passive margin topography: application to the southeast Brazilian margin. J South Amer Earth Sci 8(1):65–77CrossRefGoogle Scholar
  58. Gallagher K. (2012) Transdimensional inverse thermal history modeling for quantitative thermochronology. J Geophys Res Solid Earth 117(B2)CrossRefGoogle Scholar
  59. Gallagher K, Stephenson J, Brown R et al (2005) Low temperature thermochronology and modeling strategies for multiple samples 1: vertical profiles. Earth Planet Sci Lett 237(1):193–208CrossRefGoogle Scholar
  60. Ghebreab W, Carter A, Hurford AJ et al (2002) Constraints for timing of extensional tectonics in the western margin of the Red Sea in Eritrea. Earth Planet Sci Lett 200(1):107–119CrossRefGoogle Scholar
  61. Gilchrist AR, Kooi H, Beaumont C (1994) Post-Gondwana geomorphic evolution of southwestern Africa: implications for the controls on landscape development from observations and numerical experiments. J Geophys Res Solid Earth 99(B6):12211–12228CrossRefGoogle Scholar
  62. Gilchrist AR, Summerfield MA (1990) Differential denudation and flexural isostasy in formation of rifted-margin upwarps. Nature 346(6286):739–742CrossRefGoogle Scholar
  63. Gleadow AJW, Belton DX, Kohn BP et al (2002) Fission track dating of phosphate minerals and the thermochronology of apatite. Rev Mineral Geochem 48(1):579–630CrossRefGoogle Scholar
  64. Gleadow AJW, Brooks CK (1979) Fission track dating, thermal histories and tectonics of igneous intrusions in east Greenland. Contrib Mineral Petrol 71(1):45–60CrossRefGoogle Scholar
  65. Green PF (1986) On the thermo-tectonic evolution of northern England: evidence from fission track analysis. Geol Mag 153:493–506CrossRefGoogle Scholar
  66. Green PF, Duddy IR, Japsen P et al (2017) Post-breakup burial and exhumation of the southern margin of Africa. Basin Res 29(1):96–127CrossRefGoogle Scholar
  67. Green PF, Japsen P, Chalmers JA (2011) Thermochronology, erosion surfaces and missing section in west Greenland. J Geol Soc 168(4):817–830CrossRefGoogle Scholar
  68. Green PF, Lidmar-Bergström K, Japsen P et al (2013) Stratigraphic landscape analysis, thermochronology and the episodic development of elevated, passive continental margins. Geol Surv Den Green Bull (30)Google Scholar
  69. Green PF, Machado V (2017) Pre-rift and synrift exhumation, post-rift subsidence and exhumation of the onshore Namibe margin of Angola revealed from apatite fission track analysis. Geol Soc London Spec Publ 438(1):99–118CrossRefGoogle Scholar
  70. Grønlie A, Naeser CW, Naeser ND et al (1994) Fission-track and K–Ar dating of tectonic activity in a transect across the Møre-Trøndelag Fault Zone, central Norway. Nor Geol Tidsskr 74(1):24–34Google Scholar
  71. Groves DI, Bierlein FP (2007) Geodynamic settings of mineral deposit systems. J Geol Soc 164:19–30CrossRefGoogle Scholar
  72. Guillocheau F, Rouby D, Robin C et al (2012) Quantification and causes of the terrigeneous sediment budget at the scale of a continental margin: a new method applied to the Namibia–South Africa margin. Basin Res 24(1):3–30CrossRefGoogle Scholar
  73. Gunnell Y, Carter A, Petit C et al (2007) Post-rift seaward downwarping at passive margins: new insights from southern Oman using stratigraphy to constrain apatite fission-track and (U–Th)/He dating. Geology 35(7):647–650CrossRefGoogle Scholar
  74. Gunnell Y, Harbor DJ (2010) Butte detachment: how pre-rift geological structure and drainage integration drive escarpment evolution at rifted continental margins. Earth Surf Proc Land 35(12):1373–1385CrossRefGoogle Scholar
  75. Gurnis M, Mitrovica JX, Ritsema J et al (2000) Constraining mantle density structure using geological evidence of surface uplift rates: the case of the African superplume. Geochem Geophys Geosyst 1(7)CrossRefGoogle Scholar
  76. Haack U (1983) Reconstruction of the cooling history of the Damara orogen by correlation of radiometric ages with geography and altitude. In: Martin H, Eder FW (eds) Intracontinental fold belts: case studies in the Variscan belt of Europe and the Damara belt in Namibia. Springer, Berlin, pp 873–884CrossRefGoogle Scholar
  77. Hansen K (1992) Post-orogenic tectonic and thermal history of a rifted continental margin: the scoresby Sund area, east Greenland. Tectonophysics 216(3):309–326CrossRefGoogle Scholar
  78. Hansen K, Bergman SC, Henk B (2001) The Jameson land basin (east Greenland): a fission track study of the tectonic and thermal evolution in the Cenozoic North Atlantic spreading regime. Tectonophysics 331(3):307–339CrossRefGoogle Scholar
  79. Hansen K, Brooks CK (2002) The evolution of the east Greenland margin as revealed from fission-track studies. Tectonophysics 349(1):93–111CrossRefGoogle Scholar
  80. Hansen K, Pedersen SVEND, Fougt H et al (1996) Post-Sveconorwegian exhumation and cooling history of the Evje area, southern Setesdal, central south Norway. Nor Geol Unders 431:49–58Google Scholar
  81. Hansen K, Reiners PW (2006) Low temperature thermochronology of the southern east Greenland continental margin: evidence from apatite (U–Th)/He and fission track analysis and implications for intermethod calibration. Lithos 92(1):117–136CrossRefGoogle Scholar
  82. Harman R, Gallagher K, Brown R et al (1998) Accelerated denudation and tectonic/geomorphic reactivation of the cratons of northeastern Brazil during the late Cretaceous. J Geophys Res Solid Earth 103(B11):27091–27105CrossRefGoogle Scholar
  83. Heine C, Zoethout J, Müller RD (2013) Kinematics of the South Atlantic rift. Solid Earth 4(2)Google Scholar
  84. Hendrik BWH (2003) Cooling and denudation of the Norwegian and Barents sea margins, northern Scandinavia. Constrained by apatite fission track and (U–Th/He) thermochronology. Netherlands Research School of Sedimentary Geology (NSG), AmsterdamGoogle Scholar
  85. Hendriks BW, Andriessen PA (2002) Pattern and timing of the post-Caledonian denudation of northern Scandinavia constrained by apatite fission-track thermochronology. Geol Soc London Spec Publ 196(1):117–137CrossRefGoogle Scholar
  86. Hendriks BWH, Osmundsen PT, Redfield TF (2010) Normal faulting and block tilting in Lofoten and Vesterålen constrained by apatite fission track data. Tectonophysics 485(1):154–163CrossRefGoogle Scholar
  87. Hiruma ST, Riccomini C, Modenesi-Gauttieri MC et al (2010) Denudation history of the Bocaina plateau, Serra do Mar, southeastern Brazil: relationships to Gondwana breakup and passive margin development. Gondwana Res 18(4):674–687CrossRefGoogle Scholar
  88. Huigen Y, Andriessen P (2004) Thermal effects of Caledonian foreland basin formation, based on fission track analyses applied on basement rocks in central Sweden. Phys Chem Earth (A/B/C) 29(10):683–694CrossRefGoogle Scholar
  89. Huismans R, Beaumont C (2011) Depth-dependent extension, two-stage breakup and cratonic underplating at rifted margins. Nature 473(7345):74–78CrossRefGoogle Scholar
  90. Jackson MPA, Hudec MR, Hegarty KA (2005) The great west African tertiary coastal uplift: fact or fiction? a perspective from the Angolan divergent margin. Tectonics 24(6)CrossRefGoogle Scholar
  91. Japsen P, Bonow JM, Green PF et al (2012a) Episodic burial and exhumation in NE Brazil after opening of the South Atlantic. Geol Soc Am Bull 124(5–6):800–816CrossRefGoogle Scholar
  92. Japsen P, Chalmers JA (2000) Neogene uplift and tectonics around the north Atlantic: overview. Global Planet Change 24(3):165–173CrossRefGoogle Scholar
  93. Japsen P, Green PF, Bonow JM et al (2014) From volcanic plains to glaciated peaks: burial, uplift and exhumation history of southern east Greenland after opening of the NE Atlantic. Global Planet Change 116:91–114CrossRefGoogle Scholar
  94. Japsen P, Green PF, Chalmers JA (2013) The mountains of north-east Greenland are not remnants of the Caledonian topography. A comment on Pedersen et al (2012): tectonophysics vol 530–531, pp 318–330. Tectonophysics 589:234–238CrossRefGoogle Scholar
  95. Japsen P, Chalmers JA, Green PF et al (2012b) Elevated, passive continental margins: not rift shoulders, but expressions of episodic, post-rift burial and exhumation. Global Planet Change 90:73–86CrossRefGoogle Scholar
  96. Jelinek AR, Chemale F, van der Beek PA et al (2014) Denudation history and landscape evolution of the northern east-Brazilian continental margin from apatite fission-track thermochronology. J South Amer Earth Sci 54:158–181CrossRefGoogle Scholar
  97. Johnson C, Gallagher K (2000) A preliminary Mesozoic and Cenozoic denudation history of the north east Greenland onshore margin. Global Planet Change 24(3):261–274CrossRefGoogle Scholar
  98. Karl M, Glasmacher UA, Kollenz S et al (2013) Evolution of the South Atlantic passive continental margin in southern Brazil derived from zircon and apatite (U–Th–Sm)/He and fission-track data. Tectonophysics 604:224–244CrossRefGoogle Scholar
  99. Katz BJ, Mello MR (2000) Petroleum systems of South Atlantic marginal basins. AAPG Mem 73Google Scholar
  100. Keen CE, Boutilier RR (1995) Lithosphere-asthenosphere interactions below rifts. In: Banda E, Torné M, Talwani M (eds) Rifted ocean-continent boundaries. Springer, Netherlands, pp 17–30CrossRefGoogle Scholar
  101. Ketcham R (2018) Chapter 3. Fission track annealing: from geologic observations to thermal history modeling. In: Malusà MG, Fitzgerald PG (eds) Fission-track thermochronology and its application to geology. SpringerGoogle Scholar
  102. King LC (1962) Morphology of the Earth. Oliver and Boyd, EdinburghGoogle Scholar
  103. Kollenz S, Glasmacher UA, Rossello EA et al (2016) Thermochronological constraints on the Cambrian to recent geological evolution of the Argentina passive continental margin. Tectonophysics 716:182–203CrossRefGoogle Scholar
  104. Kooi H, Beaumont C (1994) Escarpment evolution on high-elevation rifted margins: insights derived from a surface processes model that combines diffusion, advection, and reaction. J Geophys Res Solid Earth 99(B6):12191–12209CrossRefGoogle Scholar
  105. Koptev A, Cloetingh S, Burov E et al (2017) Long-distance impact of Iceland plume on Norway’s rifted margin. Sci Rep 7(1):10408CrossRefGoogle Scholar
  106. Kounov A, Niedermann S, de Wit MJ et al (2007) Present denudation rates at selected sections of the South African escarpment and the elevated continental interior based on cosmogenic 3He and 21Ne. S Afr J Geol 110(2–3):235–248CrossRefGoogle Scholar
  107. Kounov A, Viola G, de Wit M et al (2009) Denudation along the Atlantic passive margin: new insights from apatite fission-track analysis on the western coast of South Africa. Geol Soc London Spec Publ 324(1):287–306CrossRefGoogle Scholar
  108. Kounov A, Viola G, Dunkl I et al (2013) Southern African perspectives on the long-term morpho-tectonic evolution of cratonic interiors. Tectonophysics 601:177–191CrossRefGoogle Scholar
  109. Ksienzyk AK, Dunkl I, Jacobs J et al (2014) From orogen to passive margin: constraints from fission track and (U–Th)/He analyses on Mesozoic uplift and fault reactivation in SW Norway. Geol Soc London Spec Publ 390:390–27CrossRefGoogle Scholar
  110. Kusznir NJ, Karner GD (2007) Continental lithospheric thinning and breakup in response to upwelling divergent mantle flow: application to the Woodlark, Newfoundland and Iberia margins. Geol Soc London Spec Publ 282(1):389–419CrossRefGoogle Scholar
  111. Kusznir NJ, Marsden G, Egan SS (1991) A flexural-cantilever simple-shear/pure-shear model of continental lithosphere extension: applications to the Jeanne d’Arc Basin, Grand Banks and Viking Graben, North Sea. Geol Soc London Spec Publ 56(1):41–60CrossRefGoogle Scholar
  112. Lemoine M, Bas T, Arnaud-Vanneau A et al (1986) The continental margin of the Mesozoic Tethys in the western Alps. Mar Petr Geol 3:179–199CrossRefGoogle Scholar
  113. Lidmar-Bergström K, Bonow JM, Japsen P (2013) Stratigraphic landscape analysis and geomorphological paradigms: Scandinavia as an example of phanerozoic uplift and subsidence. Glob Planet Change 100:153–171CrossRefGoogle Scholar
  114. Lidmar-Bergström K, Bonow JM (2009) Hypotheses and observations on the origin of the landscape of southern Norway—a comment regarding the isostasy-climate-erosion hypothesis by Nielsen et al 2008. J Geodyn 48(2):95–100CrossRefGoogle Scholar
  115. Lister GS, Etheridge MA, Symonds PA (1986) Detachment faulting and the evolution of passive continental margins. Geology 14(3):246–250CrossRefGoogle Scholar
  116. Lithgow-Bertelloni C, Silver PG (1998) Dynamic topography, plate driving forces and the African superswell. Nature 395(6699):269–272CrossRefGoogle Scholar
  117. Macdonald D, Gomez-Perez I, Franzese J et al (2003) Mesozoic breakup of SW Gondwana: implications for regional hydrocarbon potential of the southern South Atlantic. Mar Petr Geol 20(3):287–308CrossRefGoogle Scholar
  118. Malusà MG, Fitzgerald PG (2018) Chapter 8. From cooling to exhumation: setting the reference frame for the interpretation of thermochronologic data. In: Malusà MG, Fitzgerald PG (eds) Fission-track thermochronology and its application to geology. SpringerGoogle Scholar
  119. Malusà MG, Fitzgerald PG (2018) Chapter 10. Application of thermochronology to geologic problems: bedrock and detrital approaches. In: Malusà MG, Fitzgerald PG (eds) Fission-track thermochronology and its application to geology. SpringerGoogle Scholar
  120. Malusà MG, Faccenna C, Baldwin SL et al (2015) Contrasting styles of (U) HP rock exhumation along the Cenozoic Adria-Europe plate boundary (western Alps, Calabria, Corsica). Geochem Geophys Geosyst 16(6):1786–1824CrossRefGoogle Scholar
  121. Mathiesen A, Bidstrup T, Christiansen FG (2000) Denudation and uplift history of the Jameson land basin, east Greenland—constrained from maturity and apatite fission track data. Global Planet Change 24(3):275–301CrossRefGoogle Scholar
  122. McKenzie D (1978) Some remarks on the development of sedimentary basins. Earth Planet Sci Lett 40(1):25–32CrossRefGoogle Scholar
  123. Mitchell SG, Montgomery DR (2006) Influence of a glacial buzzsaw on the height and morphology of the cascade range in central Washington state, USA. Quat Res 65(1):96–107CrossRefGoogle Scholar
  124. Modenesi-Gauttieri MC, de Toledo MCM, Hiruma ST et al (2011) Deep weathering and landscape evolution in a tropical plateau. CATENA 85:221–230CrossRefGoogle Scholar
  125. Molnar P, England PC, Jones CH (2015) Mantle dynamics, isostasy, and the support of high terrain. J Geophys Res B: Solid Earth 120(3):1932–1957CrossRefGoogle Scholar
  126. Moore ME, Gleadow AJ, Lovering JF (1986) Thermal evolution of rifted continental margins: new evidence from fission tracks in basement apatites from southeastern Australia. Earth Planet Sci Lett 78(2–3):255–270CrossRefGoogle Scholar
  127. Moore A, Blenkinsop T, Cotterill FW (2009) Southern African topography and erosion history: plumes or plate tectonics? Terra Nova 21(4):310–315CrossRefGoogle Scholar
  128. Morais-Neto JM, Hegarty KA, Karner GD et al (2009) Timing and mechanisms for the generation and modification of the anomalous topography of the Borborema province, northeastern Brazil. Mar Petr Geol 26(7):1070–1086CrossRefGoogle Scholar
  129. Mosar J (2003) Scandinavia’s north Atlantic passive margin. J Geophys Res Solid Earth 108(B8)Google Scholar
  130. Moucha R, Forte AM, Mitrovica JX et al (2008) Dynamic topography and long-term sea-level variations: there is no such thing as a stable continental platform. Earth Planet Sci Lett 271(1):101–108CrossRefGoogle Scholar
  131. Moulin M, Aslanian D, Unternehr P (2010) A new starting point for the south and equatorial Atlantic ocean. Earth Sci Rev 98(1):1–37CrossRefGoogle Scholar
  132. Nielsen SB, Gallagher K, Leighton C et al (2009) The evolution of western Scandinavian topography: a review of neogene uplift versus the ICE (isostasy–climate–erosion) hypothesis. J Geodyn 47(2):72–95CrossRefGoogle Scholar
  133. Ollier CD, Marker ME (1985) The great escarpment of southern Africa. Z Geomorph Suppl 54:37–56Google Scholar
  134. Ollier CD, Pain CF (1997) Equating the basal unconformity with the palaeoplain: a model for passive margins. Geomorphology 19(1–2):1–15CrossRefGoogle Scholar
  135. Omar GI, Steckler MS (1995) Fission track evidence on the initial rifting of the Red sea: two pulses, no propagation. Science 270(5240):1341CrossRefGoogle Scholar
  136. Osmundsen PT, Redfield TF (2011) Crustal taper and topography at passive continental margins. Terra Nova 23(6):349–361CrossRefGoogle Scholar
  137. Partridge TC, Maud RR (1987) Geomorphic evolution of southern Africa since the mesozoic. S Afr J Geol 90(2):179–208Google Scholar
  138. Pavich MJ (1989) Regolith residence time and the concept of surface age of the Piedmont “peneplain”. Geomorphology 2(1–3):181–196CrossRefGoogle Scholar
  139. Pedersen VK, Nielsen SB, Gallagher K (2012) The post-orogenic evolution of the northeast Greenland Caledonides constrained from apatite fission track analysis and inverse geodynamic modelling. Tectonophysics 530:318–330CrossRefGoogle Scholar
  140. Pérez-Díaz L, Eagles G (2014) Constraining South Atlantic growth with seafloor spreading data. Tectonics 33(9):1848–1873CrossRefGoogle Scholar
  141. Péron-Pinvidic G, Manatschal G (2009) The final rifting evolution at deep magma-poor passive margins from Iberia-Newfoundland: a new point of view. Int J Earth Sci 98(7):1581–1597CrossRefGoogle Scholar
  142. Péron-Pinvidic G, Manatschal G, Osmundsen PT (2013) Structural comparison of archetypal Atlantic rifted margins: a review of observations and concepts. Mar Petr Geol 43:21–47CrossRefGoogle Scholar
  143. Persano C, Stuart FM, Bishop P et al (2005) Deciphering continental breakup in eastern Australia using low‐temperature thermochronometers. J Geophys Res Solid Earth 110(B12)Google Scholar
  144. Persano C, Stuart FM, Bishop P et al (2002) Apatite (U–Th)/He age constraints on the development of the Great Escarpment on the southeastern Australian passive margin. Earth Planet Sci Lett 200(1):79–90CrossRefGoogle Scholar
  145. Phillips JD (2002) Erosion, isostatic response, and the missing peneplains. Geomorphology 45(3):225–241CrossRefGoogle Scholar
  146. Praeg D, Stoker MS, Shannon PM et al (2005) Episodic Cenozoic tectonism and the development of the NW European ‘passive’ continental margin. Mar Petr Geol 22(9):1007–1030CrossRefGoogle Scholar
  147. Raab MJ, Brown RW, Gallagher K et al (2002) Late Cretaceous reactivation of major crustal shear zones in northern Namibia: constraints from apatite fission track analysis. Tectonophysics 349(1):75–92CrossRefGoogle Scholar
  148. Raab MJ, Brown RW, Gallagher K et al (2005) Denudational and thermal history of the early Cretaceous Brandberg and Okenyenya igneous complexes on Namibia’s Atlantic passive margin. Tectonics 24(3)CrossRefGoogle Scholar
  149. Redfield TF (2010) On apatite fission track dating and the tertiary evolution of west Greenland topography. J Geol Soc 167:261–271CrossRefGoogle Scholar
  150. Redfield TF, Braathen A, Gabrielsen RH et al (2005) Late Mesozoic to early Cenozoic components of vertical separation across the Møre-Trøndelag fault complex, Norway. Tectonophysics 395(3):233–249CrossRefGoogle Scholar
  151. Redfield TF, Osmundsen PT (2013) The long-term topographic response of a continent adjacent to a hyperextended margin: a case study from Scandinavia. Geol Soc Am Bull 125:184–200CrossRefGoogle Scholar
  152. Redfield TF, Torsvik TH, Andriessen PAM et al (2004) Mesozoic and Cenozoic tectonics of the Møre Trøndelag fault complex, central Norway: constraints from new apatite fission track data. Phys Chem Earth 29(10):673–682CrossRefGoogle Scholar
  153. Riccomini C, Sant’Anna LG, Ferrari AL (2004) Evolução geológica do Rift Continental do Sudeste do Brasil. In: Mantesso Neto V, Bartorelli A, Carneiro CDR et al (eds) Geologia do continente Sul-Americano: evolução da Obra de Fernando Flávio Marques de Almeida. Edições Beca, São Paulo, pp 383–405Google Scholar
  154. Riccomini C, Velázquez VF, Gomes CB (2005) Tectonic controls of the Mesozoic and Cenozoic alkaline magmatism in central-southeastern Brazilian Platform. In: Comin-Chiaramonti P, Gomes CB (eds) Mesozoic to Cenozoic alkaline magmatism in the Brazilian platform, vol 123. EdUSP, Sao Paulo, pp 31–56Google Scholar
  155. Rohrman M, van der Beek P, Andriessen P (1994) Syn-rift thermal structure and post-rift evolution of the Oslo rift (southeast Norway): new constraints from fission track thermochronology. Earth Planet Sci Lett 127(1–4):39–54CrossRefGoogle Scholar
  156. Rohrman M, van der Beek P, Andriessen P et al (1995) Meso-Cenozoic morphotectonic evolution of southern Norway: Neogene domal uplift inferred from apatite fission track thermochronology. Tectonics 14(3):704–718CrossRefGoogle Scholar
  157. Rouby D, Braun J, Robin C et al (2013) Long-term stratigraphic evolution of Atlantic-type passive margins: a numerical approach of interactions between surface processes, flexural isostasy and 3D thermal subsidence. Tectonophysics 604:83–103CrossRefGoogle Scholar
  158. Sacek V (2017) Post-rift influence of small-scale convection on the landscape evolution at divergent continental margins. Earth Planet Sci Lett 459:48–57.  https://doi.org/10.1016/j.epsl.2016.11.026CrossRefGoogle Scholar
  159. Sacek V, Braun J, van der Beek P (2012) The influence of rifting on escarpment migration on high elevation passive continental margins. J Geophys Res Solid Earth 117(B4)CrossRefGoogle Scholar
  160. Scharf TE, Codilean AT, de Wit M et al (2013) Strong rocks sustain ancient postorogenic topography in southern Africa. Geology 41(3):331–334CrossRefGoogle Scholar
  161. Schermer ER, Redfield TF, Indrevær K (2017) Geomorphology and topography of relict surfaces: the influence of inherited crustal structure in the northern Scandinavian mountains. J Geol Soc 174(1):93–109CrossRefGoogle Scholar
  162. Seidl MA, Weissel JK, Pratson LF (1996) The kinematics and pattern of escarpment retreat across the rifted continental margin of SE Australia. Basin Res 8(3):301–316CrossRefGoogle Scholar
  163. Skogseid J, Planke S, Faleide JI et al (2000) NE Atlantic continental rifting and volcanic margin formation. Geol Soc London Spec Publ 167(1):295–326CrossRefGoogle Scholar
  164. Stanley JR, Flowers RM, Bell DR (2013) Kimberlite (U–Th)/He dating links surface erosion with lithospheric heating, thinning, and metasomatism in the southern African plateau. Geology 41(12):1243–1246CrossRefGoogle Scholar
  165. Stanley JR, Flowers RM, Bell DR (2015) Erosion patterns and mantle sources of topographic change across the southern African plateau derived from the shallow and deep records of kimberlites. Geochem Geophys Geosyst 16(9):3235–3256CrossRefGoogle Scholar
  166. Steer P, Huismans RS, Valla PG et al (2012) Bimodal Plio-Quaternary glacial erosion of fjords and low-relief surfaces in Scandinavia. Nat Geosci 5(9):635–639CrossRefGoogle Scholar
  167. Summerfield MA (1985) Plate tectonics and landscape development on the African continent. In: Morisawa M, Hack JT (eds) Tectonic geomorphology, vol 15. Allen and Unwin, Boston, pp 27–51Google Scholar
  168. Summerfield MA (1991) Sub-aerial denudation of passive margins: regional elevation versus local relief models. Earth Planet Sci Lett 102(3–4):460–469CrossRefGoogle Scholar
  169. Tello-Saenz C, Hackspacher PC, Neto JH et al (2003) Recognition of Cretaceous, Paleocene, and Neogene tectonic reactivation through apatite fission-track analysis in Precambrian areas of southeast Brazil: association with the opening of the South Atlantic ocean. J South Amer Earth Sci 15(7):765–774CrossRefGoogle Scholar
  170. Thomson K, Green PF, Whitham AG et al (1999) New constraints on the thermal history of north-east Greenland from apatite fission-track analysis. Geol Soc Am Bull 111:1054–1068CrossRefGoogle Scholar
  171. Tinker J, de Wit M, Brown R (2008a) Mesozoic exhumation of the southern Cape, South Africa, quantified using apatite fission track thermochronology. Tectonophysics 455(1):77–93CrossRefGoogle Scholar
  172. Tinker J, de Wit M, Brown R (2008b) Linking source and sink: evaluating the balance between onshore erosion and offshore sediment accumulation since Gondwana break-up, South Africa. Tectonophysics 455(1):94–103CrossRefGoogle Scholar
  173. Torsvik TH, Rousse S, Labails C et al (2009) A new scheme for the opening of the South Atlantic ocean and the dissection of an Aptian salt basin. Geophys J Int 177(3):1315–1333CrossRefGoogle Scholar
  174. Tucker GE, Slingerland RL (1994) Erosional dynamics, flexural isostasy, and long-lived escarpments: a numerical modeling study. J Geophys Res Solid Earth 99(B6):12229–12243CrossRefGoogle Scholar
  175. Turner JP, Green PF, Holford SP et al (2008) Thermal history of the Rio Muni (West Africa)–NE Brazil margins during continental breakup. Earth Planet Sci Lett 270(3):354–367CrossRefGoogle Scholar
  176. van den Haute P (1977) Apatite fission track dating of Precambrian intrusive rocks from the southern Rogaland (south-western Norway). Bull Belg Ver Geologie 86:97–110Google Scholar
  177. van der Beek P, Andriessen P, Cloetingh S (1995) Morphotectonic evolution of rifted continental margins: inferences from a coupled tectonic-surface processes. Tectonics 14(2):406–421CrossRefGoogle Scholar
  178. van der Beek P, Summerfield MA, Braun J et al (2002) Modeling post-breakup landscape development and denudational history across the southeast African (Drakensberg Escarpment) margin. J Geophys Res Solid Earth 107(B12)Google Scholar
  179. Vasconcelos PM, Knesel KM, Cohen BE et al (2008) Geochronology of the Australian Cenozoic: a history of tectonic and igneous activity, weathering, erosion, and sedimentation. Aust J Earth Sci 55(6–7):865–914CrossRefGoogle Scholar
  180. Watts AB (2012) Models for the evolution of passive margins. In: Roberts DG, Bally AW (eds) Regional geology and tectonics: Phanerozoic rift systems and sedimentary basins. Elsevier, Amsterdam, pp 32–57CrossRefGoogle Scholar
  181. Weissel JK, Karner GD (1989) Flexural uplift of rift flanks due to mechanical unloading of the lithosphere during extension. J Geophys Res Solid Earth 94(B10):13919–13950CrossRefGoogle Scholar
  182. Weissel JK, Seidl MA (1998) Inland propagation of erosional escarpments and river profile evolution across the southeast Australian passive continental margin. In: Tinkler KJ, Wohl EE (eds) Rivers over rock: fluvial processes in bedrock channels. American Geophysical Union, Washington DC, pp 189–206CrossRefGoogle Scholar
  183. Wernicke B (1985) Uniform-sense normal simple shear of the continental lithosphere. Can J Earth Sci 22(1):108–125CrossRefGoogle Scholar
  184. Whipple KX, DiBiase RA, Ouimet WB et al (2017) Preservation or piracy: diagnosing low-relief, high-elevation surface formation mechanisms. Geology 45(1):91–94CrossRefGoogle Scholar
  185. Whittaker JM, Goncharov A, Williams SE et al (2013) Global sediment thickness data set updated for the Australian-Antarctic southern ocean. Geochem Geophys Geosyst 14(8):3297–3305CrossRefGoogle Scholar
  186. Wildman M, Brown R, Persano C et al (2017) Contrasting Mesozoic evolution across the boundary between on and off craton regions of the South African plateau inferred from apatite fission track and (U-Th-Sm)/He thermochronology. J Geophys Res Solid Earth 122(2):1517–1547CrossRefGoogle Scholar
  187. Wildman M, Brown R, Watkins R et al (2015) Post breakup tectonic inversion across the southwestern cape of South Africa: new insights from apatite and zircon fission track thermochronometry. Tectonophysics 654:30–55CrossRefGoogle Scholar
  188. Wildman M, Brown R, Beucher R et al (2016) The chronology and tectonic style of landscape evolution along the elevated Atlantic continental margin of South Africa resolved by joint apatite fission track and (U-Th-Sm)/He thermochronology. Tectonics 35(3):511–545CrossRefGoogle Scholar
  189. Yang R, Willett SD, Goren L (2015) In situ low-relief landscape formation as a result of river network disruption. Nature 520(7548):526–529CrossRefGoogle Scholar
  190. Ziegler PA, Cloetingh S (2004) Dynamic processes controlling evolution of rifted basins. Earth Sci Rev 64(1):1–50CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Géosciences RennesUniversité de Rennes 1RennesFrance
  2. 2.School of Earth SciencesUniversity of MelbourneVictoriaAustralia

Personalised recommendations