Detrital Thermochronology Using Conglomerates and Cobbles

  • Paul G. FitzgeraldEmail author
  • Marco G. Malusà
  • Joseph A. Muñoz
Part of the Springer Textbooks in Earth Sciences, Geography and Environment book series (STEGE)


Detrital thermochronology data from cobbles, either within modern sediments or basin stratigraphy, can provide excellent constraints on the exhumation history of the adjacent orogen or hinterland. This approach is especially powerful if multiple techniques are applied to each cobble. With cobbles, all grains have a common thermal history; thus, for apatite fission-track (AFT) thermochronology, ages are better defined than those for single-grains, and track-length measurements permit meaningful thermal models. Well-constrained basin stratigraphy is required to generate lag-time plots that combined with thermal modelling may constrain the rate and timing of cooling/exhumation events in the orogen, as well as later basin inversion. Limitations in this approach include the number of cobbles that need to be analysed to provide a representative sampling of the source region and to capture the pre-depositional exhumation history. Caveats also apply regarding closure temperature assumptions, integrated exhumation rates, time from erosion to basin deposition, variable provenance of the cobbles, paleo-relief in the source area, as well as burial-related partial annealing. Two examples illustrate this detrital cobble approach applied to basin stratigraphy. On the southern flank of the Pyrenean orogen, cobble AFT thermochronology from Eocene-to-Oligocene syntectonic conglomerates records three episodes of cooling/exhumation in the hinterland due to progressive movement of thrust sheets, followed by burial and Late Miocene re-excavation. The cobble thermochronologic record complements in-situ thermochronologic data from the orogen. South of the European Alps, thermochronology on conglomeratic clasts in the Gonfolite basin record exhumation in the Bergell region of the Central Alps. There, a stationary peak at ~30 Ma records the emplacement of plutonic and volcanic rocks, whereas a moving peak starting at ~25 Ma that decreases in age up-section records exhumation-related cooling.



Fitzgerald acknowledges support from grants NSF grants EAR95-06454 and EAR05-38216 that initiated this work on detrital cobble thermochronology. Fitzgerald also acknowledges Jarg Pettinga and the Erskine Program at the University of Canterbury where much of this paper was written. Malusà thanks E. Garzanti and I.M. Villa for insightful discussions on the Bergell-Gonfolite system. Muñoz acknowledges support from the SALTECRES project (CGL2014-54118-C2-1-R MINECO/FEDER, UE) as well as the Grup de Recerca de Geodinàmica i Anàlisi de Conques (2014SRG467). This paper has benefitted from discussions with Suzanne Baldwin. Thorough and thoughtful reviews by Jeff Rahl and Peter van der Beek greatly improved this paper, and we acknowledge their suggestions and comments with thanks.


  1. Amidon W, Burbank D, Gehrels G (2005a) Construction of detrital mineral populations: insights from mixing of U–Pb zircon ages in Himalayan rivers. Basin Res 17:463–485CrossRefGoogle Scholar
  2. Amidon W, Burbank D, Gehrels G (2005b) U–Pb zircon ages as a sediment mixing tracer in the Nepal Himalaya. Earth Planet Sci Lett 235:244–260CrossRefGoogle Scholar
  3. Andersen T (2005) Detrital zircons as tracers of sedimentary provenance: limiting conditions from statistics and numerical simulation. Chem Geol 216:249–270CrossRefGoogle Scholar
  4. Anfinson OA, Malusà MG, Ottria G, Dafov LN, Stockli DF (2016) Tracking coarse-grained gravity flows by LASS-ICP-MS depth-profiling of detrital zircon (Aveto Formation, Adriatic foredeep, Italy). Mar Petrol Geol 77:1163–1176CrossRefGoogle Scholar
  5. Baldwin SL, Lister GS (1998) Thermochronology of the South Cyclades shear zone, Ios, Greece; effects of ductile shear in the argon partial retention zone. J Geophys Res 103:7315–7336CrossRefGoogle Scholar
  6. Baldwin SL, Harrison TM, Burke K (1986) Fission track evidence for the source of Scotland District sediments, Barbados and implications for post-Eocene tectonics of the southern Caribbean. Tectonics 5:457–468CrossRefGoogle Scholar
  7. Barso D (2007) Analisis de la procedencia de los conglomerados sinorogenicos de La Pobla de Segur (Lerida) y su relacion con la evolucion tectonica de los Pirineos centro-meridionales durante el Eoceno medio-Oligoceno. University of Barcelona, p 209Google Scholar
  8. Beamud E, Garcés M, Cabrera L, Muñoz JA, Almar Y (2003) A new middle to late Eocene continental chronostratigraphy from NE Spain. Earth Planet Sci Lett 216:501–514CrossRefGoogle Scholar
  9. Beamud E, Muñoz JA, Fitzgerald PG, Baldwin SL, Garcés M, Cabrera L, Metcalf JR (2011) Magnetostratigraphy and detrital apatite fission track thermochronology in syntectonic conglomerates: constraints on the exhumation of the South-Central Pyrenees. Basin Res 23:309–331CrossRefGoogle Scholar
  10. Beaumont C, Muñoz JA, Hamilton J, Fullsack P (2000) Factors controlling the Alpine evolution of the central Pyrenees from a comparison of observations and geodynamical models. J Geophys Res 105:8121–8145CrossRefGoogle Scholar
  11. Bernet M (2018) Exhumation studies of mountain belts based on detrital fission-track analysis on sand and sandstones. In: Malusà MG, Fitzgerald PG (eds) Fission-track thermochronology and its application to geology. Springer, Berlin (Chapter 15)Google Scholar
  12. Bernet M, Garver JI (2005) Fission-track analysis of detrital zircon. Rev Mineral Geochem 58(1):205–237CrossRefGoogle Scholar
  13. Bernet M, Spiegel C (2004) Introduction: detrital thermochronology. In: Bernet M, Spiegel C (eds) Detrital thermochronology—provenance analysis, exhumation, and landscape evolution of mountain belts. Geol S Am S 378:1–6Google Scholar
  14. Bernet M, Zattin M, Garver JI, Brandon MT, Vance JA (2001) Steady-state exhumation of the European Alps. Geology 29:35–38CrossRefGoogle Scholar
  15. Bernet M, Brandon M, Garver J, Molitor B (2004) Fundamentals of detrital zircon fission-track analysis for provenance and exhumation studies with examples from the European Alps. Geol Soc Am Spec 378:25–36Google Scholar
  16. Bernoulli D, Giger M, Müller DW, Ziegler URF (1993) Sr-isotope-stratigraphy of the Gonfolite Lombarda Group (“South-Alpine Molasse”, northern Italy) and radiometric constraints for its age of deposition. Eclogae Geol Helv 86:751–767Google Scholar
  17. Brandon MT (1996) Probability density plot for fission-track grain-age samples. Radiat Meas 26:663–676CrossRefGoogle Scholar
  18. Brandon MT, Vance JA (1992) Tectonic evolution of the Cenozoic Olympic subduction complex, Washington State, as deduced from fission track ages for detrital zircons. Am J Sci 292:565–636CrossRefGoogle Scholar
  19. Braun J, van der Beek P, Batt G (2006) Quantitative thermochronology: numerical methods for the interpretation of thermochronological data. Cambridge University Press, CambridgeGoogle Scholar
  20. Brown RW (1991) Backstacking apatite fission-track “stratigraphy”: a method for resolving the erosional and isostatic rebound components of tectonic uplift histories. Geology 19(1):74–77CrossRefGoogle Scholar
  21. Brügel A, Dunkl I, Frisch W, Kuhlemann J, Balogh K (2004) Geochemistry and geochronology of gneiss pebbles from foreland molasse conglomerates: geodynamic and paleogeographic implications for the Oligo-Miocene evolution of the Eastern Alps. J Geol 111:543–563CrossRefGoogle Scholar
  22. Burbank D, Puigdefabregas C, Muñoz JA (1992) The chronology of the Eocene tectonic and stratigraphic development of the eastern Pyrenean foreland basin, northeast Spain. Geol Soc Am Bull 104:1101–1120CrossRefGoogle Scholar
  23. Burnham A, Sweeney J (1989) A chemical kinetic model of vitrinite maturation and reflectance. Geochim Cosmochim Acta 53:2649–2657CrossRefGoogle Scholar
  24. Carrapa B (2009) Tracing exhumation and orogenic wedge dynamics in the European Alps with detrital thermochronology. Geology 37:1127–1130CrossRefGoogle Scholar
  25. Carrapa B, Di Giulio A (2001) The sedimentary record of the exhumation of a granitic intrusion into a collisional setting: the lower Gonfolite Group, Southern Alps, Italy. Sed Geo 139:217–228CrossRefGoogle Scholar
  26. Carrapa B, Wijbrans JR, Bertotti G (2004) Detecting provenance variations and cooling patterns within the western Alpine orogen through 40Ar/39Ar geochronology on detrital sediments: the tertiary piedmont basin, NW Italy. Geol Soc Am Spec 378:67–103Google Scholar
  27. Carter A (2018) Thermochronology on sand and sandstones for stratigraphic and provenance studies. In: Malusà MG, Fitzgerald PG (eds) Fission-track thermochronology and its application to geology. Springer, Berlin (Chapter 14)Google Scholar
  28. Cawood PA, Nemchin A (2001) Paleogeographic development of the East Laurentian margin: constraints from U–Pb dating of detrital zircon in the Newfoundlan Appalachians. Geol Soc Am Bull 113:1234–1246CrossRefGoogle Scholar
  29. Cerveny PF, Naeser ND, Zeitler PK, Naeser CW, Johnson NM (1988) History of uplift and relief of the Himalaya during the past 18 million years: evidence from fission-track ages of detrital zircons from sandstones of the Siwalik Group. New perspectives in basin analysis. Springer, New York, pp 43–61CrossRefGoogle Scholar
  30. Coney PJ, Muñoz JA, McClay K, Evenchick CA (1996) Syn-tectonic burial and post-tectonic exhumation of an active foreland thrust belt, southern Pyrenees, Spain. J Geol Soc 153:9–16CrossRefGoogle Scholar
  31. Costa E, Garcés M, López-Blanco M, Beamud E, Gómez-Paccard M, Larrasoaña JC (2010) Closing and continentalization of the South Pyrenean foreland basin (NE Spain): magnetochronological constraints. Basin Res 22:904–917Google Scholar
  32. Davidson C, Rosenberg C, Schmid SM (1996) Symmagmatic folding of the base of the Bergell pluton, Central Alps. Tectonophysics 265(3):213–238CrossRefGoogle Scholar
  33. DeCelles PG (1988) Lithologic provenance modeling applied to the Late Cretaceous synorogenic Echo Canyon Conglomerate, Utah: a case of multiple source areas. Geology 16:1039–1043CrossRefGoogle Scholar
  34. Dodson MH (1973) Closure temperatures in cooling geochronological and petrological systems. Contrib Mineral Petr 40:259–274CrossRefGoogle Scholar
  35. Dunkl I, Székely B (2002) Component analysis with visualization of fitting—PopShare, a Windows program for data analysis. In: Goldschmidt conference abstracts 2002. Geochim Cosmochim Acta 66/A:201Google Scholar
  36. Dunkl I, Frisch W, Kuhlemann J, Brügel A (2009) Pebble population dating as an additional tool for provenance studies-examples from the Eastern Alps. Geol Soc Spec Publ 324:125–140CrossRefGoogle Scholar
  37. Enkelmann E, Koons PO, Pavlis TL, Hallet B, Barker A, Elliott J, Ridgway KD (2015) Cooperation among tectonic and surface processes in the St. Elias Range, earth’s highest coastal mountains. Geophysl Res Lett 42:5838–5846CrossRefGoogle Scholar
  38. Epstein AG, Epstein JB, Harris LD (1977) Conodont color alteration—an index to organic metamorphism. Boulder, Colorado, pp 1–27Google Scholar
  39. Falkowski S, Enkelmann E, Drost K, Pfänder JA, Stübner K, Ehlers TA (2016) Cooling history of the St. Elias syntaxis, southeast Alaska, revealed by geo-and thermochronology of cobble-sized glacial detritus. Tectonics 8:359–378Google Scholar
  40. Fellin MG, Sciunnach D, Tunesi A, Andò S, Garzanti E, Vezzoli G (2005) Provenance of detrital apatites from the upper Gonfolite Lombarda Group (Miocene, NW Italy). GeoActa 4:43–56Google Scholar
  41. Filleaudeau PY, Mouthereau F, Pik R (2012) Thermo-tectonic evolution of the south-central Pyrenees from rifting to orogeny: insights from detrital zircon U/Pb and (U–Th)/He thermochronometry. Basin Res 24:401–417CrossRefGoogle Scholar
  42. Fillon C, van der Beek P (2012) Post-orogenic evolution of the southern Pyrenees: constraints from inverse thermo-kinematic modelling of low-temperature thermochronology data. Basin Res 24:418–436CrossRefGoogle Scholar
  43. Fillion C, Gautheron C, van der Beek P (2013) Oligocene-Miocene burial and exhumation of the Southern Pyrenean foreland quantified by low-temperature thermochronology. J Geol Soc 107:67–77CrossRefGoogle Scholar
  44. Fitzgerald PG, Muñoz JA, Coney PJ, Baldwin SL (1999) Asymmetric exhumation across the Pyrenean orogen: implications for the tectonic evolution of collisional orogens. Earth Planet Sci Lett 173:157–170CrossRefGoogle Scholar
  45. Fox M, Reverman R, Herman F, Fellin MG, Sternai P, Willett SD (2014) Rock uplift and erosion rate history of the Bergell intrusion from the inversion of low temperature thermochronometric data. Geochem, Geophy, Geosyst 15(4):1235–1257CrossRefGoogle Scholar
  46. Galbraith RF (2005) Statistics for fission track analysis, 1st edn. Chapman and Hall/CRC, Boca Raton, FloridaCrossRefGoogle Scholar
  47. Galbraith RF, Green PF (1990) Estimating the component ages in a finite mixture. Nucl Tracks Rad Meas 17:197–206CrossRefGoogle Scholar
  48. Gallagher K (2012) Transdimensional inverse thermal history modeling for quantitative thermochronology. J Geophys Res 117(B2)CrossRefGoogle Scholar
  49. Garver JI, Brandon MT, Roden-Tice MK, Kamp PJJ (1999) Exhumation history of orogenic highlands determined by detrital fission track thermochronology. Geol Soc Spec Publ 154:283–304CrossRefGoogle Scholar
  50. Garzanti E, Malusà MG (2008) The oligocene alps: domal unroofing and drainage development during early orogenic growth. Earth Planet Sci Lett 268:487–500CrossRefGoogle Scholar
  51. Gehrels G (2014) Detrital zircon U–Pb geochronology applied to tectonics. Ann Rev Earth Pl Sci 42:127–149CrossRefGoogle Scholar
  52. Gelati R, Napolitano A, Valdisturlo A (1988) La “Gonfolite Lombarda”: stratigrafia e significato nell’evoluzione del margine sudalpino. Riv It Paleont Strat 94:285–332Google Scholar
  53. Gibson M, Sinclair H, Lynn G, Stuart F (2007) Late-to post-orogenic exhumation of the Central Pyrenees revealed through combined thermochronological data and modelling. Basin Res 19:323–334CrossRefGoogle Scholar
  54. Giger M, Hurford AJ (1989) Tertiary intrusives of the Central Alps: their Tertiary uplift, erosion, redeposition and burial in the south-alpine foreland. Eclogae Geol Helv 82:857–866Google Scholar
  55. Gleadow AJW, Fitzgerald PG (1987) Uplift history and structure of the Transantarctic Mountains: new evidence from fission track dating of basement apatites in the Dry Valleys area, southern Victoria Land. Earth Planet Sci Lett 82(1):1–14CrossRefGoogle Scholar
  56. Gleadow AJW, Brown RW (2000) Fission track thermochronology and the long term denudational response to tectonics. In: Summerfield MA (ed) Geomorphology and global tectonics. Willey, New York, pp 57–75Google Scholar
  57. Hurford AJ (1986) Cooling and uplift patterns in the Lepontine Alps South Central Switzerland and an age of vertical movement on the Insubric fault line. Contrib Mineral Petr 92:413–427CrossRefGoogle Scholar
  58. Hurford AJ, Carter A (1991) The role of fission track dating in discrimination of provenance. Geol Soc Spec Publ 57:67–78CrossRefGoogle Scholar
  59. Hurford AJ, Fitch FJ, Clarke A (1984) Resolution of the age structure of the detrital zircon populations of two Lower Cretaceous sandstones from the Weald of England by fission track dating. Geol Mag 121:269–277CrossRefGoogle Scholar
  60. Jäger E (1967) Die Bedeutung der Biotit-Alterswerte. In: Jäger E, Niggli E, Wenk E (eds) Rb-Sr Alterbestmmungen an Glimmern der Zentralalpen Beitr. Geol Kaarte Schweiz, NF, pp 28–31Google Scholar
  61. Jammes S, Manatschal G, Lavier L, Masini E (2009) Tectonosedimentary evolution related to extreme crustal thinning ahead of a propagating ocean: example of the western Pyrenees. Tectonics 28:TC4012CrossRefGoogle Scholar
  62. Jammes S, Huismans R, Muñoz J (2014) Lateral variation in structural style of mountain building: controls of rheological and rift inheritance. Terra Nova 26:201–207CrossRefGoogle Scholar
  63. Jones MA, Heller PL, Roca E, Garcés M, Cabrera L (2004) Time lag of syntectonic sedimentation across an alluvial basin: theory and example from the Ebro Basin, Spain. Basin Res 16:489–506CrossRefGoogle Scholar
  64. Ketcham RA (2005) Forward and inverse modeling of low temperature thermochronometry data. Rev Mineral Geochem 58:275–314CrossRefGoogle Scholar
  65. Ketcham R (2018) Fission track annealing: from geologic observations to thermal history modeling. In: Malusà MG, Fitzgerald PG (eds) Fission-track thermochronology and its application to geology. Springer, Berlin (Chapter 3)Google Scholar
  66. Ketcham RA, Donelick RA, Carlson WD (1999) Variability of apatite fission track annealing kinetics III: extrapolation to geological time scales. Am Mineral 84:1235–1255CrossRefGoogle Scholar
  67. Ketcham R, Carter A, Donelick R, Barbarand J, Hurford A (2007) Improved modeling of fission-track annealing in apatite. Am Mineralt 92:799CrossRefGoogle Scholar
  68. Lagabrielle Y, Labaume P, De Saint Blanquat M (2010) Mantle exhumation, crustal denudation, and gravity tectonics during Cretaceous rifting in the Pyrenean realm (SW Europe): insights from the geological setting of the lherzolite bodies. Tectonics 29:TC4012CrossRefGoogle Scholar
  69. Liati A, Gebauer D, Fanning M (2000) U–Pb SHRIMP dating of zircon from the Novate granite (Bergell, Central Alps): evidence for Oligocene-Miocene magmatism, Jurassic/Cretaceous continental rifting and opening of the Valais trough. Schweiz Mineral Petr Mitt 80:305–316Google Scholar
  70. Lovera OM, Grove M, Harrison TM (2002) Systematic analysis of K-feldspar 40Ar/39Ar step heating results II: Relevance of laboratory argon diffusion properties to nature. Geochim Cosmochim Acta 66:1237–1255CrossRefGoogle Scholar
  71. Mahéo G, Gautheron C, Leloup PH, Fox M, Tassant-Got L, Douville E (2013) Neogene exhumation history of the Bergell massif (southeast Central Alps). Terra Nova 25:110–118CrossRefGoogle Scholar
  72. Malusà MG (2018) A guide for interpreting complex detrital age patterns in stratigraphic sequences. In: Malusà MG, Fitzgerald PG (eds) Fission-track thermochronology and its application to geology. Springer, Berlin (Chapter 16)Google Scholar
  73. Malusà MG, Fitzgerald PG (2018a) From cooling to exhumation: setting the reference frame for the interpretation of thermocronologic data. In: Malusà MG, Fitzgerald PG (eds) Fission-track thermochronology and its application to geology. Springer, Berlin (Chapter 8)Google Scholar
  74. Malusà MG, Fitzgerald PG (2018b) Application of thermochronology to geologic problems: bedrock and detrital approaches. In: Malusà MG, Fitzgerald PG (eds) Fission-track thermochronology and its application to geology. Springer, Berlin (Chapter 10)Google Scholar
  75. Malusà MG, Garzanti E (2018) The sedimentology of detrital thermochronology. In: Malusà MG, Fitzgerald PG (eds) Fission-track thermochronology and its application to geology. Springer, Berlin (Chapter 7)Google Scholar
  76. Malusà MG, Villa IM, Vezzoli G, Garzanti E (2011) Detrital geochronology of unroofing magmatic complexes and the slow erosion of oligocene volcanoes in the Alps. Earth Planet Sci Lett 301:324–336CrossRefGoogle Scholar
  77. Malusà MG, Carter A, Limoncelli M, Villa IM, Garzanti E (2013) Bias in detrital zircon geochronology and thermochronometry. Chem Geol 359:90–107CrossRefGoogle Scholar
  78. Malusà MG, Faccenna C, Baldwin SL, Fitzgerald PG, Rossetti F, Balestrieri ML, Ellero A, Ottria G, Piromallo C (2015) Contrasting styles of (U) HP rock exhumation along the Cenozoic Adria-Europe plate boundary (Western Alps, Calabria, Corsica). Geochem Geophys Geosyst 16(6):1786–1824CrossRefGoogle Scholar
  79. Malusà MG, Anfinson OA, Dafov L, Stockli D (2016a) Tracking Adria indentation beneath the Alps by detrital zircon U–Pb geochronology: implications for the oligocene-miocene dynamics of the adriatic microplate. Geology 44:155–158CrossRefGoogle Scholar
  80. Malusà MG, Resentini A, Garzanti E (2016b) Hydraulic sorting and mineral fertility bias in detrital geochronology. Gondwana Res 31:1–19CrossRefGoogle Scholar
  81. Mancktelow NS, Grasemann B (1997) Time-dependent effects of heat advection and topography on cooling histories during erosion. Tectonophysics 270(3):167–195CrossRefGoogle Scholar
  82. Meigs AJ, Vergés J, Burbank DW (1996) Ten-million-year history of a thrust sheet. Geol Soc Am Bull 108:1608CrossRefGoogle Scholar
  83. Mellere D (1993) Thrust-generated, back-fill stacking of alluvial fan sequences, south central Pyrenees, Spain (La Pobla de Seguar conglomerates). IAS Spec Publ 20:259–276Google Scholar
  84. Metcalf JR, Fitzgerald PG, Baldwin SL, Muñoz JA (2009) Thermochronology in a convergent orogen: constraints on thrust faulting and exhumation from the Maladeta Pluton in the Axial Zone of the Central Pyrenees. Earth Planet Sci Lett 287:488–503CrossRefGoogle Scholar
  85. Morris RG, Sinclair HD, Yelland AJ (1998) Exhumation of the Pyrenean orogen: implications for sediment discharge. Basin Res 10:69–85CrossRefGoogle Scholar
  86. Muñoz JA (1992) Evolution of a continental collision belt: ECORS Pyrenees crustal balanced cross-section. In: McClay K (ed) Thrust tectonics. Chapman and Hall, London, pp 235–246CrossRefGoogle Scholar
  87. Muñoz JA (2002) The Pyrenees Alpine tectonics; I, The Alpine system north of the Betic Cordillera. In: Gibbons W, Moreno T (eds) The geology of Spain. The Geological Society, London, p 649Google Scholar
  88. Muñoz JA, Coney PJ, McClay KR, Evenchick CA (1997) Reply to discussion on syntectonic burial and post-tectonic exhumation of the southern Pyrenees foreland fold-thrust belt. J Geol Soc 154:361–365CrossRefGoogle Scholar
  89. Oberli F, Meier M, Berger A, Rosenberg CL, Gieré R (2004) U-Th-Pb and 230Th/238U disequilibrium isotope systematics: precise accessory mineral chronology and melt evolution tracing in the Alpine Bergell intrusion. Geochim Cosmochim Acta 68:2543–2560CrossRefGoogle Scholar
  90. Pérez-Rivarés FJ, Garcés M, Arenas C, Pardo G (2004) Magnetostratigraphy of the miocene continental deposits of the Montes de Castejón (central Ebro Basin, Spain): geochronological and paleoenvironmental implications. Geol Acta 2:221–234Google Scholar
  91. Puigdefàbregas C, Muñoz JA, Marzo M (1986) Thrust belt development in the Eastern Pyrenees and related depositional sequences in the southern foreland basin. In: Allen PA, Homewood P (eds) Foreland basins. IAS Spec Publ, pp 229–246Google Scholar
  92. Rahl JM, Ehlers TA, van der Pluijm BA (2007) Quantifying transient erosion of orogens with detrital thermochronology from syntectonic basin deposits. Earth Planet Sci Lett 256:147–161CrossRefGoogle Scholar
  93. Rahl JM, Haines SH, van der Pluijm BA (2011) Links between orogenic wedge deformation and erosional exhumation: evidence from illite age analysis of fault rock and detrital thermochronology of syn-tectonic conglomerates in the Spanish Pyrenees. Earth Planet Sci Lett 307:180–190CrossRefGoogle Scholar
  94. Rahn MK (2005) Apatite fission track ages from the Adula nappe: late stage exhumation and relief evolution. Schweiz Mineral Petr Mitt 85:233–245Google Scholar
  95. Rahn M, Brandon MT, Batt G, Garver JI (2004) A zero-damage model for fission-track annealing in zircon. Am Mineral 89:473–484CrossRefGoogle Scholar
  96. Reiners PW (2007) Thermochronologic approaches to paleotopography. Rev Mineral Geochem 66:243–267CrossRefGoogle Scholar
  97. Reiners PW, Brandon MT (2006) Using thermochronology to understand orogenic erosion. Ann Rev Earth Planet Sci 34:419–466CrossRefGoogle Scholar
  98. Resentini A, Malusà MG (2012) Sediment budgets by detrital apatite fission-track dating (Rivers Dora Baltea and Arc, Western Alps). Geol Soc Am Spec 487:125–140Google Scholar
  99. Riba O, Reguant S, Villena J (1983) Ensayo de síntesis estratigráfica y evolutiva de la cuenca terciaria del Ebro. Geol España 2:131–159Google Scholar
  100. Ring U, Brandon MT, Willet SD, Lister GS (1999) Exhumation processes. Geol Soc Spec Publ 154:1–27CrossRefGoogle Scholar
  101. Roca E, Muñoz JA, Ferrer O, Ellouz N (2011) The role of the Bay of Biscay Mesozoic extensional structure in the configuration of the Pyrenean orogen: Constraints from the MARCONI deep seismic reflection survey. Tectonics 30(2)CrossRefGoogle Scholar
  102. Roest WR, Srivastava SP (1991) Kinematics of the plate boundaries between Eurasia, Iberia and Africa in the North Atlantic from the late Cretaceous to the present. Geology 19:613–616CrossRefGoogle Scholar
  103. Rosenbaum G, Lister GS, Duboz C (2002) Relative motions of Africa, Iberia and Europe during Alpine Orogeny. Tectonophysics 359:117–129CrossRefGoogle Scholar
  104. Schneider DA, Issler DR (2018) Application of low temperature thermochronology to hydrocarbon exploration. In: Malusà MG, Fitzgerald PG (eds) Fission-track thermochronology and its application to geology. Springer, Berlin (Chapter 18)Google Scholar
  105. Sinclair H, Gibson M, Naylor M, Morris R (2005) Asymmetric growth of the Pyrenees revealed through measurement and modeling of orogenic fluxes. Am J Sci 305:369CrossRefGoogle Scholar
  106. Spiegel C, Kuhlemann J, Dunkl I, Frisch W (2001) Paleogeography and catchment evolution in a mobile orogenic belt: the Central Alps in Oligo-Miocene times. Tectonophysics 341:33–47CrossRefGoogle Scholar
  107. Spiegel C, Siebel W, Kuhlemann J, Frisch W (2004) Toward a comprehensive provenance analysis: a multi-method approach and its implications for the evolution of the central Alps. Geol Soc Am Spec 378:37–50Google Scholar
  108. Spotila J (2005) Applications of low-temperature thermochronometry to quantification of recent exhumation in mountain belts. Rev Mineral Geochem 58:449–466CrossRefGoogle Scholar
  109. Stewart RJ, Brandon MT (2004) Detrital zircon fission-track ages for the “Hoh Formation”: implications for Late Cenozoic evolution of the Cascadia subduction wedge. Geol Soc Am Bull 116:60–75CrossRefGoogle Scholar
  110. Stock JD, Montgomery DR (1996) Estimating palaeo-relief from detrital mineral age ranges. Basin Res 8:317–327CrossRefGoogle Scholar
  111. Tugend J, Manatschal G, Kusznir NJ, Masini E, Mohn G, Thinon I (2014) Formation and deformation of hyperextended rift systems: insights from rift domain mapping in the Bay of Biscay-Pyrenees. Tectonics 33:1239–1276CrossRefGoogle Scholar
  112. van der Beek P, Robert X, Mugnier JL, Bernet M, Huyghe P, Labrin E (2006) Late Miocene–recent exhumation of the central Himalaya and recycling in the foreland basin assessed by apatite fission-track thermochronology of Siwalik sediments, Nepal. Basin Res 18:413–434CrossRefGoogle Scholar
  113. Vergés J, Muñoz JA (1990) Thrust sequences in the southern central Pyrenees. Bull Soc Geol Fr 8:265–271CrossRefGoogle Scholar
  114. Vermeesch P (2004) How many grains are needed for a provenance study? Earth Planet Sci Lett 224:441–451CrossRefGoogle Scholar
  115. Vermeesch P (2012) On the visualisation of detrital age distributions. Chem Geol 312:190–194CrossRefGoogle Scholar
  116. Villa IM, von Blanckenburg F (1991) A hornblende 39Ar-40Ar age traverse of the Bregaglia tonalite (southeast Central Alps). Schweiz Mineral Petr Mitt 71:73–87Google Scholar
  117. Vincent SJ (2001) The Sis palaeovalley: a record of proximal fluvial sedimentation and drainage basin development in response to Pyrenean mountain building. Sedimentology 48:1235–1276CrossRefGoogle Scholar
  118. von Blanckenburg F (1992) Combined high-precision chronometry and geochemical tracing using accessory minerals: applied to the Central-Alpine Bergell intrusion (central Europe). Chem Geol 100:19–40CrossRefGoogle Scholar
  119. Wagner GA, Reimer GM, Jäger E (1977) Cooling ages derived by apatite fission-track, mica Rb–Sr and K–Ar dating: the uplift and cooling history of the Central Alps. Mem Ist Geol Min Padova 30:1–27Google Scholar
  120. Wagner G, Miller DS, Jäger E (1979) Fission track ages on apatite of Bergell rocks from central Alps and Bergell boulders in Oligocene sediments. Earth Planet Sci Lett 102:395–412Google Scholar
  121. Wolf RA, Farley KA, Kass DM (1998) Modeling of the temperature sensitivity of the apatite (U-Th)/He thermochronometer. Chem Geol 148:105–114CrossRefGoogle Scholar
  122. Yelland A (1990) Fission track thermotectonics in the Pyrenean orogen. Nucl Tracks Rad Meas 17:293–299CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  • Paul G. Fitzgerald
    • 1
    Email author
  • Marco G. Malusà
    • 2
  • Joseph A. Muñoz
    • 3
  1. 1.Department of Earth SciencesSyracuse UniversitySyracuseUSA
  2. 2.Department of Earth and Environmental SciencesUniversity of Milano-BicoccaMilanItaly
  3. 3.Departament de Dinàmica de la Terra i de l’OceàUniversitat de BarcelonaBarcelonaSpain

Personalised recommendations