Advertisement

The Application of Low-Temperature Thermochronology to the Geomorphology of Orogenic Systems

  • Taylor F. Schildgen
  • Peter A. van der Beek
Chapter
Part of the Springer Textbooks in Earth Sciences, Geography and Environment book series (STEGE)

Abstract

The geomorphologic evolution of orogens has been a subject of revived interest and accelerated development over the past few decades, thanks to both the increasing availability of high-resolution data and computing power and the realisation that orogenic topography plays a central role in coupling deep-earth and surface processes. Low-temperature thermochronology takes a central place in this revived interest, as it allows us to link quantitative geomorphology to the spatial and temporal patterns of exhumation. In particular, rock cooling rates over million-year timescales derived from thermochronological data have been used to reconstruct rock exhumation histories, to detect km-scale relief changes, and to document lateral shifts in relief. In this chapter, we review how classic approaches of determining exhumation histories have contributed to our understanding of landscape evolution, and we highlight novel approaches to quantifying relief changes that have been developed over the last decade. We discuss how patterns of exhumation in laterally accreting orogens are recorded by low-temperature thermochronology, and how such data can be applied to infer temporal variations in exhumation rates, providing indirect constraints on topographic development. We subsequently review recent studies aimed at quantifying relief development and modification associated with river incision, glacial modifications of landscapes, and shifts in the position of range divides. We also point out how interpretations of some datasets are non-unique, emphasizing the importance of understanding the full range of processes that may influence landscape morphology and how each may affect spatial patterns of thermochronologic ages.

Notes

Acknowledgements

We thank Alison Duvall and Scott Miller for constructive reviews, and Marco G. Malusà and Paul G. Fitzgerald for editorial handling.

References

  1. Ahnert F (1970) Functional relationships between denudation, relief, and uplift in large mid-latitude drainage basins. Am J Sci 268:243–263CrossRefGoogle Scholar
  2. Anders AM, Roe GH, Montgomery DR, Hallet B (2008) Influence of precipitation phase on the form of mountain ranges. Geology 36:479–482CrossRefGoogle Scholar
  3. Avdeev B, Niemi NA, Clark MK (2011) Doing more with less: Bayesian estimation of erosion models with detrital thermochronologic data. Earth Planet Sci Lett 305(3–4):385–395CrossRefGoogle Scholar
  4. Baldwin SL, Lister GS (1998) Thermochronology of the South Cyclades Shear Zone, Ios, Greece: effects of ductile shear in the argon partial retention zone. J Geophys Res 103:7315–7336CrossRefGoogle Scholar
  5. Baldwin SL, Fitzgerald PG, Malusà MG (2018) Chapter 13. Crustal exhumation of plutonic and metamorphic rocks: constraints from fission-track thermochronology. In: Malusà MG, Fitzgerald PG (eds) Fission-track thermochronology and its application to geology. SpringerGoogle Scholar
  6. Batt GE, Braun J (1999) The tectonic evolution of the Southern Alps, New Zealand: insights from fully thermally coupled dynamical modeling. Geophys J Int 136:403–420CrossRefGoogle Scholar
  7. Batt GE, Brandon MT, Farley KA, Roden-Tice M (2001) Tectonic synthesis of the Olympic Mountains segment of the Cascadia wedge using 2-D thermal and kinematic modeling of isotopic ages. J Geophys Res 106(B11):26731–26746CrossRefGoogle Scholar
  8. Beaumont C, Fullsack P, Hamilton J (1992) Erosional control of active compressional orogens. In: McClay KR (ed) Thrust tectonics. Chapman and Hall, London, pp 1–18Google Scholar
  9. Bernet M (2018) Chapter 15. Exhumation studies of mountain belts based on detrital fission-track analysis on sand and sandstones. In: Malusà MG, Fitzgerald PG (eds) Fission-track thermochronology and its application to geology. SpringerGoogle Scholar
  10. Bernet M, Garver JI (2005) Fission-track analysis of detrital zircon. Rev Mineral Geochem 58(1):205–237CrossRefGoogle Scholar
  11. Bernet M, Zattin M, Garver JI, Brandon MT, Vance JA (2001) Steady-state exhumation of the European Alps. Geology 29:35–38CrossRefGoogle Scholar
  12. Binnie SA, Phillips WM, Summerfield MA, Fifield LK (2007) Tectonic uplift, threshold hillslopes, and denudation rates in a developing mountain range. Geology 35(8):743–746CrossRefGoogle Scholar
  13. Blackwelder E (1934) Origin of the Colorado river. Geol Soc Am Bull 45:551–566CrossRefGoogle Scholar
  14. Bonnet S (2009) Shrinking and splitting of drainage basins in orogenic landscapes from the migration of the main drainage divide. Nature Geosci 2:766–771CrossRefGoogle Scholar
  15. Brandon MT, Vance JA (1992) Fission-track ages of detrital zircon grains: implications for the tectonic evolution of the Cenozoic Olympic subduction complex. Am J Sci 292:565–636CrossRefGoogle Scholar
  16. Brandon MT, Roden-Tice MK, Garver JI (1998) Late Cenozoic exhumation of the Cascadia accretionary wedge in the Olympic mountains, NW Washington state. Geol Soc Am Bull 110:985–1009CrossRefGoogle Scholar
  17. Braun J (2002a) Quantifying the effect of recent relief changes on age-elevation relationships. Earth Planet Sci Lett 200:331–343CrossRefGoogle Scholar
  18. Braun J (2002b) Estimating exhumation rate and relief evolution by spectral analysis of age-elevation datasets. Terra Nova 14:210–214CrossRefGoogle Scholar
  19. Braun J (2003) Pecube: a new finite-element code to solve the 3D heat transport equation including the effects of a time-varying, finite amplitude surface topography. Computers Geosci 29:787–794CrossRefGoogle Scholar
  20. Braun J (2005) Quantitative constraints on the rate of landform evolution derived from low-temperature themrochronology. Rev Mineral Geochem 58:351–374CrossRefGoogle Scholar
  21. Braun J, Robert X (2005) Constraints on the rate of post-orogenic erosional decay from low-temperature thermochronologic data: application to the Dabie Shan, China. Earth Surf Proc Land 30(9):1203–1225CrossRefGoogle Scholar
  22. Braun J, van der Beek P, Batt G (2006) Quantitative thermochronology: numerical methods for the interpretation of thermochronological data. Cambridge University Press, Cambridge, p 258Google Scholar
  23. Braun J, Guillocheau F, Robin C, Baby G, Jelsma H (2014) Rapid erosion of the southern African plateau as it climbs over a mantle superswell. J Geophys Res 119(7):6093–6112CrossRefGoogle Scholar
  24. Brewer ID, Burbank DW (2006) Thermal and kinematic modeling of bedrock and detrital cooling ages in the central Himalaya. J Geophys Res 111(B9).  https://doi.org/10.1029/2004jb003304
  25. Brewer ID, Burbank DW, Hodges KV (2003) Modelling detrital cooling-age populations: insights from two Himalayan catchments. Basin Res 15(3):305–320CrossRefGoogle Scholar
  26. Burbank DW, Leland J, Fielding E, Anderson RS, Brozovic N, Reid MR, Duncan C (1996) Bedrock incision, rock uplift and threshold hillslopes in the northwestern Himalayas. Nature 379:505–510CrossRefGoogle Scholar
  27. Clark MK, Maheo G, Saleeby J, Farley KA (2005a) The non-equilibrium landscape of the southern Sierra Nevada, California. GSA Today 15(9):4–10CrossRefGoogle Scholar
  28. Clark MK, House MA, Royden LH, Whipple KX, Burchfiel BC, Zhang X, Tang W (2005b) Late Cenozoic uplift of southeastern Tibet. Geology 33(6):525–528CrossRefGoogle Scholar
  29. Crowley TJ, Burke KC (eds) (1998) Tectonic boundary conditions for climate reconstructions. Oxford University Press, Oxford, p 285Google Scholar
  30. Densmore MS, Ehlers TA, Woodsworth GJ (2007) Effect of Alpine glaciations on thermochronometer age-elevation profiles. Geophys Res Lett 34:L02502.  https://doi.org/10.1029/2006GL028317CrossRefGoogle Scholar
  31. Dumitru TA, Duddy IR, Green PF (1994) Mesozoic-Cenozoic burial, uplift, and erosion history of the west-central Colorado plateau. Geology 22(6):499–502CrossRefGoogle Scholar
  32. Duvall AR, Clark MK, Avdeev B, Farley KA, Chen Z (2012) Widespread late Cenozoic increase in erosion rates across the interior of eastern Tibet constrained by detrital low-temperature thermochronometry. Tectonics 31(3).  https://doi.org/10.1029/2011tc002969CrossRefGoogle Scholar
  33. Ehlers T, Chaudhri T, Kumar S, Fuller C, Willett S, Ketcham RA, Brandon MT, Belton DX, Kohn BP, Gleadow AJW, Dunai TJ, Fu FQ (2005) Computational tools for low-temperature thermochronometer interpretation. Rev Mineral Geochem 58(1):589–622CrossRefGoogle Scholar
  34. Ehlers TA, Farley KA, Rusmore ME, Woodsworth GJ (2006) Apatite (U–Th)/He signal of large-magnitude accelerated glacial erosion, southwest British Columbia. Geology 34(9):765–768CrossRefGoogle Scholar
  35. Fitzgerald PG, Malusà MG (2018) Chapter 9. Concept of the exhumed partial annealing (retention) zone and age-elevation profiles in thermochronology. In: Malusà MG, Fitzgerald PG (eds) Fission-track thermochronology and its application to geology. SpringerGoogle Scholar
  36. Fitzgerald PG, Sorkhabi RB, Redfield TF, Stump E (1995) Uplift and denudation of the central Alaska range: a case study in the use of apatite fission track thermochronology to determine absolute uplift parameters. J Geophys Res 100(B10):20175–20191CrossRefGoogle Scholar
  37. Fitzgerald PG, Duebendorfer EM, Faulds JE, O’Sullivan P (2009) South Virgin-White Hills detachment fault system of SE Nevada and NW Arizona: applying apatite fission track thermochronology to constrain the tectonic evolution of a major continental detachment fault. Tectonics 28(2).  https://doi.org/10.1029/2007tc002194CrossRefGoogle Scholar
  38. Flowers RM, Farley KA (2012) Apatite 4He/3He and (U–Th)/He evidence for an ancient Grand Canyon. Science 338(6114):1616–1619CrossRefGoogle Scholar
  39. Flowers RM, Wernicke BP, Farley KA (2008) Unroofing, incision and uplift history of the southwestern Colorado plateau from (U–Th)/He apatite thermochronometry. Geol Soc Am Bull 120:571–587CrossRefGoogle Scholar
  40. Fox M, Shuster D (2014) The influence of burial heating on the (U–Th)/He system in apatite: Grand Canyon case study. Earth Planet Sci Lett 397:174–183CrossRefGoogle Scholar
  41. Fox M, Herman F, Willett SD, May DA (2014) A linear inversion method to infer exhumation rates in space and time from thermochronometric data. Earth Surf Dyn 2:47–65CrossRefGoogle Scholar
  42. Garver JI, Brandon MT, Roden-Tice M, Kamp PJJ (1999) Exhumation history of orogenic highlands determined by detrital fission-track thermochronology. Geol Soc Spec Publ 154:283–304CrossRefGoogle Scholar
  43. Gleadow AJW, Fitzgerald PG (1987) Uplift history and structure of the Transantarctic mountains: new evidence from fission track dating of basement apatites in the Dry Valley area, southern Victoria Land. Earth Planet Sci Lett 82:1–14CrossRefGoogle Scholar
  44. Glotzbach C, van der Beek PA, Spiegel C (2011a) Episodic exhumation and relief growth in the Mont Blanc massif, western Alps from numerical modeling of thermochronology data. Earth Planet Sci Lett 304:417–430CrossRefGoogle Scholar
  45. Glotzbach C, Bernet M, van der Beek P (2011b) Detrital thermochronology records changing source areas and steady exhumation in the western european alps. Geology 39(3):239–242CrossRefGoogle Scholar
  46. Haeuselmann P, Granger DE, Jeannin PY (2007) Abrupt glacial valley incision at 0.8 Ma dated from cave deposits in Switzerland. Geology 35(2):143–146CrossRefGoogle Scholar
  47. Harkins N, Kirby E, Heimsath A, Robinson R, Reiser U (2007) Transient fluvial incision in the headwaters of the Yellow river, northeastern Tibet, China. J Geophys Res 112(F3).  https://doi.org/10.1029/2006jf000570
  48. Herman F, Copeland P, Avouac J-P, Bollinger L, Mahéo G, Le Fort P, Rai S, Foster D, Pêcher A, Stüwe K, Henry P (2010) Exhumation, crustal deformation, and thermal structure of the Nepal Himalaya derived from the inversion of thermochronological and thermobarometric data and modeling of the topography. J Geophys Res 115(B6).  https://doi.org/10.1029/2008jb006126
  49. Hetzel R, Dunkl I, Haider V, Strobl M, von Eynatten H, Ding L, Frei D (2011) Peneplain formation in southern Tibet predates the India-Asia collision and plateau uplift. Geology 39(10):983–986CrossRefGoogle Scholar
  50. House MA, Wernicke BP, Farley KA, Dumitru TA (1997) Cenozoic thermal evolution of the central Sierra Nevada, California, from (U–Th)/He thermochronometry. Earth Planet Sci Lett 151:167–179CrossRefGoogle Scholar
  51. House MA, Wernicke BP, Farley KA (1998) Dating topography of the Sierra Nevada, California, using apatite (U–Th)/He ages. Nature 396:66–69.  https://doi.org/10.1038/23926CrossRefGoogle Scholar
  52. House MA, Wernicke BP, Farley KA (2001) Paleogeomorphology of the Sierra Nevada, California, from (U–Th)/He ages in apatite. Am J Sci 301:77–102CrossRefGoogle Scholar
  53. Hurford AJ (1986) Cooling and uplift patterns in the Lepontine alps, south central Switzerland, and an age of vertical movement on the insubric fault line. Contrib Mineral Petrol 92:413–427CrossRefGoogle Scholar
  54. Hurford AJ, Hunziker JC, Stöckhert B (1991) Constraints on the late thermotectonic evolution of the western Alps: evidence for episodic rapid uplift. Tectonics 10(4):758–769CrossRefGoogle Scholar
  55. Jamieson RA, Beaumont C (1988) Orogeny and metamorphism: a model for deformation and P-T-t paths with applications to the central and southern Appalachians. Tectonics 7:417–445CrossRefGoogle Scholar
  56. Karlstrom K, Crow R, McIntosh W, Peters L, Pederson J, Raucci J, Crossey LJ, Umhoefer P, Dunbar N (2007) 40Ar/39Ar and field studies of Quaternary basalts in Grand Canyon and model for carving Grand Canyon: quantifying the interaction of river incision and normal faulting across the western edge of the Colorado plateau. Geol Soc Am Bull 119:1283–1312CrossRefGoogle Scholar
  57. Karlstrom KE, Crow R, Crossey LJ, Coblentz D, van Wijk J (2008) Model for tectonically driven incision of the younger than 6 Ma Grand Canyon. Geology 31:835–838CrossRefGoogle Scholar
  58. Karlstrom KE, Lee JP, Kelley SA, Crow RS, Crossey LJ, Young RA, Lazear G, Beard LS, Ricketts JW, Fox M, Shuster DL (2014) Formation of the Grand Canyon 5 to 6 million years ago through integration of older palaeocanyons. Nature Geosci 7(3):239–244CrossRefGoogle Scholar
  59. Kirby E, Reiners PW, Krol MA, Whipple KX, Hodges KV, Farley KA, Tang W, Chen Z (2002) Late Cenozoic evolution of the eastern margin of the Tibetan plateau: inferences from 40Ar/39Ar and (U–Th)/He thermochronology. Tectonics 21(1):1001CrossRefGoogle Scholar
  60. Landry KR, Coutand I, Whipp DM Jr, Grujic D, Hourigan JK (2016) Late Neogene tectonically driven crustal exhumation of the Sikkim Himalaya: insights from inversion of multithermochronologic data. Tectonics 35(3):833–859CrossRefGoogle Scholar
  61. Larsen IJ, Montgomery DR (2012) Landslide erosion coupled to tectonics and river incision. Nat Geosci 5:468–473CrossRefGoogle Scholar
  62. Liu T-K, Hsieh S, Chen Y-G, Chen W-S (2001) Thermo-kinematic evolution of the Taiwan oblique-collision mountain belt as revealed by zircon fission track dating. Earth Planet Sci Lett 186:45–56CrossRefGoogle Scholar
  63. Lucchitta I (1972) Early history of the Colorado river in the basin and range province. Geol Soc Am Bull 83:1933–1948CrossRefGoogle Scholar
  64. Malusà MG, Fitzgerald PG (2018) Chapter 8. From cooling to exhumation: setting the reference frame for the interpretation of thermochronologic data. In: Malusà MG, Fitzgerald PG (eds) Fission-track thermochronology and its application to geology. SpringerGoogle Scholar
  65. Malusà MG, Fitzgerald PG (2018) Chapter 10. Application of thermochronology to geologic problems: bedrock and detrital approaches. In: Malusà MG, Fitzgerald PG (eds) Fission-track thermochronology and its application to geology. SpringerGoogle Scholar
  66. Malusà MG, Garzanti E (2018) Chapter 7. The sedimentology of detrital thermochronology. In: Malusà MG, Fitzgerald PG (eds) Fission-track thermochronology and its application to geology. SpringerGoogle Scholar
  67. Malusà MG, Resentini A, Garzanti E (2016) Hydraulic sorting and mineral fertility bias in detrital geochronology. Gondwana Res 31:1–19CrossRefGoogle Scholar
  68. Mancktelow NS, Grasemann B (1997) Time-dependent effects of heat advection and topography on cooling histories during erosion. Tectonophysics 270:167–195CrossRefGoogle Scholar
  69. Matmon A, Bierman PR, Larsen J, Southworth S, Pavich M, Caffee M (2003) Temporally and spatially uniform rates of erosion in the southern Appalachian great smoky mountains. Geology 31(2):155–158CrossRefGoogle Scholar
  70. McPhillips D, Brandon MT (2012) Topographic evolution of the Sierra Nevada measured directly by inversion of low-temperature thermochronology. Am J Sci 312:90–116CrossRefGoogle Scholar
  71. Miller SR, Slingerland RL, Kirby E (2007) Characteristics of steady state fluvial topography above fault-bend folds. J Geophys Res 112(F4).  https://doi.org/10.1029/2007jf000772
  72. Montero-López C, Strecker MR, Schildgen TF, Hongn F, Guzmán S, Bookhagen B, Sudo M (2014) Local high relief at the southern margin of the Andean plateau by 9 Ma: evidence from ignimbritic valley fills and river incision. Terra Nova 26(6):454–460CrossRefGoogle Scholar
  73. Montgomery DR, Brandon MT (2002) Topographic controls on erosion rates in tectonically active mountain ranges. Earth Planet Sci Lett 201(3–4):481–489CrossRefGoogle Scholar
  74. Moon S, Chamberlain CP, Blisniuk K, Levine N, Rood DH, Hilley GE (2011) Climatic control of denudation in the deglaciated landscape of the Washington cascades. Nat Geosci 4:469–473CrossRefGoogle Scholar
  75. Moore MA, England PC (2001) On the inference of denudation rates from cooling ages of minerals. Earth Planet Sci Lett 185:265–284CrossRefGoogle Scholar
  76. Mulch A (2016) Stable isotope paleoaltimetry and the evolution of landscapes and life. Earth Planet Sci Lett 433(1):180–191CrossRefGoogle Scholar
  77. Muttoni G, Carcano C, Garzanti E, Ghielmi M (2003) Onset of major Pleistocene glaciations in the Alps. Geology 31(11):989–992CrossRefGoogle Scholar
  78. Olen SM, Ehlers TA, Densmore MS (2012) Limits to reconstructing paleotopography from thermochronometer data. J Geophys Res 117:F01024CrossRefGoogle Scholar
  79. Ouimet W, Whipple KX, Granger DE (2009) Beyond threshold hillslopes: channel adjustment to base-level fall in tectonically active mountain ranges. Geology 37(7):579–582CrossRefGoogle Scholar
  80. Ouimet W, Whipple K, Royden L, Reiners P, Hodges K, Pringle M (2010) Regional incision of the eastern margin of the Tibetan plateau. Lithosphere 2(1):50–63CrossRefGoogle Scholar
  81. Pederson J, Karlstrom KE, Sharp W, McIntosh W (2002) Differential incision of the Grand Canyon related to Quaternary faulting—constraints from U-series and Ar/Ar dating. Geology 30(8):739–742CrossRefGoogle Scholar
  82. Polyak V, Hill C, Asmerom Y (2008) Age and evolution of the Grand Canyon revealed by U-Pb dating of water table-type speleothems. Science 321:1377–1380CrossRefGoogle Scholar
  83. Reiners PW, Brandon MT (2006) Using thermochronology to understand orogenic erosion. Annu Rev Earth Planet Sci 34:419–466CrossRefGoogle Scholar
  84. Reiners PW, Ehlers TA, Mitchell SG, Montgomery DR (2003a) Coupled spatial variations in precipitation and long-term erosion rates across the Washington cascades. Nature 426:645–647CrossRefGoogle Scholar
  85. Reiners PW, Zhou Z, Ehlers TA, Xu C, Brandon MT, Donelick RA, Nicolescu S (2003b) Post-orogenic evolution of the Dabie Shan, eastern China, from (U–Th)/He and fission-track thermochronology. Am J Sci 303(6):489–518CrossRefGoogle Scholar
  86. Robert X, van der Beek P, Braun J, Perry C, Dubille M, Mugnier J-L (2009) Assessing Quaternary reactivation of the main central thrust zone (central Nepal Himalaya): new thermochronologic data and numerical modeling. Geology 37(8):731–734CrossRefGoogle Scholar
  87. Robert X, van der Beek P, Braun J, Perry C, Mugnier J-L (2011) Control of detachment geometry on lateral variations in exhumation rates in the Himalaya: insights from low-temperature thermochronology and numerical modeling. J Geophys Res 116(B5)Google Scholar
  88. Roe GH, Montgomery DR, Hallet B (2003) Orographic precipitation and the relief of mountain ranges. J Geophys Res 108:2315CrossRefGoogle Scholar
  89. Rohrmann A, Kapp P, Carrapa B, Reiners PW, Guynn J, Ding J, Heizler M (2012) Thermochronologic evidence for plateau formation in central Tibet by 45 Ma. Geology 40(2):187–190CrossRefGoogle Scholar
  90. Ruddiman WF (ed) (1997) Tectonic uplift and climate change. Plenum, New York, p 535Google Scholar
  91. Ruhl KW, Hodges KV (2005) The use of detrital mineral cooling ages to evaluate steady state assumptions in active orogens: an example from the central Nepalese Himalaya. Tectonics 24(4):TC4015CrossRefGoogle Scholar
  92. Schildgen TF, Hodges KV, Whipple KX, Reiners PW, Pringle MS (2007) Uplift of the western margin of the Andean plateau revealed from canyon incision history, southern Peru. Geology 35:523–526CrossRefGoogle Scholar
  93. Schildgen TF, Ehlers TA, Whipp DM Jr, van Soest MC, Whipple KX, Hodges KV (2009) Quantifying canyon incision and Andean plateau surface uplift, southwest Peru: a thermochronometer and numerical modeling approach. J Geophys Res 114:F04014CrossRefGoogle Scholar
  94. Schildgen TF, Balco G, Shuster DL (2010) Canyon incision and knickpoint propagation recorded by apatite 4He/3He thermochronometry. Earth Planet Sci Lett 293:377–387CrossRefGoogle Scholar
  95. Shuster DL, Farley KA (2004) 4He/3He thermochronometry. Earth Planet Sci Lett 217:1–17Google Scholar
  96. Shuster DL, Farley KA (2005) 4He/3He thermochronometry: theory, practice, and potential complications. Rev Mineral Geochem 58:181–203CrossRefGoogle Scholar
  97. Shuster DL, Ehlers TA, Rusmore ME, Farley KA (2005) Rapid glacial erosion at 1.8 Ma revealed by 4He/3He thermochronometry. Science 310:1668–1670CrossRefGoogle Scholar
  98. Shuster DL, Cuffey KM, Sanders JW, Balco G (2011) Thermochronometry reveals heaward propagation of erosion in an alpine landscape. Science 332:84–88CrossRefGoogle Scholar
  99. Simon-Labric T, Brocard GY, Teyssier C, van der Beek P, Reiners PW, Shuster DL, Murray KE, Whitney DL (2014) Low-temperature thermochronologic signature of range-divide migration and breaching in the north cascades. Lithosphere 6(6):473–482CrossRefGoogle Scholar
  100. Spotila JA (2005) Applications of low-temperature thermochronometry to quantification of recent exhumation in mountain belts. Rev Mineral Geochem 58:449–466CrossRefGoogle Scholar
  101. Stock GM, Anderson RS, Finkel RC (2004) Pace of landscape evolution in the Sierra Nevada, California, revealed by cosmogenic dating of cave sediments. Geology 32:193–196CrossRefGoogle Scholar
  102. Stüwe L, White R, Brown X (1994) The influence of eroding topography on steady-state isotherms; application to fission-track analysis. Earth Planet Sci Lett 124:63–74CrossRefGoogle Scholar
  103. Thouret J-C, Wörner G, Gunnell Y, Singer B, Zhang X, Souriot T (2007) Geochronologic and stratigraphic constraints on canyon incision and Miocene uplift of the central Andes in Peru. Earth Planet Sci Lett 263(3–4):151–166CrossRefGoogle Scholar
  104. Valla PG, Herman F, van der Beek PA, Braun J (2010) Inversion of thermochronological age-elevation profiles to extract independent estimates of denudation and relief history—I: theory and conceptual model. Earth Planet Sci Lett 295:511–522CrossRefGoogle Scholar
  105. Valla PG, Shuster DL, van der Beek PA (2011) Significant increase in relief of the European Alps during mid-Pleistocene glaciations. Nat Geosci 4:688–692CrossRefGoogle Scholar
  106. van der Beek P, van Melle J, Guillot S, Pêcher A, Reiners PW, Nicolescu S, Latif M (2009) Eocene Tibetan plateau remnants preserved in the northwest Himalaya. Nat Geosci 2:364–368CrossRefGoogle Scholar
  107. van der Beek PA, Valla P, Herman F, Braun J, Persano C, Dobson KJ, Labrin E (2010) Inversion of thermochronological age-elevation profiles to extract independent estimates of denudation and relief history—II: application to the French Western Alps. Earth Planet Sci Lett 296:9–22CrossRefGoogle Scholar
  108. van der Beek P, Litty C, Baudin M, Mercier J, Robert X, Hardwick E (2016) Contrasting tectonically driven exhumation and incision patterns, western versus central Nepal Himalaya. Geology 44(4):327–330CrossRefGoogle Scholar
  109. Wagner GA, Reimer GM (1972) Fission track tectonics: the tectonic interpretation of fission track ages. Earth Planet Sci Lett 14:263–268CrossRefGoogle Scholar
  110. Wagner GA, Reimer GM, Jäger E (1977) Cooling ages derived by apatite fission track, mica Rb-Sr, and K-Ar dating: the uplift and cooling history of the central Alps. Mem Inst Geol Mineral Univ Padova 30:1–27Google Scholar
  111. Wernicke B (2011) The California river and its role in carving Grand Canyon. Geol Soc Am Bull 123:1288–1316CrossRefGoogle Scholar
  112. Whipp DM Jr, Ehlers TA, Blythe AE, Huntington KW, Hodges KV, Burbank DW (2007) Plio-Quaternary exhumation history of the central Nepalese Himalaya: 2. thermokinematic and thermochronometer age prediction model. Tectonics 26(3)CrossRefGoogle Scholar
  113. Whipple KX, Tucker GE (1999) Dynamics of the stream-power river incision model: implications for height limits of mountain ranges, landscape response timescales, and research needs. J Geophys Res 104:17661–17674CrossRefGoogle Scholar
  114. Willett SD (1999) Orogeny and orography: the effects of erosion on the structure of mountain belts. J Geophys Res 104:28957–28981CrossRefGoogle Scholar
  115. Willett SD, Brandon MT (2002) On steady states in mountain belts. Geology 30(2):175–178CrossRefGoogle Scholar
  116. Willett SD, Slingerland R, Hovius N (2001) Uplift, shortening, and steady state topography in active mountain belts. Am J Sci 301:455–485CrossRefGoogle Scholar
  117. Willett SD, Fisher D, Fuller C, En-Chao Y, Chia-Yu L (2003) Erosion rates and orogenic-wedge kinematics in Taiwan inferred from fission-track thermochronology. Geology 31(11):945–948CrossRefGoogle Scholar
  118. Wolf RA, Farley KA, Kass DM (1998) Modeling of the temperature sensitivity of the apatite (U–Th)/He thermochronometer. Chem Geol 148:105–114CrossRefGoogle Scholar
  119. Yang R, Fellin MG, Herman F, Willett SD, Wang W, Maden C (2016) Spatial and temporal pattern of erosion in the three rivers region, southeastern Tibet. Earth Planet Sci Lett 433:10–20CrossRefGoogle Scholar
  120. Zeitler PK, Johnson NM, Naeser CW, Tahirkheli RAK (1982) Fission-track evidence for Quaternary uplift of the Nanga Parbat region, Pakistan. Nature 298:255–257CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Helmholtz Zentrum PotsdamGeoForschungsZentrum (GFZ)PotsdamGermany
  2. 2.Institut des Sciences de la Terre (ISTerre)Université Grenoble AlpesGrenobleFrance

Personalised recommendations