Exhumation Studies of Mountain Belts Based on Detrital Fission-Track Analysis on Sand and Sandstones

  • Matthias BernetEmail author
Part of the Springer Textbooks in Earth Sciences, Geography and Environment book series (STEGE)


Fission-track (FT) analysis of detrital apatite and zircon from modern sediments and ancient sandstone is a commonly used approach for studying and quantifying the long-term exhumation history of convergent mountain belts. Being aware of potential bias in the age spectra because of sampling, sample preparation and statistical data treatment such as peak-fitting, FT ages from sediments and sedimentary rocks of known depositional age can be readily transferred into long-term average exhumation or erosion rates using the lag-time concept. Double dating of single grains with the FT and U–Pb methods provides additional valuable provenance information, for example, for identifying volcanically derived grains, which may obscure the exhumation signal. Applying both apatite and zircon FT dating on the same samples allows combining the study of source area exhumation and the thermal evolution of sedimentary basins.



This chapter benefited from reviews by Andy Carter and Eva Enkelmann and editorial handling by Marco G. Malusà and Paul G. Fitzgerald.


  1. Bermúdez MA, van der Beek P, Bernet M (2013) Strong tectonic and weak climatic control on exhumation rates in the Venezuelan Andes. Lithosphere 25:3–16CrossRefGoogle Scholar
  2. Bermúdez MA, Hoorn C, Bernet M, Carrillo E, van der Beek P, Garver JI, Mora JL, Mehrkian K (2017) The detrital record of Late-Miocene to Pliocene surface uplift and exhumation of the Mérida Andes in the Maracaibo and Barinas foreland basins of Venezuela. Basin Res. Scholar
  3. Bernet M (2013) Detrital zircon fission-track thermochronology of the present-day Isere River drainage system in the Western Alps: no evidence for increasing erosion rates at 5 Ma. Geosciences 3:528–542CrossRefGoogle Scholar
  4. Bernet M, Garver JI (2005) Fission-track analysis of detrital zircon. In: Reiners P, Ehlers T (eds) Low-temperature thermochronology. Rev Mineral Geochem 58:205–238CrossRefGoogle Scholar
  5. Bernet M, Zattin M, Garver JI, Brandon MT, Vance JA (2001) Steady-state exhumation of the European Alps. Geology 29:35–38CrossRefGoogle Scholar
  6. Bernet M, Brandon MT, Garver JI, Molitor B (2004a) Fundamentals of detrital zircon fission-track analysis for provenance and exhumation studies. Geol S Am S 378:25–36Google Scholar
  7. Bernet M, Brandon MT, Garver JI, Molitor B (2004b) Downstream changes of Alpine zircon fission-track ages in the Rhône and Rhine rivers. J Sediment Res 74:82–94CrossRefGoogle Scholar
  8. Bernet M, van der Beek P, Pik R, Huyghe P, Mugnier JL, Labrin E, Szulc A (2006) Miocene to Recent exhumation of the central Himalaya determined from combined detrital zircon fission-track and U/Pb analysis of Siwalik sediments, western Nepal. Basin Res 18:393–412CrossRefGoogle Scholar
  9. Bernet M, Brandon MT, Garver JI, Balestrieri ML, Ventura B, Zattin M (2009) Exhuming the Alps through time: clues from detrital zircon fission-track ages. Basin Res 21:781–798CrossRefGoogle Scholar
  10. Brandon MT (1992) Decomposition of fission-track grain age distributions. Am J Sci 26:535–564CrossRefGoogle Scholar
  11. Brandon MT (1996) Probability density plot for fission-track grain-age samples. Rad Meas 26:663–676CrossRefGoogle Scholar
  12. Brandon MT, Vance JA (1992) Tectonic evolution of the Cenozoic Olympic subduction complex, Washington State, as deduced from fission-track ages for detrital zircons. Am J Sci 292:565–636CrossRefGoogle Scholar
  13. Braun J (2003) Pecube: a new finite element code to solve the heat transport equation in three dimensions in the earth’s crust including the effects of a time-varying, finite amplitude surface topography. Comput Geosci 29:787–794CrossRefGoogle Scholar
  14. Braun J (2016) Strong imprint of past orogenic events on the thermochronological record. Tectonophysics 683:325–332CrossRefGoogle Scholar
  15. Braun J, van der Beek P, Valla P, Robert X, Herman F, Glotzbach C, Pedersen V, Perry C, Simon-Labric T, Prigent C (2012) Quantifying rates of landscape evolution and tectonic processes by thermochronology and numerical modeling of crustal heat transport using PECUBE. Tectonophysics 524–525:1–28CrossRefGoogle Scholar
  16. Burbank DW (2002) Rates of erosion and their implications for exhumation. Min Mag 66:25–52CrossRefGoogle Scholar
  17. Carter A (2018) Thermochronology on sand and sandstones for stratigraphic and provenance studies (Chapter 14). In: Malusà MG, Fitzgerald PG (eds) Fission-track thermochronology and its application to geology. Springer, BerlinGoogle Scholar
  18. Carter A, Bristow CS (2003) Linking hinterland evolution and continental basin sedimentation by using detrital zircon thermochronology: a study of the Khorat Plateau basin, eastern Thailand. Basin Res 15:271–285CrossRefGoogle Scholar
  19. Carter A, Moss SJ (1999) Combined detrital zircon fission-track and U-Pb dating: a new approach to understanding hinterland evolution. Geology 27:235–238CrossRefGoogle Scholar
  20. Cederbom CE, Sinclair HD, Schlunegger F, Rahn MK (2004) Climate-induced rebound and exhumation of the European Alps. Geology 32:709–712CrossRefGoogle Scholar
  21. Cerveny PF, Naeser ND, Zeitler PK, Naeser CW, Johnson NM (1988) History of uplift and relief of the Himalaya during the past 18 million years: evidence from fission-track ages of detrital zircons from sandstones of the Siwalik Group. In: Kleinspehn K, Paola C (eds) New perspectives in basin analysis. Springer, New York, pp 43–61CrossRefGoogle Scholar
  22. Chirouze F, Bernet M, Huyghe P, Erens V, Dupont-Nivet G, Senebier F (2012) Detrital thermochronology and sediment petrology of the middle Siwaliks along the Muksar Khola section in eastern Nepal. J Asian Earth Sci 44:117–135CrossRefGoogle Scholar
  23. Chirouze F, Huyghe P, van der Beek P, Chauvel C, Chakraborty T, Dupont-Nivet G, Bernet M (2013) Tectonics, exhumation and drainage evolution of the Eastern Himalaya since 13 Ma from detrital geochemistry and thermochronology, Kameng River Section, Arunachal Pradesh. Geol Soc Am Bull 125Google Scholar
  24. Danišík M (2018) Integration of fission-track thermochronology with other geochronologic methods on single crystals (Chapter 5). In: Malusà MG, Fitzgerald PG (eds) Fission-track thermochronology and its application to geology. Springer, BerlinGoogle Scholar
  25. Ehlers TA, Chaudhri T, Kumar S, Fuller C, Willett SD, Ketcham R, Brandon MT (2005). Computational tools for low-temperature thermochronometer interpretation. In: Reiners PW and Ehlers TA (eds), Low-Temperature Thermochronology. Techniques, Interpretations and Applications. Rev Mineral Geochem, Mineralogical Society of America 58:589–622. Scholar
  26. England P, Molnar P (1990) Surface uplift, uplift of rocks, and exhumation of rocks. Geology 18:1173–1177CrossRefGoogle Scholar
  27. Enklemann E, Garver JI, Pavlis TL (2008) Rapid exhumation of ice-covered rocks of the Chugach–St. Elias orogen, Southeast Alaska. Geology 36:915–918CrossRefGoogle Scholar
  28. Enklemann E, Zeitler PK, Pavlis TL, Garver JI, Ridgway KD (2009) Intense localized rock uplift and erosion in the St Elias orogen of Alaska. Nat Geosci. Scholar
  29. Galbraith RF, Green PF (1990) Estimating the component ages in a finite mixture. Nucl Tracks Rad Meas 17(197):206Google Scholar
  30. Galbraith RF, Laslett GM (1993) Statistical models for mixed fission track ages. Nucl Tracks Rad Meas 21:459–470CrossRefGoogle Scholar
  31. Gallagher K, Charvin K, Nielsen S, Sambridge M, Stephenson J (2009) Markov chain Monte Carlo (MCMC) sampling methods to determine optimal models, model resolution and model choice for Earth Science problems. Mar Petrol Geol 26:525–535CrossRefGoogle Scholar
  32. Garver JI, Brandon MT (1994a) Fission-track ages of detrital zircon fro, Cretaceous strata, southern British Colombia: implications for the Baja BC hypothesis. Tectonics 13:401–420CrossRefGoogle Scholar
  33. Garver JI, Brandon MT (1994b) Erosional denudation of the British Colmbia coast ranges as determined fro, fission-track ages of detrital zircon from the Tofino basin, Olympic Peninsula, Washington. Geol Soc Am Bull 106:1398–1412CrossRefGoogle Scholar
  34. Garver JI, Kamp PJJ (2002) Integration of zircon color and zircon fission-track zonation patterns in orogenic belts: application to the Southern Alps, New Zealand. Tectonophysics 349:203–219CrossRefGoogle Scholar
  35. Garver JI, Brandon MT, Roden-Tice MK, Kamp PJJ (1999) Exhumation history of orogenic highlands determined by detrital fission-track thermochronology. Geol Soc Spec Publ 154:283–304CrossRefGoogle Scholar
  36. Garver JI, Reiners PW, Walker LJ, Ramage JM, Perry SE (2005) Implications for timing of Andean uplift from thermal resetting of radiation damaged zircon in the Cordillera Huayhuash, Northern Peru. J Geol 113:117–138CrossRefGoogle Scholar
  37. Glotzbach C, Bernet M, van der Beek P (2011) Detrital thermochronology records changing source areas and steady exhumation in the Western and Central European Alps. Geology 39:239–242CrossRefGoogle Scholar
  38. Heller PL, Tabor RW, O’Neil JR, Pevear DR, Shafiquillah M, Winslow NS (1992) Isotopic provenance of Paleogene sandstones from the accretionary core of the Olympic Mountains, Washington. Geol Soc Am Bull 104:140–153CrossRefGoogle Scholar
  39. Jourdan S, Bernet M, Tricart P, Hardwick E, Paquette JL, Guillot S, Dumont T, Schwartz S (2013) Short-lived fast erosional exhumation of the internal Western Alps during the late Early Oligocene: constraints from geo-thermochronology of pro- and retro-side foreland basin sediments. Lithosphere 5:211–225CrossRefGoogle Scholar
  40. Lang KA, Huntington KW, Burmester R, Housen B (2016) Rapid exhumation of the eastern Himalayan syntaxis since the late Miocene. Geol Soc Am Bull. Scholar
  41. Malusà MG (2018) A guide for interpreting complex detrital age patterns in stratigraphic sequences (Chapter 16). In: Malusà MG, Fitzgerald PG (eds) Fission-track thermochronology and its application to geology. Springer, BerlinGoogle Scholar
  42. Malusà MG, Fitzgerald PG (2018) From cooling to exhumation: setting the reference frame for the interpretation of thermocronologic data (Chapter 8). In: Malusà MG, Fitzgerald PG (eds) Fission-track thermochronology and its application to geology. Springer, BerlinGoogle Scholar
  43. Malusà MG, Fitzgerald PG (2018) Application of thermochronology to geologic problems: bedrock and detrital approaches (Chapter 10). In: Malusà MG, Fitzgerald PG (eds) Fission-track thermochronology and its application to geology. Springer, BerlinGoogle Scholar
  44. Malusà MG, Garzanti E (2018) The sedimentology of detrital thermochronology (Chapter 7). In: Malusà MG, Fitzgerald PG (eds) Fission-track thermochronology and its application to geology. Springer, BerlinGoogle Scholar
  45. Malusà MG, Zattin M, Andò S, Garzanti E, Vezzoli G (2009) Focused erosion in the Alps constrained by fission-track ages on detrital apatites. Geol Soc Spec Publ 324:141–152CrossRefGoogle Scholar
  46. Malusà MG, Villa IM, Vezzoli G, Garzanti E (2011) Detrital geochronology of unroofing magmatic complexes and the slow erosion of Oligocene volcanoes in the Alps. Earth Planet Sci Lett 301:324–336CrossRefGoogle Scholar
  47. Malusà MG, Resentini A, Garzanti E (2016) Hydraulic sorting and mineral fertility bias in detrital geochronology. Gondwana Res 31:1–19CrossRefGoogle Scholar
  48. Mange MA, Wright DT (eds) (2007) Heavy minerals in use. ElsevierGoogle Scholar
  49. Montgomery DR, Brandon MT (2002) Topographic controls on erosion rates in tectonically active mountain ranges. Earth Planet Sci Lett 201:481–489CrossRefGoogle Scholar
  50. Morton AC (2012) Value of heavy minerals in sediments and sedimentary rocks for provenance, transport history and stratigraphic correlation. Min Ass Canada Short Course 42:133–165Google Scholar
  51. Naylor M, Sinclair HD, Bernet M, van der Beek P, Kirstein LA (2015) Bias in detrital fission track grain-age populations: Implications for reconstructing changing erosion rates. Earth Planet Sci Lett 422:94–104CrossRefGoogle Scholar
  52. Parra M, Mora A, Sobel ER, Strecker MR, González R (2009) Episodic orogenic front migration in the northern Andes: Constraints from low-temperature thermochronology in the Eastern Cordillera, Colombia. Tectonics 28:TC4004CrossRefGoogle Scholar
  53. Platt JP (1993) Exhumation of high-pressure rocks: a review of concepts and processes. Terra Nova 5:119–133CrossRefGoogle Scholar
  54. Rahl JM, Ehlers TA, van der Pluijm BA (2007) Quantifying transient erosion of orogens with detrital thermochronology from syntectonic basin deposits. Earth Planet Sci Lett 256:147–161CrossRefGoogle Scholar
  55. Reiners PW, Brandon MT (2006) Using thermo-chronology to understand orogenic erosion. Annu Rev Earth Pl Sc 34:419–466CrossRefGoogle Scholar
  56. Reiners PW, Campbell IH, Nicolescu S, Allen CM, Hourigan JK (2005) (U-Th)/(He-Pb) double dating of detrital zircons. Am J Sci 305:259–311CrossRefGoogle Scholar
  57. Resentini A, Malusà MG, Garzanti E (2013) MinSORTING: An Excel® worksheet for modelling mineral grain-size distribution in sediments, with application to detrital geochronology and provenance studies. Comput Geosci 59:90–97CrossRefGoogle Scholar
  58. Ring U, Brandon MT, Willett SD, Lister GS (1999) Exhumation processes. Geol Soc London Spec Publ 157:1–27CrossRefGoogle Scholar
  59. Soloviev AV, Garver JI, Shapiro MN (2001) Fission-track dating of detrital zircon from sandstone of the Lesnaya Group, northern Kamchatka. Strat Geol Correl 9:293–303Google Scholar
  60. Spiegel C, Kuhlemann J, Dunkl I, Frisch W, von Eynatten H, Balogh K (2000) The erosion history of the Central Alps: evidence from zircon fission-track data of the foreland basin sediments. Terra Nova 12:163–170CrossRefGoogle Scholar
  61. Spiegel C, Siebel W, Kuhlemann J, Frisch W (2004) Toward a comprehensive provenance analysis: a multi-method approach and its implications for the evolution of the Central Alps. Geol Soc Am S 378:37–50Google Scholar
  62. Stewart RJ, Brandon MT (2004) Detrital-zircon fission-track ages for the ‘‘Hoh Formation’’: implications for late Cenozoic evolution of the Cascadia subduction wedge. Geol Soc Am Bull 116:60–75CrossRefGoogle Scholar
  63. Stewart RJ, Hallet B, Zeitler PK, Malloy MA, Allen CM, Trippett D (2008) Brahmaputra sediment flux dominated by highly localized rapid erosion from the easternmost Himalaya. Geology 36:711–714CrossRefGoogle Scholar
  64. Trautwein B, Dunkl I, Kuhlemann J, Frisch W (2002) Cretaceous Tertiary Rhenodanubian flysch wedge (Eastern Alps): clues to sediment supply and basin configuration from zircon fission-track data. Terra Nova 13:382–393CrossRefGoogle Scholar
  65. van der Beek P, Robert X, Mugnier JL, Bernet M, Huyghe P, Labrin E (2006) Late Miocene—Recent denudation of the central Himalaya and recycling in the foreland basin assessed by detrital apatite fission-track thermochronology of Siwalik sediments. Nepal. Basin Res 18:413–434CrossRefGoogle Scholar
  66. van der Beek, P, Valla P, Herman F, Braun J, Persano C, Dobson, KJ, Labrin E (2010) Inversion of thermochronological age-elevation profiles to extract independent estimates of denudation and relief history-II: application to the French Alps. Earth Planet Sci Lett 296:9–22Google Scholar
  67. Vermeesch P (2009) RadialPlotter: a Java application for fission track, luminescence and other radial plots. Radiat Meas 44:409–410CrossRefGoogle Scholar
  68. Vermeesch P (2018) Statistics for fission-track thermochronology (Chapter 6). In: Malusà MG, Fitzgerald PG (eds) Fission-track thermochronology and its application to geology. Springer, BerlinGoogle Scholar
  69. von Blanckenburg F, Kagami H, Deutsch A, Oberli F, Meier M, Wiedenbeck M, Bart S, Fischer H (1998) The origin of Alpine plutons along the Periadriatic Lineament. Schweiz Mineral Petr Mitt 78:55–66Google Scholar
  70. Zeitler PK, Johnson NM, Briggs ND, Naeser CW (1982) Uplift history of the NW Himalaya as recorded by fission-track ages on detrital zircon. In: Proceedings of the Symposium on Mesozoic and Cenozoic Geology, China, pp 481–494Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institut des Sciences de la Terre, CNRS, Université Grenoble AlpesGrenobleFrance

Personalised recommendations