Advertisement

Application of Thermochronology to Geologic Problems: Bedrock and Detrital Approaches

  • Marco G. Malusà
  • Paul G. Fitzgerald
Chapter
Part of the Springer Textbooks in Earth Sciences, Geography and Environment book series (STEGE)

Abstract

Low-temperature thermochronology can be applied to a wide range of geologic problems. In this chapter, we provide an overview of different approaches, underlying assumptions and suitable sampling strategies for bedrock and detrital thermochronologic analyses, with particular emphasis on the fission-track (FT) method. Approaches to bedrock thermochronology are dependent on the goals of the project and the regional geologic setting, and include application of: (i) multiple methods (e.g., FT, (U–Th)/He and U–Pb) on various mineral phases (e.g., apatite and zircon) from the same sample, (ii) single methods on multiple samples collected over significant relief or across a geographic region (regional approach) or (iii) multiple methods on multiple samples. The cooling history of rock samples can be used to constrain exhumation paths and provides thermochronologic markers to determine fault offset, timing of deformation and virtual tectonic configurations above the present-day topography. Detrital samples can be used to constrain erosion patterns of sediment source regions on both short-term (103–105 yr) and long-term (106–108 yr) timescales, and their evolution through time. The full potential of the detrital thermochronology approach is best exploited by the integrated analysis of samples collected from a stratigraphic succession, samples of modern sediment and independent mineral fertility determinations.

Notes

Acknowledgements

This work benefited from constructive reviews by Maria Laura Balestrieri and Shari Kelley, comments on an early version of the manuscript by an anonymous reviewer, and comments by Suzanne Baldwin and students in her 2016 thermochronology class. PGF thanks the National Science Foundation for funding through the years as well as support from Jarg Pettinga and the Erksine Program at the University of Canterbury.

References

  1. Asti R, Malusà MG, Faccenna C (2018) Supradetachment basin evolution unraveled by detrital apatite fission track analysis: the Gediz Graben (Menderes Massif, Western Turkey). Basin Res 30:502-521CrossRefGoogle Scholar
  2. Baldwin SL, Harrison TM, Burke K (1986) Fission track evidence for the source of Scotland District sediments, Barbados and implications for post-Eocene tectonics of the southern Caribbean. Tectonics 5:457–468CrossRefGoogle Scholar
  3. Baldwin SL, Fitzgerald PG, Malusà MG (2018) Chapter 13. Crustal exhumation of plutonic and metamorphic rocks: constraints from fission-track thermochronology. In: Malusà MG, Fitzgerald PG (eds) Fission-track thermochronology and its application to geology. Springer, BerlinGoogle Scholar
  4. Balestrieri ML, Bonini M, Corti G, Sani F, Philippon M (2016) A refinement of the chronology of rift-related faulting in the broadly rifted zone, southern Ethiopia, through apatite fission-track analysis. Tectonophysics 671:42–55CrossRefGoogle Scholar
  5. Bernet M (2018) Chapter 15. Exhumation studies of mountain belts based on detrital fission-track analysis on sand and sandstones. In: Malusà MG, Fitzgerald PG (eds) Fission-track thermochronology and its application to geology. Springer, BerlinGoogle Scholar
  6. Bernet M, Garver JI (2005) Fission-track analysis of detrital zircon. Rev Mineral Geochem 58(1):205–237CrossRefGoogle Scholar
  7. Bernet M, Zattin M, Garver JI, Brandon MT, Vance JA (2001) Steady-state exhumation of the European Alps. Geology 29:35–38CrossRefGoogle Scholar
  8. Bernet M, Brandon MT, Garver JI, Molitor B (2004a) Fundamentals of detrital zircon fission-track analysis for provenance and exhumation studies with examples from the European Alps. Geol Soc Am Spec Pap 378:25–36Google Scholar
  9. Bernet M, Brandon MT, Garver JI, Molitor B (2004b) Downstream changes of Alpine zircon fission-track ages in the Rhône and Rhine Rivers. J Sediment Res 74:82–94CrossRefGoogle Scholar
  10. Bernoulli D, Bertotti G, Zingg A (1989) Northward thrusting of the Gonfolite Lombarda (South-Alpine Molasse) onto the Mesozoic sequence of the Lombardian Alps: implications for the deformation history of the Southern Alps. Eclogae Geol Helv 82:841–856Google Scholar
  11. Bigot-Cormier F, Poupeau G, Sosson M (2000) Differential denudations of the Argentera Alpine external crystalline massif (SE France) revealed by fission track thermochronology (zircons, apatites). C R Acad Sci 5:363–370Google Scholar
  12. Brandon MT (1996) Probability density plot for fission-track grain-age samples. Radiat Meas 26:663–676CrossRefGoogle Scholar
  13. Brandon MT, Roden-Tice MK, Garver JI (1998) Late Cenozoic exhumation of the Cascadia accretionary wedge in the Olympic Mountains, northwest Washington State. Geol Soc Am Bull 110:985–1009CrossRefGoogle Scholar
  14. Braun J (2002) Quantifying the effect of recent relief changes on age–elevation relationships. Earth Planet Sci Lett 200(3):331–343CrossRefGoogle Scholar
  15. Braun J (2016) Strong imprint of past orogenic events on the thermochronological record. Tectonophysics 683:325–332CrossRefGoogle Scholar
  16. Braun J, Gemignani L, van der Beek P (2018) Extracting information on the spatial variability in erosion rate stored in detrital cooling age distributions in river sands. Earth Surf Dynam 6:257–270CrossRefGoogle Scholar
  17. Braun J, van der Beek P, Valla P, Robert X, Herman F, Glotzbach C, Pedersen V, Perry C, Simon-Labric T (2012) Quantifying rates of landscape evolution and tectonic processes by thermochronology and numerical modeling of crustal heat transport using PECUBE. Tectonophysics 524–525:1–28CrossRefGoogle Scholar
  18. Brewer ID, Burbank DW, Hodges KV (2003) Modelling detrital cooling-age populations: insights from two Himalayan catchments. Basin Res 15:305–320CrossRefGoogle Scholar
  19. Brown RW (1991) Backstacking apatite fission-track “stratigraphy”: a method for resolving the erosional and isostatic rebound components of tectonic uplift histories. Geology 19(1):74–77CrossRefGoogle Scholar
  20. Brown RW, Summerfield MA, Gleadow AJW (1994) Apatite fission track analysis: its potential for the estimation of denudation rates and implications of long-term landscape development. In: Kirkby MJ (ed) Process models and theoretical geomorphology. Wiley, Hoboken, pp 23–53Google Scholar
  21. Carrapa B, Wijbrans J, Bertotti G (2003) Episodic exhumation in the Western Alps. Geology 31(7):601–604CrossRefGoogle Scholar
  22. Carter A (2018) Chapter 14. Thermochronology on sand and sandstones for stratigraphic and provenance studies. In: Malusà MG, Fitzgerald PG (eds) Fission-track thermochronology and its application to geology. Springer, BerlinGoogle Scholar
  23. Carter A, Bristow CS, Hurford AJ (1995) The application of fission track analysis to the dating of barren sequences: examples from red beds in Scotland and Thailand. Geol Soc Spec Publ 89:57–68CrossRefGoogle Scholar
  24. Cerveny PF, Naeser ND, Zeitler PK, Naeser CW, Johnson NM (1988) History of uplift and relief of the Himalaya during the past 18 million years: evidence from fission-track ages of detrital zircons from sandstones of the Siwalik Group. New perspectives in basin analysis. Springer, New York, pp 43–61CrossRefGoogle Scholar
  25. Chen WP, Yu CQ, Tseng TL, Yang Z, Wang CY, Ning J, Leonard T (2013) Moho, seismogenesis, and rheology of the lithosphere. Tectonophysics 609:491–503CrossRefGoogle Scholar
  26. Chirouze F, Bernet M, Huyghe P, Erens V, Dupont-Nivet G, Senebier F (2012) Detrital thermochronology and sediment petrology of the middle Siwaliks along the Muksar Khola section in eastern Nepal. J Asian Earth Sci 44:94–106CrossRefGoogle Scholar
  27. D’Adda P, Zanchi A, Bergomi M, Berra F, Malusà MG, Tunesi A, Zanchetta S (2011) Polyphase thrusting and dyke emplacement in the central Southern Alps (northern Italy). Int J Earth Sci 100:1095–1113CrossRefGoogle Scholar
  28. Danišík M (2018) Chapter 5. Integration of fission-track thermochronology with other geochronologic methods on single crystals. In: Malusà MG, Fitzgerald PG (eds) Fission-track thermochronology and its application to geology. Springer, BerlinGoogle Scholar
  29. Dickinson WR (2008) Impact of differential zircon fertility of granitoid basement rocks in North America on age populations of detrital zircons and implications for granite petrogenesis. Earth Planet Sci Lett 275:80–92CrossRefGoogle Scholar
  30. Dunkl I, Székely B (2002) Component analysis with visualization of fitting—PopShare, a windows program for data analysis. Goldschmidt conference abstracts 2002. Geochim Cosmochim Ac 66/A:201Google Scholar
  31. Ehlers TA (2005) Crustal thermal processes and the interpretation of thermochronometer data. Rev Mineral Geochem 58:315–350CrossRefGoogle Scholar
  32. Ehlers TA, Chaudhri T, Kumar S, Fuller CW, Willett SD, Ketcham RA, Brandon MT, Belton DX, Kohn BP, Gleadow AJW, Dunai TJ, Fu FQ (2005) Computational tools for low-temperature thermochronometer interpretation. Rev Mineral Geochem 58(1):589–622CrossRefGoogle Scholar
  33. Eyal Y, Reches Z (1983) Tectonic analysis of the Dead Sea Rift region since the Late-Cretaceous based on mesostructures. Tectonics 2:167–185CrossRefGoogle Scholar
  34. Feinstein S, Kohn B, Osadetz K, Price RA (2007) Thermochronometric reconstruction of the prethrust paleogeothermal gradient and initial thickness of the Lewis thrust sheet, southeastern Canadian Cordillera foreland belt. Geol Soc Am Spec Pap 433:167–182Google Scholar
  35. Fitzgerald PG (1992) The Transantarctic Mountains of southern Victoria Land: the application of apatite fission track analysis to a rift shoulder uplift. Tectonics 11(3):634–662CrossRefGoogle Scholar
  36. Fitzgerald PG (1994) Thermochronologic constraints on post-Paleozoic tectonic evolution of the central Transantarctic Mountains, Antarctica. Tectonics 13:818–836CrossRefGoogle Scholar
  37. Fitzgerald PG, Gleadow AJ (1988) Fission-track geochronology, tectonics and structure of the Transantarctic Mountains in northern Victoria Land, Antarctica. Chem Geol 73(2):169–198Google Scholar
  38. Fitzgerald PG, Gleadow AJ (1990) New approaches in fission track geochronology as a tectonic tool: examples from the Transantarctic Mountains. Int J Rad Appl Instr Part D Nucl Tracks Rad Meas 17(3):351–357CrossRefGoogle Scholar
  39. Fitzgerald PG, Malusà MG (2018) Chapter 9. Concept of the exhumed partial annealing (retention) zone and age-elevation profiles in thermochronology. In: Malusà MG, Fitzgerald PG (eds) Fission-track thermochronology and its application to geology. Springer, BerlinGoogle Scholar
  40. Fitzgerald PG, Sorkhabi RB, Redfield TF, Stump E (1995) Uplift and denudation of the central Alaska Range: a case study in the use of apatite fission track thermochronology to determine absolute uplift parameters. J Geophys Res Sol Earth 100(B10):20175–20191CrossRefGoogle Scholar
  41. Fitzgerald PG, Duebendorfer EM, Faulds JE, O’Sullivan PB (2009) South Virgin–White Hills detachment fault system of SE Nevada and NW Arizona: applying apatite fission track thermochronology to constrain the tectonic evolution of a major continental detachment fault. Tectonics 28Google Scholar
  42. Fitzgerald PG, Malusà MG, Muñoz JA (2018) Chapter 17. Detrital thermochronology using conglomerates and cobbles. In: Malusà MG, Fitzgerald PG (eds) Fission-track thermochronology and its application to geology. Springer, BerlinGoogle Scholar
  43. Foster DA (2018) Chapter 11. Fission-track thermochronology in structural geology and tectonic studies. In: Malusà MG, Fitzgerald PG (eds) Fission-track thermochronology and its application to geology. Springer, BerlinGoogle Scholar
  44. Foster DA, Gleadow AJW (1996) Structural framework and denudation history of the flanks Kenya and Anza rifts, East Africa. Tectonics 15:258–271CrossRefGoogle Scholar
  45. Foster DA, Gleadow AJ, Reynolds SJ, Fitzgerald PG (1993) Denudation of metamorphic core complexes and the reconstruction of the transition zone, west central Arizona: constraints from apatite fission track thermochronology. J Geophys Res Sol Earth 98(B2):2167–2185CrossRefGoogle Scholar
  46. Freeman SR, Inger S, Butler RWH, Cliff RA (1997) Dating deformation using Rb–Sr in white mica: greenschist facies deformation ages from the Entrelor shear zone, Italian Alps. Tectonics 16:57–76CrossRefGoogle Scholar
  47. Gallagher K, Brown RW (1997) The onshore record of passive margin evolution. J Geol Soc Lond 154:451–457CrossRefGoogle Scholar
  48. Garver JI, Brandon MT, Roden-Tice MK, Kamp PJJ (1999) Exhumation history of orogenic highlands determined by detrital fission track thermochronology. Geol Soc Spec Publ 154:283–304CrossRefGoogle Scholar
  49. Garzanti E, Malusà MG (2008) The Oligocene Alps: domal unroofing and drainage development during early orogenic growth. Earth Planet Sci Lett 268:487–500CrossRefGoogle Scholar
  50. Gessner K, Ring U, Johnson C, Hetzel R, Passchier CW, Güngör T (2001) An active bivergent rolling-hinge detachment system: Central Menderes metamorphic core complex in western Turkey. Geology 29:611–614CrossRefGoogle Scholar
  51. Gleadow AJW, Fitzgerald PG (1987) Uplift history and structure of the Transantarctic Mountains: new evidence from fission track dating of basement apatites in the Dry Valleys area, southern Victoria Land. Earth Planet Sci Lett 82(1):1–14Google Scholar
  52. Glotzbach C, Bernet M, van der Beek P (2011) Detrital thermochronology records changing source areas and steady exhumation in the Western European Alps. Geology 39(3):239–242CrossRefGoogle Scholar
  53. Glotzbach C, van der Beek P, Carcaillet J, Delunel R (2013) Deciphering the driving forces of erosion rates on millennial to million-year timescales in glacially impacted landscapes: an example from the Western Alps. J Geophys Res Earth 118:1491–1515CrossRefGoogle Scholar
  54. Glotzbach C, Busschers FS, Winsemann J (2017) Detrital thermochronology of Rhine, Elbe and Meuse river sediment (Central Europe): implications for provenance, erosion and mineral fertility. Int J Earth Sci.  https://doi.org/10.1007/s00531-017-1502-9CrossRefGoogle Scholar
  55. Green PF (1986) On the thermo-tectonic evolution of Northern England: evidence from fission track analysis. Geol Mag 153:493–506CrossRefGoogle Scholar
  56. Green PF, Duddy IR, Laslett GM, Hegarty KA, Gleadow AJW, Lovering JF (1989) Thermal annealing of fission tracks in apatite 4. Quantitative modelling techniques and extension to geological timescales. Chem Geol Isot Geosci Sect 79(2):155–182Google Scholar
  57. Hendriks B, Andriessen P, Huigen Y, Leighton C, Redfield T, Murrell G, Gallagher K, Nielsen SB (2007) A fission track data compilation for Fennoscandia. Norw J Geol 87:143–155Google Scholar
  58. Herman F, Braun J, Dunlap WJ (2007) Tectonomorphic scenarios in the Southern alps of New Zealand. J Geophys Res Sol Earth 112(B4)Google Scholar
  59. Hurford AJ (1986) Cooling and uplift patterns in the Lepontine Alps South Central Switzerland and an age of vertical movement on the insubric fault line. Contrib Miner Petrol 92:413–427CrossRefGoogle Scholar
  60. Ketcham R (2018) Chapter 3. Fission track annealing: from geologic observations to thermal history modeling. In: Malusà MG, Fitzgerald PG (eds) Fission-track thermochronology and its application to geology. Springer, BerlinGoogle Scholar
  61. Kohn MJ, Corrie SL, Markley C (2015) The fall and rise of metamorphic zircon. Am Miner 100(4):897–908CrossRefGoogle Scholar
  62. Kounov A, Viola G, De Wit M, Andreoli MAG (2009) Denudation along the Atlantic passive margin: new insights from apatite fission-track analysis on the western coast of South Africa. Geol Soc Spec Publ 324:287–306CrossRefGoogle Scholar
  63. Ksienzyk AK, Dunkl I, Jacobs J, Fossen H, Kohlmann F (2014) From orogen to passive margin: constraints from fission track and (U–Th)/He analyses on Mesozoic uplift and fault reactivation in SW Norway. Geol Soc Spec Publ 390Google Scholar
  64. Labaume P, Jolivet M, Souquière F, Chauvet A (2008) Tectonic control on diagenesis in a foreland basin: combined petrologic and thermochronologic approaches in the Grès d’Annot basin (Late Eocene-Early Oligocene, French-Italian external Alps). Terra Nova 20:95–101CrossRefGoogle Scholar
  65. Lang KA, Huntington KW, Burmester R, Housen B (2016) Rapid exhumation of the eastern Himalayan syntaxis since the late Miocene. Geol Soc Am Bull 128:1403–1422CrossRefGoogle Scholar
  66. Lupker M, Blard PH, Lavé J, France-Lanord C, Leanni L, Puchol N, Charreau J, Bourlès D (2012) 10Be-derived Himalayan denudation rates and sediment budgets in the Ganga basin. Earth Planet Sci Lett 333:146–156CrossRefGoogle Scholar
  67. Malusà MG (2018) Chapter 16. A guide for interpreting complex detrital age patterns in stratigraphic sequences. In: Malusà MG, Fitzgerald PG (eds) Fission-track thermochronology and its application to geology. Springer, BerlinGoogle Scholar
  68. Malusà MG, Balestrieri ML (2012) Burial and exhumation across the Alps-Apennines junction zone constrained by fission-track analysis on modern river sands. Terra Nova 24:221–226CrossRefGoogle Scholar
  69. Malusà MG, Fitzgerald PG (2018) Chapter 8. From cooling to exhumation: setting the reference frame for the interpretation of thermocronologic data. In: Malusà MG, Fitzgerald PG (eds) Fission-track thermochronology and its application to geology. Springer, BerlinGoogle Scholar
  70. Malusà MG, Garzanti E (2018) Chapter 7. The sedimentology of detrital thermochronology. In: Malusà MG, Fitzgerald PG (eds) Fission-track thermochronology and its application to geology. Springer, BerlinGoogle Scholar
  71. Malusà MG, Polino R, Zattin M, Bigazzi G, Martin S, Piana F (2005) Miocene to present differential exhumation in the Western Alps: insights from fission track thermochronology. Tectonics 24(3):TC3004:1-23CrossRefGoogle Scholar
  72. Malusà MG, Philippot P, Zattin M, Martin S (2006) Late stages of exhumation constrained by structural, fluid inclusion and fission track analyses (Sesia–Lanzo unit, Western European Alps). Earth Planet Sci Lett 243(3):565–580CrossRefGoogle Scholar
  73. Malusà MG, Polino R, Cerrina Feroni A, Ellero A, Ottria G, Baidder L, Musumeci G (2007) Post-Variscan tectonics in eastern Anti-Atlas (Morocco). Terra Nova 19(6):481–489CrossRefGoogle Scholar
  74. Malusà MG, Polino R, Zattin M (2009a) Strain partitioning in the axial NW Alps since the Oligocene. Tectonics 28(TC002370):1–26Google Scholar
  75. Malusà MG, Zattin M, Andò S, Garzanti E, Vezzoli G (2009b) Focused erosion in the Alps constrained by fission-track ages on detrital apatites. Geol Soc Spec Publ 324:141–152CrossRefGoogle Scholar
  76. Malusà MG, Villa IM, Vezzoli G, Garzanti E (2011) Detrital geochronology of unroofing magmatic complexes and the slow erosion of Oligocene volcanoes in the Alps. Earth Planet Sci Lett 301:324–336CrossRefGoogle Scholar
  77. Malusà MG, Carter A, Limoncelli M, Villa IM, Garzanti E (2013) Bias in detrital zircon geochronology and thermochronometry. Chem Geol 359:90–107CrossRefGoogle Scholar
  78. Malusà MG, Resentini A, Garzanti E (2016) Hydraulic sorting and mineral fertility bias in detrital geochronology. Gondwana Res 31:1–19CrossRefGoogle Scholar
  79. Malusà MG, Wang J, Garzanti E, Liu ZC, Villa IM, Wittmann H (2017) Trace-element and Nd-isotope systematics in detrital apatite of the Po river catchment: implications for provenance discrimination and the lag-time approach to detrital thermochronology. Lithos 290–291:48–59CrossRefGoogle Scholar
  80. Mancktelow NS, Grasemann B (1997) Time-dependent effects of heat advection and topography on cooling histories during erosion. Tectonophysics 270(3):167–195CrossRefGoogle Scholar
  81. Marrett R, Allmendinger RW (1990) Kinematic analysis of fault-slip data. J Struct Geol 12:973–986CrossRefGoogle Scholar
  82. Martinez-Diaz JJ (2002) Stress field variation related to fault interaction in a reverse oblique-slip fault: the Alhama de Murcia fault, Betic Cordillera, Spain. Tectonophysics 356:291–305CrossRefGoogle Scholar
  83. Miller SR, Fitzgerald PG, Baldwin SL (2010) Cenozoic range‐front faulting and development of the Transantarctic Mountains near Cape Surprise, Antarctica: thermochronologic and geomorphologic constraints. Tectonics 29(1)CrossRefGoogle Scholar
  84. Moecher DP, Samson SD (2006) Differential zircon fertility of source terranes and natural bias in the detrital zircon record: implications for sedimentary provenance analysis. Earth Planet Sci Lett 247:252–266CrossRefGoogle Scholar
  85. Moore MA, England PC (2001) On the inference of denudation rates from cooling ages of minerals. Earth Planet Sci Lett 185:265–284CrossRefGoogle Scholar
  86. Murakami M, Tagami T (2004) Dating pseudotachylyte of the Nojima fault using the zircon fission‐track method. Geophys Res Lett 31(12)CrossRefGoogle Scholar
  87. Naeser CW, Bryant B, Crittenden MD, Sorensen ML (1983) Fission-track ages of apatite in the Wasatch Mountains, Utah: an uplift study. Geol Soc Am Mem 157:29–36Google Scholar
  88. Niemi NA, Buscher JT, Spotila JA, House MA, Kelley SA (2013) Insights from low-temperature thermochronometry into transpressional deformation and crustal exhumation along the San Andreas fault in the western Transverse Ranges, California. Tectonics 32:1602–1622CrossRefGoogle Scholar
  89. Oberli F, Meier M, Berger A, Rosenberg CL, Gieré R (2004) U–Th–Pb and 230Th/238U disequilibrium isotope systematics: precise accessory mineral chronology and melt evolution tracing in the Alpine Bergell intrusion. Geochim Cosmochim Acta 68:2543–2560CrossRefGoogle Scholar
  90. Pieri M, Groppi G (1981) Subsurface geological structure of the Po Plain, Italy. Progetto Finalizzato Geodinamica 414:1–13Google Scholar
  91. Priestley K, Jackson J, McKenzie D (2008) Lithospheric structure and deep earthquakes beneath India, the Himalaya and southern Tibet. Geophys J Int 172:345–362CrossRefGoogle Scholar
  92. Raab MJ, Brown RW, Gallagher K, Carter A, Weber K (2002) Late Cretaceous reactivation of major crustal shear zones in northern Namibia: constraints from apatite fission track analysis. Tectonophysics 349:75–92CrossRefGoogle Scholar
  93. Rahl JM, Ehlers TA, van der Pluijm BA (2007) Quantifying transient erosion of orogens with detrital thermochronology from syntectonic basin deposits. Earth Planet Sci Lett 256:147–161CrossRefGoogle Scholar
  94. Rahn MK, Selbekk R (2007) Absolute dating of the youngest sediments of the Swiss Molasse basin by apatite fission track analysis. Swiss J Geosci 100(3):371–381CrossRefGoogle Scholar
  95. Raterron P, Wu Y, Weidner DJ, Chen J (2004) Low-temperature olivine rheology at high pressure. Phys Earth Planet Inter 145:149–159CrossRefGoogle Scholar
  96. Rebai S, Philip H, Taboada A (1992) Modern tectonic stress field in the Mediterranean region: evidence for variations in stress directions at different scales. Geophys J Int 110:106–140CrossRefGoogle Scholar
  97. Reiners PW, Brandon MT (2006) Using thermochronology to understand orogenic erosion. Annu Rev Earth Planet Sci 34:419–466CrossRefGoogle Scholar
  98. Resentini A, Malusà MG (2012) Sediment budgets by detrital apatite fission-track dating (Rivers Dora Baltea and Arc, Western Alps). Geol Soc Am Spec Pap 487:125–140Google Scholar
  99. Riccio SJ, Fitzgerald PG, Benowitz JA, Roeske SM (2014) The role of thrust faulting in the formation of the eastern Alaska Range: thermochronological constraints from the Susitna glacier thrust fault region of the intracontinental strike-slip Denali fault system. Tectonics 33(11):2195–2217CrossRefGoogle Scholar
  100. Richardson NJ, Densmore AL, Seward D et al (2008) Extraordinary denudation in the Sichuan basin: insights from low‐temperature thermochronology adjacent to the eastern margin of the Tibetan Plateau. J Geophys Res Solid Earth 113(B4)Google Scholar
  101. Ruhl KW, Hodges KV (2005) The use of detrital mineral cooling ages to evaluate steady state assumptions in active orogens: an example from the central Nepalese Himalaya. Tectonics 24Google Scholar
  102. Ruiz G, Seward D (2006) The Punjab foreland basin of Pakistan: a reinterpretation of zircon fission-track data in the light of Miocene hinterland dynamics. Terra Nova 18:248–256CrossRefGoogle Scholar
  103. Ruiz G, Seward D, Winkler W (2004) Detrital thermochronology—a new perspective on hinterland tectonics, an example from the Andean Amazon Basin, Ecuador. Basin Res 16:413–430CrossRefGoogle Scholar
  104. Ruiz G, Carlotto V, Van Heiningen PV, Andriessen PAM (2009) Steady-state exhumation pattern in the Central Andes–SE Peru. Geol Soc Spec Publ 324:307–316CrossRefGoogle Scholar
  105. Schildgen TF, van der Beek PA (2018) Chapter 19. Application of low-temperature thermochronology to the geomorphology of orogenic systems. In: Malusà MG, Fitzgerald PG (eds) Fission-track thermochronology and its application to geology. Springer, BerlinGoogle Scholar
  106. Schmid SM, Handy MR (1991) Towards a genetic classification of fault rocks: geological usage and tectonophysical implications. In: Muller DW et al (eds) Controversies in modern geology. Academic Press, Cambridge, pp 339–361Google Scholar
  107. Schneider DA, Issler DR (2018) Chapter 18. Application of low-temperature thermochronology to hydrocarbon exploration. In: Malusà MG, Fitzgerald PG (eds) Fission-track thermochronology and its application to geology. Springer, BerlinGoogle Scholar
  108. Scholz CH (1998) Earthquakes and friction laws. Nature 391:37–42CrossRefGoogle Scholar
  109. Schwartz S, Gautheron C, Audin L, Dumont T, Nomade J, Barbarand J, Pinna-Jamme R, van der Beek P (2017) Foreland exhumation controlled by crustal thickening in the Western Alps. Geology G38561-1Google Scholar
  110. Sibson RH (1983) Continental fault structure and the shallow earthquake source. J Geol Soc Lond 140:741–767CrossRefGoogle Scholar
  111. Snoke AW, Tullis J, Todd VR (1998) Fault-related rocks: a photographic atlas. Princeton University Press, PrincetonGoogle Scholar
  112. Spotila JA (2005) Applications of low-temperature thermochronometry to quantification of recent exhumation in mountain belts. Rev Miner Geochem 58(1):449–466CrossRefGoogle Scholar
  113. Stock GM, Ehlers TA, Farley KA (2006) Where does sediment come from? Quantifying catchment erosion with detrital apatite (U–Th)/He thermochronometry. Geology 34:725–728CrossRefGoogle Scholar
  114. Stockli DF, Surpless BE, Dumitru TA, Farley KA (2002) Thermochronological constraints on the timing and magnitude of Miocene and Pliocene extension in the central Wassuk Range, western Nevada. Tectonics 21Google Scholar
  115. Stüwe K, White L, Brown R (1994) The influence of eroding topography on steady-state isotherms. Application to fission-track analysis. Earth Planet Sci Lett 124(1–4):63–74CrossRefGoogle Scholar
  116. Tagami T. (2018) Chapter 12. Application of fission-track thermochronology to understand fault zones. In: Malusà MG, Fitzgerald PG (eds) Fission-track thermochronology and its application to geology. Springer, BerlinGoogle Scholar
  117. Tagami T, Hasebe N, Kamohara H, Takemura K (2001) Thermal anomaly around the Nojima Fault as detected by fission-track analysis of Ogura 500 m borehole samples. Isl Arc 10(3–4):457–464CrossRefGoogle Scholar
  118. Thiede RC, Arrowsmith JR, Bookhagen B, McWilliams M, Sobel ER, Strecker MR (2006) Dome formation and extension in the Tethyan Himalaya, Leo Pargil, northwest India. Geol Soc Am Bull 118:635–650CrossRefGoogle Scholar
  119. Thomson SN (2002) Late cenozoic geomorphic and tectonic evolution of the Patagonian Andes between latitudes 42 S and 46 S: an appraisal based on fission-track results from the transpressional intra-arc Liquiñe-Ofqui fault zone. Geol Soc Am Bull 114:1159–1173Google Scholar
  120. van der Beek P, Robert X, Mugnier JL, Bernet M, Huyghe P, Labrin E (2006) Late Miocene–recent exhumation of the central Himalaya and recycling in the foreland basin assessed by apatite fission-track thermochronology of Siwalik sediments, Nepal. Basin Res 18:413–434CrossRefGoogle Scholar
  121. Vermeesch P (2007) Quantitative geomorphology of the White Mountains (California) using detrital apatite fission track thermochronology. J Geophys Res Earth 112(F3)Google Scholar
  122. Vermeesch P (2009) RadialPlotter: a Java application for fission track, luminescence and other radial plots. Rad Meas 44:409–410CrossRefGoogle Scholar
  123. Vermeesch P (2013) Multi-sample comparison of detrital age distributions. Chem Geol 341:140–146CrossRefGoogle Scholar
  124. Vermeesch P (2018) Chapter 6. Statistics for fission-track thermochronology. In: Malusà MG, Fitzgerald PG (eds) Fission-track thermochronology and its application to geology. Springer, BerlinGoogle Scholar
  125. Villa IM, von Blanckenburg F (1991) A hornblende 39Ar–40Ar age traverse of the Bregaglia tonalite (southeast Central Alps). Schweiz Mineral Petrogr Mitt 71:73–87Google Scholar
  126. Viola G, Mancktelow NS, Seward D (2001) Late Oligocene-Neogene evolution of Europe-Adria collision: new structural and geochronological evidence from the Giudicarie fault system (Italian Eastern Alps). Tectonics 20:999–1020CrossRefGoogle Scholar
  127. von Eynatten H, Dunkl I (2012) Assessing the sediment factory: the role of single grain analysis. Earth Sci Rev 115:97–120CrossRefGoogle Scholar
  128. Wagner GA, Reimer GM (1972) Fission track tectonics: the tectonic interpretation of fission track apatite ages. Earth Planet Sci Lett 14(2):263–268CrossRefGoogle Scholar
  129. Wagner GA, Reimer GM, Jäger E (1977) Cooling ages derived by apatite fission track, mica Rb–Sr, and K–Ar dating: the uplift and cooling history of the central Alps. Mem Ist Geol Miner Univ Padova 30:1–27Google Scholar
  130. Wagner GA, Miller DS, Jäger E (1979) Fission track ages on apatite of Bergell rocks from central Alps and Bergell boulders in Oligocene sediments. Earth Planet Sci Lett 45(2):355–360CrossRefGoogle Scholar
  131. Warren-Smith E, Lamb S, Seward D, Smith E, Herman F, Stern T (2016) Thermochronological evidence of a low-angle, mid-crustal detachment plane beneath the central South Island, New Zealand. Geochem Geophys Geosyst 17:4212–4235CrossRefGoogle Scholar
  132. West DP, Roden-Tice MK (2003) Late Cretaceous reactivation of the Norumbega fault zone, Maine: evidence from apatite fission-track ages. Geology 31(7):649–652CrossRefGoogle Scholar
  133. Willett SD, Fisher D, Fuller C, En-Chao Y, Chia-Yu L (2003) Erosion rates and orogenic-wedge kinematics in Taiwan inferred from fission-track thermochronometry. Geology 31:945–948CrossRefGoogle Scholar
  134. Wiltschko DV (1998) Analysis of veins in low temperature environments—introduction for structural geologists. Geol Soc Am. Short Course, 96 ppGoogle Scholar
  135. Wittmann H, Von Blanckenburg F, Maurice L, Guyot JL, Kubik PW (2011) Recycling of Amazon floodplain sediment quantified by cosmogenic 26Al and 10Be. Geology 39(5):467–470CrossRefGoogle Scholar
  136. Wittmann H, Malusà MG, Resentini A, Garzanti E, Niedermann S (2016) The cosmogenic record of mountain erosion transmitted across a foreland basin: source-to-sink analysis of in situ 10Be, 26Al and 21Ne in sediment of the Po river catchment. Earth Planet Sci Lett 452:258–271CrossRefGoogle Scholar
  137. Zanchetta S, Malusà MG, Zanchi A (2015) Precollisional development and Cenozoic evolution of the Southalpine retrobelt (European Alps). Lithosphere 7(6):662–681Google Scholar
  138. Zattin M, Picotti V, Zuffa GG (2002) Fission-track reconstruction of the front of the Northern Apennine thrust wedge and overlying Ligurian unit. Am J Sci 302(4):346–379CrossRefGoogle Scholar
  139. Zattin M, Talarico FM, Sandroni S (2010) Integrated provenance and detrital thermochronology studies on the ANDRILL AND-2A drill core: late Oligocene-early miocene exhumation of the Transantarctic Mountains (southern Victoria Land, Antarctica). Terra Nova 22:361–368CrossRefGoogle Scholar
  140. Zwingmann H, Mancktelow N (2004) Timing of Alpine fault gouges. Earth Planet Sci Lett 223:415–425CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Earth and Environmental SciencesUniversity of Milano-BicoccaMilanItaly
  2. 2.Department of Earth SciencesSyracuse UniversitySyracuseUSA

Personalised recommendations