Advertisement

Inflammasomes in the Kidney

  • Holly L. Hutton
  • Maliha A. Alikhan
  • A. Richard Kitching
Chapter
Part of the Experientia Supplementum book series (EXS, volume 108)

Abstract

Inflammasomes influence a diverse range of kidney disease, including acute and chronic kidney diseases, and those mediated by innate and adaptive immunity. Both IL-18 and in particular IL-1β are validated therapeutic targets in several kidney diseases. In addition to leukocyte-derived inflammasomes, renal tissue cells express functional inflammasome components. Furthermore, a range of endogenous substances that directly activate inflammasomes also mediate kidney injury. Many of the functional studies have focussed on the NLRP3 inflammasome, and there is also evidence for the involvement of other inflammasomes in some conditions. While, at least in some disease, the mechanistic details of the involvement of the inflammasome remain to be elucidated, therapies focussed on inflammasomes and their products have potential in treating kidney disease in the future.

Keywords

Inflammasome Glomerulonephritis Acute kidney injury Diabetic nephropathy Interleukin-1β 

References

  1. Abais JM, Zhang C, Xia M, Liu Q, Gehr TW, Boini KM, Li PL (2013) NADPH oxidase-mediated triggering of inflammasome activation in mouse podocytes and glomeruli during hyperhomocysteinemia. Antioxid Redox Signal 18:1537–1548PubMedPubMedCentralCrossRefGoogle Scholar
  2. Akcay A, Nguyen Q, Edelstein CL (2009) Mediators of inflammation in acute kidney injury. Mediat Inflamm 2009:137072CrossRefGoogle Scholar
  3. Anders HJ, Schaefer L (2014) Beyond tissue injury-damage-associated molecular patterns, toll-like receptors, and inflammasomes also drive regeneration and fibrosis. J Am Soc Nephrol 25:1387–1400PubMedPubMedCentralCrossRefGoogle Scholar
  4. Awad AS, Kinsey GR, Khutsishvili K, Gao T, Bolton WK, Okusa MD (2011) Monocyte/macrophage chemokine receptor CCR2 mediates diabetic renal injury. Am J Physiol Ren Physiol 301:F1358–F1366CrossRefGoogle Scholar
  5. Babelova A, Moreth K, Tsalastra-Greul W, Zeng-Brouwers J, Eickelberg O, Young MF, Bruckner P, Pfeilschifter J, Schaefer RM, Grone HJ, Schaefer L (2009) Biglycan, a danger signal that activates the NLRP3 inflammasome via toll-like and P2X receptors. J Biol Chem 284:24035–24048PubMedPubMedCentralCrossRefGoogle Scholar
  6. Bagavant H, Fu SM (2009) Pathogenesis of kidney disease in systemic lupus erythematosus. Curr Opin Rheumatol 21:489–494PubMedPubMedCentralCrossRefGoogle Scholar
  7. Bakker PJ, Butter LM, Claessen N, Teske GJ, Sutterwala FS, Florquin S, Leemans JC (2014) A tissue-specific role for Nlrp3 in tubular epithelial repair after renal ischemia/reperfusion. Am J Pathol 184:2013–2022PubMedPubMedCentralCrossRefGoogle Scholar
  8. Bani-Hani AH, Leslie JA, Asanuma H, Dinarello CA, Campbell MT, Meldrum DR, Zhang H, Hile K, Meldrum KK (2009) IL-18 neutralization ameliorates obstruction-induced epithelial-mesenchymal transition and renal fibrosis. Kidney Int 76:500–511PubMedCrossRefPubMedCentralGoogle Scholar
  9. Barbour SJ, Reich HN (2012) Risk stratification of patients with IgA nephropathy. Am J Kidney Dis 59:865–873PubMedCrossRefPubMedCentralGoogle Scholar
  10. Bierzynska A, Saleem M (2017) Recent advances in understanding and treating nephrotic syndrome. F1000Res 6:121PubMedPubMedCentralCrossRefGoogle Scholar
  11. Bombardieri M, McInnes IB, Pitzalis C (2007) Interleukin-18 as a potential therapeutic target in chronic autoimmune/inflammatory conditions. Expert Opin Biol Ther 7:31–40PubMedCrossRefPubMedCentralGoogle Scholar
  12. Bonnemaison ML, Marks ES, Boesen EI (2017) Interleukin-1beta as a driver of renal NGAL production. Cytokine 91:38–43PubMedCrossRefPubMedCentralGoogle Scholar
  13. Brinkkoetter PT, Ising C, Benzing T (2013) The role of the podocyte in albumin filtration. Nat Rev Nephrol 9:328–336PubMedCrossRefPubMedCentralGoogle Scholar
  14. Brissette MJ, Laplante P, Qi S, Latour M, Cailhier JF (2016) Milk fat globule epidermal growth factor-8 limits tissue damage through inflammasome modulation during renal injury. J Leukoc Biol 100:1135–1146PubMedCrossRefPubMedCentralGoogle Scholar
  15. Calvani N, Richards HB, Tucci M, Pannarale G, Silvestris F (2004) Up-regulation of IL-18 and predominance of a Th1 immune response is a hallmark of lupus nephritis. Clin Exp Immunol 138:171–178PubMedPubMedCentralCrossRefGoogle Scholar
  16. Cao Y, Fei D, Chen M, Sun M, Xu J, Kang K, Jiang L, Zhao M (2015) Role of the nucleotide-binding domain-like receptor protein 3 inflammasome in acute kidney injury. FEBS J 282:3799–3807PubMedCrossRefPubMedCentralGoogle Scholar
  17. Chan AJ, Alikhan MA, Odobasic D, Gan PY, Khouri MB, Steinmetz OM, Mansell AS, Kitching AR, Holdsworth SR, Summers SA (2014) Innate IL-17A-producing leukocytes promote acute kidney injury via inflammasome and Toll-like receptor activation. Am J Pathol 184:1411–1418PubMedCrossRefPubMedCentralGoogle Scholar
  18. Chen A, Sheu LF, Chou WY, Tsai SC, Chang DM, Liang SC, Lin FG, Lee WH (1997) Interleukin-1 receptor antagonist modulates the progression of a spontaneously occurring IgA nephropathy in mice. American J Kidney Dis 30:693–702CrossRefGoogle Scholar
  19. Chen K, Zhang J, Zhang W, Zhang J, Yang J, Li K, He Y (2013) ATP-P2X4 signaling mediates NLRP3 inflammasome activation: a novel pathway of diabetic nephropathy. Int J Biochem Cell Biol 45:932–943PubMedCrossRefPubMedCentralGoogle Scholar
  20. Chen KW, Bezbradica JS, Gross CJ, Wall AA, Sweet MJ, Stow JL, Schroder K (2016) The murine neutrophil NLRP3 inflammasome is activated by soluble but not particulate or crystalline agonists. Eur J Immunol 46:1004–1010PubMedCrossRefPubMedCentralGoogle Scholar
  21. Chi HH, Hua KF, Lin YC, Chu CL, Hsieh CY, Hsu YJ, Ka SM, Tsai YL, Liu FC, Chen A (2017) IL-36 signaling facilitates activation of the NLRP3 inflammasome and IL-23/IL-17 axis in renal inflammation and fibrosis. J Am Soc Nephrol 28:2022–2037PubMedPubMedCentralCrossRefGoogle Scholar
  22. Choubey D, Panchanathan R (2017) Absent in melanoma 2 proteins in SLE. Clin Immunol 176:42–48PubMedPubMedCentralCrossRefGoogle Scholar
  23. Chow F, Ozols E, Nikolic-Paterson DJ, Atkins RC, Tesch GH (2004) Macrophages in mouse type 2 diabetic nephropathy: correlation with diabetic state and progressive renal injury. Kidney Int 65:116–128PubMedCrossRefPubMedCentralGoogle Scholar
  24. Chun J, Chung H, Wang X, Barry R, Taheri ZM, Platnich JM, Ahmed SB, Trpkov K, Hemmelgarn B, Benediktsson H, James MT, Muruve DA (2016) NLRP3 localizes to the tubular epithelium in human kidney and correlates with outcome in IgA nephropathy. Sci Rep 6:24667PubMedPubMedCentralCrossRefGoogle Scholar
  25. Chung Y, Chang SH, Martinez GJ, Yang XO, Nurieva R, Kang HS, Ma L, Watowich SS, Jetten AM, Tian Q, Dong C (2009) Critical regulation of early Th17 cell differentiation by interleukin-1 signaling. Immunity 30:576–587PubMedPubMedCentralCrossRefGoogle Scholar
  26. Coca SG, Yalavarthy R, Concato J, Parikh CR (2008) Biomarkers for the diagnosis and risk stratification of acute kidney injury: a systematic review. Kidney Int 73:1008–1016PubMedCrossRefPubMedCentralGoogle Scholar
  27. Cook HT (2007) Interpretation of renal biopsies in IgA nephropathy. Contrib Nephrol 157:44–49PubMedPubMedCentralGoogle Scholar
  28. Coppo R, Amore A, Peruzzi L, Vergano L, Camilla R (2010) Innate immunity and IgA nephropathy. J Nephrol 23:626–632PubMedPubMedCentralGoogle Scholar
  29. Correa-Costa M, Braga TT, Semedo P, Hayashida CY, Bechara LR, Elias RM, Barreto CR, Silva-Cunha C, Hyane MI, Goncalves GM, Brum PC, Fujihara C, Zatz R, Pacheco-Silva A, Zamboni DS, Camara NO (2011) Pivotal role of Toll-like receptors 2 and 4, its adaptor molecule MyD88, and inflammasome complex in experimental tubule-interstitial nephritis. PLoS One 6:e29004PubMedPubMedCentralCrossRefGoogle Scholar
  30. Crow MK (2014) Type I interferon in the pathogenesis of lupus. J Immunol 192:5459–5468PubMedPubMedCentralCrossRefGoogle Scholar
  31. Darisipudi MN, Knauf F (2016) An update on the role of the inflammasomes in the pathogenesis of kidney diseases. Pediatr Nephrol 31:535–544PubMedCrossRefGoogle Scholar
  32. Darisipudi MN, Thomasova D, Mulay SR, Brech D, Noessner E, Liapis H, Anders HJ (2012) Uromodulin triggers IL-1beta-dependent innate immunity via the NLRP3 inflammasome. J Am Soc Nephrol 23:1783–1789PubMedPubMedCentralCrossRefGoogle Scholar
  33. dos Santos NA, Carvalho Rodrigues MA, Martins NM, dos Santos AC (2012) Cisplatin-induced nephrotoxicity and targets of nephroprotection: an update. Arch Toxicol 86:1233–1250PubMedCrossRefGoogle Scholar
  34. Du W, Zhen J, Zheng Z, Ma S, Chen S (2013) Expression of AIM2 is high and correlated with inflammation in hepatitis B virus associated glomerulonephritis. J Inflamm 10:37CrossRefGoogle Scholar
  35. Du L, Dong F, Guo L, Hou Y, Yi F, Liu J, Xu D (2015) Interleukin-1beta increases permeability and upregulates the expression of vascular endothelial-cadherin in human renal glomerular endothelial cells. Mol Med Rep 11:3708–3714PubMedCrossRefPubMedCentralGoogle Scholar
  36. Duewell P, Kono H, Rayner KJ, Sirois CM, Vladimer G, Bauernfeind FG, Abela GS, Franchi L, Nunez G, Schnurr M, Espevik T, Lien E, Fitzgerald KA, Rock KL, Moore KJ, Wright SD, Hornung V, Latz E (2010) NLRP3 inflammasomes are required for atherogenesis and activated by cholesterol crystals. Nature 464:1357–1361PubMedPubMedCentralCrossRefGoogle Scholar
  37. Elneam AI, Mansour NM, Zaki NA, Taher MA (2016) Serum Interleukin-18 and Its Gene Haplotypes Profile as Predictors in Patients with Diabetic Nephropathy. Open Access Maced J Med Sci 4:324–328PubMedPubMedCentralCrossRefGoogle Scholar
  38. Emmerson BT, Cross M, Osborne JM, Axelsen RA (1990) Reaction of MDCK cells to crystals of monosodium urate monohydrate and uric acid. Kidney Int 37:36–43PubMedCrossRefGoogle Scholar
  39. Falk RJ, Terrell RS, Charles LA, Jennette JC (1990) Anti-neutrophil cytoplasmic autoantibodies induce neutrophils to degranulate and produce oxygen radicals in vitro. Proc Natl Acad Sci U S A 87:4115–4119PubMedPubMedCentralCrossRefGoogle Scholar
  40. Faubel S, Ljubanovic D, Reznikov L, Somerset H, Dinarello CA, Edelstein CL (2004) Caspase-1-deficient mice are protected against cisplatin-induced apoptosis and acute tubular necrosis. Kidney Int 66:2202–2213PubMedCrossRefGoogle Scholar
  41. Faubel S, Lewis EC, Reznikov L, Ljubanovic D, Hoke TS, Somerset H, Oh DJ, Lu L, Klein CL, Dinarello CA, Edelstein CL (2007) Cisplatin-induced acute renal failure is associated with an increase in the cytokines interleukin (IL)-1beta, IL-18, IL-6, and neutrophil infiltration in the kidney. J Pharmacol Exp Ther 322:8–15PubMedCrossRefGoogle Scholar
  42. Faust J, Menke J, Kriegsmann J, Kelley VR, Mayet WJ, Galle PR, Schwarting A (2002) Correlation of renal tubular epithelial cell-derived interleukin-18 up-regulation with disease activity in MRL-Faslpr mice with autoimmune lupus nephritis. Arthritis Rheum 46:3083–3095PubMedCrossRefGoogle Scholar
  43. Feng H, Gu J, Gou F, Huang W, Gao C, Chen G, Long Y, Zhou X, Yang M, Liu S, Lu S, Luo Q, Xu Y (2016) High glucose and lipopolysaccharide prime NLRP3 inflammasome via ROS/TXNIP pathway in mesangial cells. J Diabetes Res 2016:6973175PubMedPubMedCentralCrossRefGoogle Scholar
  44. Fernandes-Alnemri T, Yu JW, Datta P, Wu J, Alnemri ES (2009) AIM2 activates the inflammasome and cell death in response to cytoplasmic DNA. Nature 458:509–513PubMedPubMedCentralCrossRefGoogle Scholar
  45. Franceschini A, Capece M, Chiozzi P, Falzoni S, Sanz JM, Sarti AC, Bonora M, Pinton P, Di Virgilio F (2015) The P2X7 receptor directly interacts with the NLRP3 inflammasome scaffold protein. FASEB J 29:2450–2461PubMedCrossRefGoogle Scholar
  46. Furuichi K, Wada T, Iwata Y, Kokubo S, Hara A, Yamahana J, Sugaya T, Iwakura Y, Matsushima K, Asano M, Yokoyama H, Kaneko S (2006) Interleukin-1-dependent sequential chemokine expression and inflammatory cell infiltration in ischemia-reperfusion injury. Crit Care Med 34:2447–2455PubMedCrossRefGoogle Scholar
  47. Furukawa S, Fujita T, Shimabukuro M, Iwaki M, Yamada Y, Nakajima Y, Nakayama O, Makishima M, Matsuda M, Shimomura I (2004) Increased oxidative stress in obesity and its impact on metabolic syndrome. J Clin Invest 114:1752–1761PubMedPubMedCentralCrossRefGoogle Scholar
  48. Futosi K, Fodor S, Mocsai A (2013) Neutrophil cell surface receptors and their intracellular signal transduction pathways. Int Immunopharmacol 17:638–650PubMedPubMedCentralCrossRefGoogle Scholar
  49. Gabay C, Lamacchia C, Palmer G (2010) IL-1 pathways in inflammation and human diseases. Nat Rev Rheumatol 6:232–241PubMedCrossRefGoogle Scholar
  50. Gao P, He FF, Tang H, Lei CT, Chen S, Meng XF, Su H, Zhang C (2015) NADPH oxidase-induced NALP3 inflammasome activation is driven by thioredoxin-interacting protein which contributes to podocyte injury in hyperglycemia. J Diabetes Res 2015:504761PubMedPubMedCentralGoogle Scholar
  51. Gauer S, Sichler O, Obermuller N, Holzmann Y, Kiss E, Sobkowiak E, Pfeilschifter J, Geiger H, Muhl H, Hauser IA (2007) IL-18 is expressed in the intercalated cell of human kidney. Kidney Int 72:1081–1087PubMedCrossRefGoogle Scholar
  52. Gois PH, Canale D, Volpini RA, Ferreira D, Veras MM, Andrade-Oliveira V, Camara NO, Shimizu MH, Seguro AC (2016) Allopurinol attenuates rhabdomyolysis-associated acute kidney injury: renal and muscular protection. Free Radic Biol Med 101:176–189PubMedCrossRefGoogle Scholar
  53. Guo H, Bi X, Zhou P, Zhu S, Ding W (2017) NLRP3 deficiency attenuates renal fibrosis and ameliorates mitochondrial dysfunction in a mouse unilateral ureteral obstruction model of chronic kidney disease. Mediat Inflamm 2017:8316560Google Scholar
  54. Haq M, Norman J, Saba SR, Ramirez G, Rabb H (1998) Role of IL-1 in renal ischemic reperfusion injury. J Am Soc Nephrol 9:614–619PubMedGoogle Scholar
  55. Haraldsson B, Jeansson M (2009) Glomerular filtration barrier. Curr Opin Nephrol Hypertens 18:331–335PubMedCrossRefGoogle Scholar
  56. He Z, Lu L, Altmann C, Hoke TS, Ljubanovic D, Jani A, Dinarello CA, Faubel S, Edelstein CL (2008) Interleukin-18 binding protein transgenic mice are protected against ischemic acute kidney injury. Am J Physiol Ren Physiol 295:F1414–F1421CrossRefGoogle Scholar
  57. Hewins P, Morgan MD, Holden N, Neil D, Williams JM, Savage CO, Harper L (2006) IL-18 is upregulated in the kidney and primes neutrophil responsiveness in ANCA-associated vasculitis. Kidney Int 69:605–615PubMedCrossRefGoogle Scholar
  58. Holdsworth SR, Gan PY, Kitching AR (2016) Biologics for the treatment of autoimmune renal diseases. Nat Rev Nephrol 12:217–231PubMedCrossRefGoogle Scholar
  59. Homsi E, Janino P, de Faria JB (2006) Role of caspases on cell death, inflammation, and cell cycle in glycerol-induced acute renal failure. Kidney Int 69:1385–1392PubMedCrossRefGoogle Scholar
  60. Hong W, Hu S, Zou J, Xiao J, Zhang X, Fu C, Feng X, Ye Z (2015) Peroxisome proliferator-activated receptor gamma prevents the production of NOD-like receptor family, pyrin domain containing 3 inflammasome and interleukin 1beta in HK-2 renal tubular epithelial cells stimulated by monosodium urate crystals. Mol Med Rep 12:6221–6226PubMedCrossRefGoogle Scholar
  61. Hornung V, Bauernfeind F, Halle A, Samstad EO, Kono H, Rock KL, Fitzgerald KA, Latz E (2008) Silica crystals and aluminum salts activate the NALP3 inflammasome through phagosomal destabilization. Nat Immunol 9:847–856PubMedPubMedCentralCrossRefGoogle Scholar
  62. Hornung V, Ablasser A, Charrel-Dennis M, Bauernfeind F, Horvath G, Caffrey DR, Latz E, Fitzgerald KA (2009) AIM2 recognizes cytosolic dsDNA and forms a caspase-1-activating inflammasome with ASC. Nature 458:514–518PubMedPubMedCentralCrossRefGoogle Scholar
  63. Hultgren O, Andersson B, Hahn-Zoric M, Almroth G (2007) Serum concentration of interleukin-18 is up-regulated in patients with ANCA-associated vasculitis. Autoimmunity 40:529–531PubMedCrossRefGoogle Scholar
  64. Hutton HL, Ooi JD, Holdsworth SR, Kitching AR (2016) The NLRP3 inflammasome in kidney disease and autoimmunity. Nephrology 21:736–744PubMedCrossRefGoogle Scholar
  65. Isaka Y, Takabatake Y, Takahashi A, Saitoh T, Yoshimori T (2016) Hyperuricemia-induced inflammasome and kidney diseases. Nephrol Dial Transplant 31:890–896PubMedCrossRefGoogle Scholar
  66. Iseki K, Ikemiya Y, Inoue T, Iseki C, Kinjo K, Takishita S (2004) Significance of hyperuricemia as a risk factor for developing ESRD in a screened cohort. Am J Kidney Dis 44:642–650PubMedCrossRefGoogle Scholar
  67. Iyer SS, Pulskens WP, Sadler JJ, Butter LM, Teske GJ, Ulland TK, Eisenbarth SC, Florquin S, Flavell RA, Leemans JC, Sutterwala FS (2009) Necrotic cells trigger a sterile inflammatory response through the Nlrp3 inflammasome. Proc Natl Acad Sci U S A 106:20388–20393PubMedPubMedCentralCrossRefGoogle Scholar
  68. Jansen MP, Emal D, Teske GJ, Dessing MC, Florquin S, Roelofs JJ (2017) Release of extracellular DNA influences renal ischemia reperfusion injury by platelet activation and formation of neutrophil extracellular traps. Kidney Int 91:352–364PubMedCrossRefGoogle Scholar
  69. Jarrot PA, Kaplanski G (2016) Pathogenesis of ANCA-associated vasculitis: an update. Autoimmun Rev 15:704–713PubMedCrossRefGoogle Scholar
  70. Jones LK, O’Sullivan KM, Semple T, Kuligowski MP, Fukami K, Ma FY, Nikolic-Paterson DJ, Holdsworth SR, Kitching AR (2009) IL-1RI deficiency ameliorates early experimental renal interstitial fibrosis. Nephrol Dial Transplant 24:3024–3032PubMedCrossRefPubMedCentralGoogle Scholar
  71. Joosten LA, Netea MG, Dinarello CA (2013) Interleukin-1beta in innate inflammation, autophagy and immunity. Semin Immunol 25:416–424PubMedCrossRefGoogle Scholar
  72. Joshi S, Wang W, Peck AB, Khan SR (2015) Activation of the NLRP3 inflammasome in association with calcium oxalate crystal induced reactive oxygen species in kidneys. J Urol 193:1684–1691PubMedCrossRefGoogle Scholar
  73. Kahlenberg JM, Kaplan MJ (2014) The inflammasome and lupus: another innate immune mechanism contributing to disease pathogenesis? Curr Opin Rheumatol 26:475–481PubMedPubMedCentralCrossRefGoogle Scholar
  74. Kahlenberg JM, Thacker SG, Berthier CC, Cohen CD, Kretzler M, Kaplan MJ (2011) Inflammasome activation of IL-18 results in endothelial progenitor cell dysfunction in systemic lupus erythematosus. J Immunol 187:6143–6156PubMedPubMedCentralCrossRefGoogle Scholar
  75. Kahlenberg JM, Carmona-Rivera C, Smith CK, Kaplan MJ (2013) Neutrophil extracellular trap-associated protein activation of the NLRP3 inflammasome is enhanced in lupus macrophages. J Immunol 190:1217–1226PubMedCrossRefGoogle Scholar
  76. Kaushik M, Choo JC (2016) Serum uric acid and AKI: is it time? Clin Kidney J 9:48–50PubMedCrossRefGoogle Scholar
  77. Kessenbrock K, Krumbholz M, Schonermarck U, Back W, Gross WL, Werb Z, Grone HJ, Brinkmann V, Jenne DE (2009) Netting neutrophils in autoimmune small-vessel vasculitis. Nat Med 15:623–625PubMedPubMedCentralCrossRefGoogle Scholar
  78. Kim HJ, Lee DW, Ravichandran K, D OK, Akcay A, Nguyen Q, He Z, Jani A, Ljubanovic D, Edelstein CL (2013) NLRP3 inflammasome knockout mice are protected against ischemic but not cisplatin-induced acute kidney injury. J Pharmacol Exp Ther 346:465–472PubMedPubMedCentralCrossRefGoogle Scholar
  79. Kim SM, Lee SH, Kim YG, Kim SY, Seo JW, Choi YW, Kim DJ, Jeong KH, Lee TW, Ihm CG, Won KY, Moon JY (2015) Hyperuricemia-induced NLRP3 activation of macrophages contributes to the progression of diabetic nephropathy. Am J Physiol Ren Physiol 308:F993–f1003CrossRefGoogle Scholar
  80. Kinoshita K, Yamagata T, Nozaki Y, Sugiyama M, Ikoma S, Funauchi M, Kanamaru A (2004) Blockade of IL-18 receptor signaling delays the onset of autoimmune disease in MRL-Faslpr mice. J Immunol 173:5312–5318PubMedCrossRefPubMedCentralGoogle Scholar
  81. Kitching AR, Hutton HL (2016) The players: cells involved in glomerular disease. Clin J Am Soc Nephrol 11:1664–1674PubMedPubMedCentralCrossRefGoogle Scholar
  82. Kitching AR, Turner AL, Wilson GR, Semple T, Odobasic D, Timoshanko JR, O’Sullivan KM, Tipping PG, Takeda K, Akira S, Holdsworth SR (2005) IL-12p40 and IL-18 in crescentic glomerulonephritis: IL-12p40 is the key Th1-defining cytokine chain, whereas IL-18 promotes local inflammation and leukocyte recruitment. J Am Soc Nephrol 16:2023–2033PubMedCrossRefPubMedCentralGoogle Scholar
  83. Knauf F, Asplin JR, Granja I, Schmidt IM, Moeckel GW, David RJ, Flavell RA, Aronson PS (2013) NALP3-mediated inflammation is a principal cause of progressive renal failure in oxalate nephropathy. Kidney Int 84:895–901PubMedPubMedCentralCrossRefGoogle Scholar
  84. Komada T, Usui F, Shirasuna K, Kawashima A, Kimura H, Karasawa T, Nishimura S, Sagara J, Noda T, Taniguchi S, Muto S, Nagata D, Kusano E, Takahashi M (2014) ASC in renal collecting duct epithelial cells contributes to inflammation and injury after unilateral ureteral obstruction. Am J Pathol 184:1287–1298PubMedCrossRefPubMedCentralGoogle Scholar
  85. Komada T, Usui F, Kawashima A, Kimura H, Karasawa T, Inoue Y, Kobayashi M, Mizushina Y, Kasahara T, Taniguchi S, Muto S, Nagata D, Takahashi M (2015) Role of NLRP3 inflammasomes for rhabdomyolysis-induced acute kidney injury. Sci Rep 5:10901PubMedPubMedCentralCrossRefGoogle Scholar
  86. Konno T, Nakano R, Mamiya R, Tsuchiya H, Kitanaka T, Namba S, Kitanaka N, Okabayashi K, Narita T, Sugiya H (2016) Expression and function of interleukin-1beta-induced neutrophil gelatinase-associated lipocalin in renal tubular cells. PLoS One 11:e0166707PubMedPubMedCentralCrossRefGoogle Scholar
  87. L’Homme L, Esser N, Riva L, Scheen A, Paquot N, Piette J, Legrand-Poels S (2013) Unsaturated fatty acids prevent activation of NLRP3 inflammasome in human monocytes/macrophages. J Lipid Res 54:2998–3008PubMedPubMedCentralCrossRefGoogle Scholar
  88. Lan HY, Nikolic-Paterson DJ, Zarama M, Vannice JL, Atkins RC (1993) Suppression of experimental crescentic glomerulonephritis by the interleukin-1 receptor antagonist. Kidney Int 43:479–485PubMedCrossRefPubMedCentralGoogle Scholar
  89. Larsen CM, Faulenbach M, Vaag A, Volund A, Ehses JA, Seifert B, Mandrup-Poulsen T, Donath MY (2007) Interleukin-1-receptor antagonist in type 2 diabetes mellitus. N Engl J Med 356:1517–1526PubMedCrossRefPubMedCentralGoogle Scholar
  90. Lech M, Lorenz G, Kulkarni OP, Grosser MO, Stigrot N, Darisipudi MN, Gunthner R, Wintergerst MW, Anz D, Susanti HE, Anders HJ (2015) NLRP3 and ASC suppress lupus-like autoimmunity by driving the immunosuppressive effects of TGF-beta receptor signalling. Ann Rheum Dis 74:2224–2235PubMedCrossRefPubMedCentralGoogle Scholar
  91. Lee DW, Faubel S, Edelstein CL (2015) A pan caspase inhibitor decreases caspase-1, IL-1alpha and IL-1beta, and protects against necrosis of cisplatin-treated freshly isolated proximal tubules. Ren Fail 37:144–150PubMedCrossRefPubMedCentralGoogle Scholar
  92. Leemans JC, Kors L, Anders HJ, Florquin S (2014) Pattern recognition receptors and the inflammasome in kidney disease. Nat Rev Nephrol 10:398–414PubMedCrossRefPubMedCentralGoogle Scholar
  93. Liao KC, Mogridge J (2013) Activation of the Nlrp1b inflammasome by reduction of cytosolic ATP. Infect Immun 81:570–579PubMedPubMedCentralCrossRefGoogle Scholar
  94. Lichtnekert J, Kulkarni OP, Mulay SR, Rupanagudi KV, Ryu M, Allam R, Vielhauer V, Muruve D, Lindenmeyer MT, Cohen CD, Anders HJ (2011) Anti-GBM glomerulonephritis involves IL-1 but is independent of NLRP3/ASC inflammasome-mediated activation of caspase-1. PLoS One 6:e26778PubMedPubMedCentralCrossRefGoogle Scholar
  95. Lim AK, Tesch GH (2012) Inflammation in diabetic nephropathy. Mediat Inflamm 2012:146154CrossRefGoogle Scholar
  96. Liu D, Xu M, Ding LH, Lv LL, Liu H, Ma KL, Zhang AH, Crowley SD, Liu BC (2014) Activation of the Nlrp3 inflammasome by mitochondrial reactive oxygen species: a novel mechanism of albumin-induced tubulointerstitial inflammation. Int J Biochem Cell Biol 57:7–19PubMedPubMedCentralCrossRefGoogle Scholar
  97. Liu G, Shi Y, Peng X, Liu H, Peng Y, He L (2015) Astaxanthin attenuates adriamycin-induced focal segmental glomerulosclerosis. Pharmacology 95:193–200PubMedCrossRefPubMedCentralGoogle Scholar
  98. Lu A, Li H, Niu J, Wu S, Xue G, Yao X, Guo Q, Wan N, Abliz P, Yang G, An L, Meng G (2017) Hyperactivation of the NLRP3 inflammasome in myeloid cells leads to severe organ damage in experimental lupus. J Immunol 198:1119–1129PubMedCrossRefPubMedCentralGoogle Scholar
  99. Ludwig-Portugall I, Bartok E, Dhana E, Evers BD, Primiano MJ, Hall JP, Franklin BS, Knolle PA, Hornung V, Hartmann G, Boor P, Latz E, Kurts C (2016) An NLRP3-specific inflammasome inhibitor attenuates crystal-induced kidney fibrosis in mice. Kidney Int 90:525–539PubMedCrossRefPubMedCentralGoogle Scholar
  100. Man SM, Kanneganti TD (2015) Regulation of inflammasome activation. Immunol Rev 265:6–21PubMedPubMedCentralCrossRefGoogle Scholar
  101. Mandrup-Poulsen T, Pickersgill L, Donath MY (2010) Blockade of interleukin 1 in type 1 diabetes mellitus. Nat Rev Endocrinol 6:158–166PubMedCrossRefPubMedCentralGoogle Scholar
  102. Martinon F, Petrilli V, Mayor A, Tardivel A, Tschopp J (2006) Gout-associated uric acid crystals activate the NALP3 inflammasome. Nature 440:237–241PubMedCrossRefGoogle Scholar
  103. Martinon F, Mayor A, Tschopp J (2009) The inflammasomes: guardians of the body. Annu Rev Immunol 27:229–265PubMedCrossRefPubMedCentralGoogle Scholar
  104. Masters SL, Dunne A, Subramanian SL, Hull RL, Tannahill GM, Sharp FA, Becker C, Franchi L, Yoshihara E, Chen Z, Mullooly N, Mielke LA, Harris J, Coll RC, Mills KH, Mok KH, Newsholme P, Nunez G, Yodoi J, Kahn SE, Lavelle EC, O'Neill LA (2010) Activation of the NLRP3 inflammasome by islet amyloid polypeptide provides a mechanism for enhanced IL-1beta in type 2 diabetes. Nat Immunol 11:897–904PubMedPubMedCentralCrossRefGoogle Scholar
  105. Mastrocola R, Aragno M, Alloatti G, Collino M, Penna C, Pagliaro P (2018) Metaflammation: tissue-specific alterations of the NLRP3 inflammasome platform. Curr Med Chem 25:1294–1310PubMedCrossRefPubMedCentralGoogle Scholar
  106. Matsui F, Rhee A, Hile KL, Zhang H, Meldrum KK (2013) IL-18 induces profibrotic renal tubular cell injury via STAT3 activation. Am J Physiol Ren Physiol 305:F1014–F1021CrossRefGoogle Scholar
  107. Mehta RL, Cerda J, Burdmann EA, Tonelli M, Garcia-Garcia G, Jha V, Susantitaphong P, Rocco M, Vanholder R, Sever MS, Cruz D, Jaber B, Lameire NH, Lombardi R, Lewington A, Feehally J, Finkelstein F, Levin N, Pannu N, Thomas B, Aronoff-Spencer E, Remuzzi G (2015) International Society of Nephrology’s 0by25 initiative for acute kidney injury (zero preventable deaths by 2025): a human rights case for nephrology. Lancet 385:2616–2643PubMedCrossRefPubMedCentralGoogle Scholar
  108. Meldrum KK, Zhang H, Hile KL, Moldower LL, Dong Z, Meldrum DR (2012) Profibrotic effect of interleukin-18 in HK-2 cells is dependent on stimulation of the Toll-like receptor 4 (TLR4) promoter and increased TLR4 expression. J Biol Chem 287:40391–40399PubMedPubMedCentralCrossRefGoogle Scholar
  109. Melnikov VY, Ecder T, Fantuzzi G, Siegmund B, Lucia MS, Dinarello CA, Schrier RW, Edelstein CL (2001) Impaired IL-18 processing protects caspase-1-deficient mice from ischemic acute renal failure. J Clin Invest 107:1145–1152PubMedPubMedCentralCrossRefGoogle Scholar
  110. Miller RP, Tadagavadi RK, Ramesh G, Reeves WB (2010) Mechanisms of cisplatin nephrotoxicity. Toxins 2:2490–2518PubMedPubMedCentralCrossRefGoogle Scholar
  111. Mirza RE, Fang MM, Weinheimer-Haus EM, Ennis WJ, Koh TJ (2014) Sustained inflammasome activity in macrophages impairs wound healing in type 2 diabetic humans and mice. Diabetes 63:1103–1114PubMedPubMedCentralCrossRefGoogle Scholar
  112. Molitch ME, Adler AI, Flyvbjerg A, Nelson RG, So WY, Wanner C, Kasiske BL, Wheeler DC, de Zeeuw D, Mogensen CE (2015) Diabetic kidney disease: a clinical update from kidney disease: improving global outcomes. Kidney Int 87:20–30PubMedCrossRefGoogle Scholar
  113. Mulay SR, Kulkarni OP, Rupanagudi KV, Migliorini A, Darisipudi MN, Vilaysane A, Muruve D, Shi Y, Munro F, Liapis H, Anders HJ (2013) Calcium oxalate crystals induce renal inflammation by NLRP3-mediated IL-1beta secretion. J Clin Invest 123:236–246PubMedCrossRefGoogle Scholar
  114. Mulay SR, Evan A, Anders HJ (2014) Molecular mechanisms of crystal-related kidney inflammation and injury. Implications for cholesterol embolism, crystalline nephropathies and kidney stone disease. Nephrol Dial Transplant 29:507–514PubMedCrossRefGoogle Scholar
  115. Nakamura A, Shikata K, Hiramatsu M, Nakatou T, Kitamura T, Wada J, Itoshima T, Makino H (2005) Serum interleukin-18 levels are associated with nephropathy and atherosclerosis in Japanese patients with type 2 diabetes. Diabetes Care 28:2890–2895PubMedCrossRefGoogle Scholar
  116. Nee L, Tuite N, Ryan MP, McMorrow T (2007) TNF-alpha and IL-1 beta-mediated regulation of MMP-9 and TIMP-1 in human glomerular mesangial cells. Nephron Exp Nephrol 107:e73–e86PubMedCrossRefGoogle Scholar
  117. Netea MG, Simon A, van de Veerdonk F, Kullberg BJ, Van der Meer JW, Joosten LA (2010) IL-1beta processing in host defense: beyond the inflammasomes. PLoS Pathog 6:e1000661PubMedPubMedCentralCrossRefGoogle Scholar
  118. Nguyen D, Ping F, Mu W, Hill P, Atkins RC, Chadban SJ (2006) Macrophage accumulation in human progressive diabetic nephropathy. Nephrology 11:226–231PubMedCrossRefPubMedCentralGoogle Scholar
  119. Novick D, Kim S, Kaplanski G, Dinarello CA (2013) Interleukin-18, more than a Th1 cytokine. Semin Immunol 25:439–448PubMedCrossRefPubMedCentralGoogle Scholar
  120. Nozaki Y, Kinoshita K, Yano T, Asato K, Shiga T, Hino S, Niki K, Nagare Y, Kishimoto K, Shimazu H, Funauchi M, Matsumura I (2012) Signaling through the interleukin-18 receptor alpha attenuates inflammation in cisplatin-induced acute kidney injury. Kidney Int 82:892–902PubMedCrossRefPubMedCentralGoogle Scholar
  121. Obermayr RP, Temml C, Gutjahr G, Knechtelsdorfer M, Oberbauer R, Klauser-Braun R (2008) Elevated uric acid increases the risk for kidney disease. J Am Soc Nephrol 19:2407–2413PubMedPubMedCentralCrossRefGoogle Scholar
  122. Odobasic D, Ghali JR, O'Sullivan KM, Holdsworth SR, Kitching AR (2014) Glomerulonephritis Induced by Heterologous Anti-GBM Globulin as a Planted Foreign Antigen. Curr Protoc Immunol 106:15.26.11–15.26.20Google Scholar
  123. Okamoto A, Fujio K, Tsuno NH, Takahashi K, Yamamoto K (2012) Kidney-infiltrating CD4+ T-cell clones promote nephritis in lupus-prone mice. Kidney Int 82:969–979PubMedCrossRefPubMedCentralGoogle Scholar
  124. Okui S, Yamamoto H, Li W, Gamachi N, Fujita Y, Kashiwamura S, Miura D, Takai S, Miyazaki M, Urade M, Okamura H, Ueda H (2012) Cisplatin-induced acute renal failure in mice is mediated by chymase-activated angiotensin-aldosterone system and interleukin-18. Eur J Pharmacol 685:149–155PubMedCrossRefPubMedCentralGoogle Scholar
  125. Ooi JD, Chang J, Hickey MJ, Borza DB, Fugger L, Holdsworth SR, Kitching AR (2012) The immunodominant myeloperoxidase T-cell epitope induces local cell-mediated injury in antimyeloperoxidase glomerulonephritis. Proc Natl Acad Sci U S A 109:E2615–E2624PubMedPubMedCentralCrossRefGoogle Scholar
  126. Ooi JD, Chang J, O'Sullivan KM, Pedchenko V, Hudson BG, Vandenbark AA, Fugger L, Holdsworth SR, Kitching AR (2013) The HLA-DRB1*15:01-restricted Goodpasture’s T cell epitope induces GN. J Am Soc Nephrol 24:419–431PubMedPubMedCentralCrossRefGoogle Scholar
  127. Ooi JD, Gan PY, Odobasic D, Holdsworth SR, Kitching AR (2014) T cell mediated autoimmune glomerular disease in mice. Curr Protoc Immunol 107:15.27.11–15.27.19Google Scholar
  128. Ooi JD, Petersen J, Tan YH, Huynh M, Willett ZJ, Ramarathinam SH, Eggenhuizen PJ, Loh KL, Watson KA, Gan PY, Alikhan MA, Dudek NL, Handel A, Hudson BG, Fugger L, Power DA, Holt SG, Coates PT, Gregersen JW, Purcell AW, Holdsworth SR, La Gruta NL, Reid HH, Rossjohn J, Kitching AR (2017) Dominant protection from HLA-linked autoimmunity by antigen-specific regulatory T cells. Nature 545:243–247PubMedPubMedCentralCrossRefGoogle Scholar
  129. Peres LA, da Cunha AD Jr (2013) Acute nephrotoxicity of cisplatin: molecular mechanisms. J Bras Nefrol 35:332–340PubMedCrossRefPubMedCentralGoogle Scholar
  130. Pontillo A, Girardelli M, Kamada AJ, Pancotto JA, Donadi EA, Crovella S, Sandrin-Garcia P (2012) Polimorphisms in inflammasome genes are involved in the predisposition to systemic lupus erythematosus. Autoimmunity 45:271–278PubMedCrossRefPubMedCentralGoogle Scholar
  131. Pourghasem M, Shafi H, Babazadeh Z (2015) Histological changes of kidney in diabetic nephropathy. Caspian J Intern Med 6:120–127PubMedPubMedCentralGoogle Scholar
  132. Prencipe G, Caiello I, Cherqui S, Whisenant T, Petrini S, Emma F, De Benedetti F (2014) Inflammasome activation by cystine crystals: implications for the pathogenesis of cystinosis. J Am Soc Nephrol 25:1163–1169PubMedPubMedCentralCrossRefGoogle Scholar
  133. Puelles VG, Kanzaki G, Bertram JF (2016) Indirect estimation of nephron number: a new tool to predict outcomes in renal transplantation? Nephrol Dial Transplant 31:1378–1380PubMedCrossRefGoogle Scholar
  134. Pulskens WP, Butter LM, Teske GJ, Claessen N, Dessing MC, Flavell RA, Sutterwala FS, Florquin S, Leemans JC (2014) Nlrp3 prevents early renal interstitial edema and vascular permeability in unilateral ureteral obstruction. PLoS One 9:e85775PubMedPubMedCentralCrossRefGoogle Scholar
  135. Rifai A (2007) IgA nephropathy: immune mechanisms beyond IgA mesangial deposition. Kidney Int 72:239–241PubMedCrossRefGoogle Scholar
  136. Rossaint J, Zarbock A (2016) Acute kidney injury: definition, diagnosis and epidemiology. Minerva Urol Nefrol 68:49–57PubMedGoogle Scholar
  137. Rusai K, Huang H, Sayed N, Strobl M, Roos M, Schmaderer C, Heemann U, Lutz J (2008) Administration of interleukin-1 receptor antagonist ameliorates renal ischemia-reperfusion injury. Transpl Int 21:572–580PubMedCrossRefGoogle Scholar
  138. Sadat U, Usman A, Boyle JR, Hayes PD, Solomon RJ (2015) Contrast medium-induced acute kidney injury. Cardiorenal Med 5:219–228PubMedPubMedCentralCrossRefGoogle Scholar
  139. Saemann MD, Weichhart T, Zeyda M, Staffler G, Schunn M, Stuhlmeier KM, Sobanov Y, Stulnig TM, Akira S, von Gabain A, von Ahsen U, Horl WH, Zlabinger GJ (2005) Tamm-Horsfall glycoprotein links innate immune cell activation with adaptive immunity via a Toll-like receptor-4-dependent mechanism. J Clin Invest 115:468–475PubMedPubMedCentralCrossRefGoogle Scholar
  140. Salama AD, Chaudhry AN, Ryan JJ, Eren E, Levy JB, Pusey CD, Lightstone L, Lechler RI (2001) In Goodpasture’s disease, CD4(+) T cells escape thymic deletion and are reactive with the autoantigen alpha3(IV)NC1. J Am Soc Nephrol 12:1908–1915PubMedGoogle Scholar
  141. Schreiber A, Pham CT, Hu Y, Schneider W, Luft FC, Kettritz R (2012) Neutrophil serine proteases promote IL-1beta generation and injury in necrotizing crescentic glomerulonephritis. J Am Soc Nephrol 23:470–482PubMedPubMedCentralCrossRefGoogle Scholar
  142. Schreiber A, Luft FC, Kettritz R (2015) Phagocyte NADPH oxidase restrains the inflammasome in ANCA-induced GN. J Am Soc Nephrol 26:411–424PubMedCrossRefGoogle Scholar
  143. Schrijvers BF, De Vriese AS, Flyvbjerg A (2004) From hyperglycemia to diabetic kidney disease: the role of metabolic, hemodynamic, intracellular factors and growth factors/cytokines. Endocr Rev 25:971–1010PubMedCrossRefGoogle Scholar
  144. Shahzad K, Bock F, Dong W, Wang H, Kopf S, Kohli S, Al-Dabet MM, Ranjan S, Wolter J, Wacker C, Biemann R, Stoyanov S, Reymann K, Soderkvist P, Gross O, Schwenger V, Pahernik S, Nawroth PP, Grone HJ, Madhusudhan T, Isermann B (2015) Nlrp3-inflammasome activation in non-myeloid-derived cells aggravates diabetic nephropathy. Kidney Int 87:74–84PubMedCrossRefGoogle Scholar
  145. Shen J, Wang L, Jiang N, Mou S, Zhang M, Gu L, Shao X, Wang Q, Qi C, Li S, Wang W, Che X, Ni Z (2016) NLRP3 inflammasome mediates contrast media-induced acute kidney injury by regulating cell apoptosis. Sci Rep 6:34682PubMedPubMedCentralCrossRefGoogle Scholar
  146. Shigeoka AA, Mueller JL, Kambo A, Mathison JC, King AJ, Hall WF, Correia Jda S, Ulevitch RJ, Hoffman HM, McKay DB (2010) An inflammasome-independent role for epithelial-expressed Nlrp3 in renal ischemia-reperfusion injury. J Immunol 185:6277–6285PubMedPubMedCentralCrossRefGoogle Scholar
  147. Shin MS, Kang Y, Lee N, Wahl ER, Kim SH, Kang KS, Lazova R, Kang I (2013) Self double-stranded (ds)DNA induces IL-1beta production from human monocytes by activating NLRP3 inflammasome in the presence of anti-dsDNA antibodies. J Immunol 190:1407–1415PubMedPubMedCentralCrossRefGoogle Scholar
  148. Suarez-Fueyo A, Bradley SJ, Klatzmann D, Tsokos GC (2017) T cells and autoimmune kidney disease. Nat Rev Nephrol 13:329–343PubMedCrossRefGoogle Scholar
  149. Summers SA, Steinmetz OM, Li M, Kausman JY, Semple T, Edgtton KL, Borza DB, Braley H, Holdsworth SR, Kitching AR (2009) Th1 and Th17 cells induce proliferative glomerulonephritis. J Am Soc Nephrol 20:2518–2524PubMedPubMedCentralCrossRefGoogle Scholar
  150. Summers SA, Steinmetz OM, Gan PY, Ooi JD, Odobasic D, Kitching AR, Holdsworth SR (2011) Toll-like receptor 2 induces Th17 myeloperoxidase autoimmunity while Toll-like receptor 9 drives Th1 autoimmunity in murine vasculitis. Arthritis Rheum 63:1124–1135PubMedCrossRefGoogle Scholar
  151. Takano Y, Yamauchi K, Hayakawa K, Hiramatsu N, Kasai A, Okamura M, Yokouchi M, Shitamura A, Yao J, Kitamura M (2007) Transcriptional suppression of nephrin in podocytes by macrophages: roles of inflammatory cytokines and involvement of the PI3K/Akt pathway. FEBS Lett 581:421–426PubMedCrossRefGoogle Scholar
  152. Tang WW, Feng L, Vannice JL, Wilson CB (1994) Interleukin-1 receptor antagonist ameliorates experimental anti-glomerular basement membrane antibody-associated glomerulonephritis. J Clin Invest 93:273–279PubMedPubMedCentralCrossRefGoogle Scholar
  153. Tashiro M, Sasatomi Y, Watanabe R, Watanabe M, Miyake K, Abe Y, Yasuno T, Ito K, Ueki N, Hamauchi A, Noda R, Hisano S, Nakashima H (2016) IL-1beta promotes tubulointerstitial injury in MPO-ANCA-associated glomerulonephritis. Clin Nephrol 86:190–199PubMedCrossRefGoogle Scholar
  154. Taylor SR, Turner CM, Elliott JI, McDaid J, Hewitt R, Smith J, Pickering MC, Whitehouse DL, Cook HT, Burnstock G, Pusey CD, Unwin RJ, Tam FW (2009) P2X7 deficiency attenuates renal injury in experimental glomerulonephritis. J Am Soc Nephrol 20:1275–1281PubMedPubMedCentralCrossRefGoogle Scholar
  155. Timoshanko JR, Kitching AR, Iwakura Y, Holdsworth SR, Tipping PG (2004a) Contributions of IL-1beta and IL-1alpha to crescentic glomerulonephritis in mice. J Am Soc Nephrol 15:910–918PubMedCrossRefGoogle Scholar
  156. Timoshanko JR, Kitching AR, Iwakura Y, Holdsworth SR, Tipping PG (2004b) Leukocyte-derived interleukin-1beta interacts with renal interleukin-1 receptor I to promote renal tumor necrosis factor and glomerular injury in murine crescentic glomerulonephritis. Am J Pathol 164:1967–1977PubMedPubMedCentralCrossRefGoogle Scholar
  157. Tsai YL, Hua KF, Chen A, Wei CW, Chen WS, Wu CY, Chu CL, Yu YL, Lo CW, Ka SM (2017) NLRP3 inflammasome: pathogenic role and potential therapeutic target for IgA nephropathy. Sci Rep 7:41123PubMedPubMedCentralCrossRefGoogle Scholar
  158. Turner CM, Tam FW, Lai PC, Tarzi RM, Burnstock G, Pusey CD, Cook HT, Unwin RJ (2007) Increased expression of the pro-apoptotic ATP-sensitive P2X7 receptor in experimental and human glomerulonephritis. Nephrol Dial Transplant 22:386–395PubMedCrossRefGoogle Scholar
  159. Vilaysane A, Chun J, Seamone ME, Wang W, Chin R, Hirota S, Li Y, Clark SA, Tschopp J, Trpkov K, Hemmelgarn BR, Beck PL, Muruve DA (2010) The NLRP3 inflammasome promotes renal inflammation and contributes to CKD. J Am Soc Nephrol 21:1732–1744PubMedPubMedCentralCrossRefGoogle Scholar
  160. Wang W, Wang X, Chun J, Vilaysane A, Clark S, French G, Bracey NA, Trpkov K, Bonni S, Duff HJ, Beck PL, Muruve DA (2013) Inflammasome-independent NLRP3 augments TGF-beta signaling in kidney epithelium. J Immunol 190:1239–1249PubMedCrossRefPubMedCentralGoogle Scholar
  161. Wang J, Wen Y, Lv LL, Liu H, Tang RN, Ma KL, Liu BC (2015a) Involvement of endoplasmic reticulum stress in angiotensin II-induced NLRP3 inflammasome activation in human renal proximal tubular cells in vitro. Acta Pharmacol Sin 36:821–830PubMedPubMedCentralCrossRefGoogle Scholar
  162. Wang P, Huang J, Li Y, Chang R, Wu H, Lin J, Huang Z (2015b) Exogenous carbon monoxide decreases sepsis-induced acute kidney injury and inhibits NLRP3 inflammasome activation in rats. Int J Mol Sci 16:20595–20608PubMedPubMedCentralCrossRefGoogle Scholar
  163. Wang W, Luo R, Lin Y, Wang F, Zheng P, Levi M, Yang T, Li C (2015c) Aliskiren restores renal AQP2 expression during unilateral ureteral obstruction by inhibiting the inflammasome. Am J Physiol Ren Physiol 308:F910–F922CrossRefGoogle Scholar
  164. Wang L, Ma J, Guo C, Chen C, Yin Z, Zhang X, Chen X (2016) Danggui Buxue Tang attenuates tubulointerstitial fibrosis via suppressing NLRP3 inflammasome in a rat model of unilateral ureteral obstruction. Biomed Res Int 2016:9368483PubMedPubMedCentralGoogle Scholar
  165. Wen H, Gris D, Lei Y, Jha S, Zhang L, Huang MT, Brickey WJ, Ting JP (2011) Fatty acid-induced NLRP3-ASC inflammasome activation interferes with insulin signaling. Nat Immunol 12:408–415PubMedPubMedCentralCrossRefGoogle Scholar
  166. Wu J, Hicks J, Borillo J, Glass WF 2nd, Lou YH (2002) CD4(+) T cells specific to a glomerular basement membrane antigen mediate glomerulonephritis. J Clin Invest 109:517–524PubMedPubMedCentralCrossRefGoogle Scholar
  167. Wu H, Craft ML, Wang P, Wyburn KR, Chen G, Ma J, Hambly B, Chadban SJ (2008) IL-18 contributes to renal damage after ischemia-reperfusion. J Am Soc Nephrol 19:2331–2341PubMedPubMedCentralCrossRefGoogle Scholar
  168. Xiao J, Fu C, Zhang X, Zhu D, Chen W, Lu Y, Ye Z (2015a) Soluble monosodium urate, but not its crystal, induces toll like receptor 4-dependent immune activation in renal mesangial cells. Mol Immunol 66:310–318PubMedCrossRefGoogle Scholar
  169. Xiao J, Zhang XL, Fu C, Han R, Chen W, Lu Y, Ye Z (2015b) Soluble uric acid increases NALP3 inflammasome and interleukin-1beta expression in human primary renal proximal tubule epithelial cells through the Toll-like receptor 4-mediated pathway. Int J Mol Med 35:1347–1354PubMedCrossRefGoogle Scholar
  170. Xiong J, Wang Y, Shao N, Gao P, Tang H, Su H, Zhang C, Meng XF (2015) The expression and significance of NLRP3 inflammasome in patients with primary glomerular diseases. Kidney Blood Press Res 40:344–354PubMedCrossRefGoogle Scholar
  171. Yamamura M, Kawashima M, Taniai M, Yamauchi H, Tanimoto T, Kurimoto M, Morita Y, Ohmoto Y, Makino H (2001) Interferon-gamma-inducing activity of interleukin-18 in the joint with rheumatoid arthritis. Arthritis Rheum 44:275–285PubMedCrossRefGoogle Scholar
  172. Yuan F, Kolb R, Pandey G, Li W, Sun L, Liu F, Sutterwala FS, Liu Y, Zhang W (2016) Involvement of the NLRC4-inflammasome in diabetic nephropathy. PLoS One 11:e0164135PubMedPubMedCentralCrossRefGoogle Scholar
  173. Zarbock A, Gomez H, Kellum JA (2014) Sepsis-induced acute kidney injury revisited: pathophysiology, prevention and future therapies. Curr Opin Crit Care 20:588–595PubMedPubMedCentralCrossRefGoogle Scholar
  174. Zhang H, Hile KL, Asanuma H, Vanderbrink B, Franke EI, Campbell MT, Meldrum KK (2011) IL-18 mediates proapoptotic signaling in renal tubular cells through a Fas ligand-dependent mechanism. Am J Physiol Ren Physiol 301:F171–F178CrossRefGoogle Scholar
  175. Zhang C, Boini KM, Xia M, Abais JM, Li X, Liu Q, Li PL (2012) Activation of Nod-like receptor protein 3 inflammasomes turns on podocyte injury and glomerular sclerosis in hyperhomocysteinemia. Hypertension 60:154–162PubMedPubMedCentralCrossRefGoogle Scholar
  176. Zhang W, Cai Y, Xu W, Yin Z, Gao X, Xiong S (2013) AIM2 facilitates the apoptotic DNA-induced systemic lupus erythematosus via arbitrating macrophage functional maturation. J Clin Immunol 33:925–937PubMedCrossRefPubMedCentralGoogle Scholar
  177. Zhang Y, Yuan F, Cao X, Zhai Z, GangHuang X, Du Y, Wang J, Zhang Y, Huang JZ, Hou W (2014) P2X7 receptor blockade protects against cisplatin-induced nephrotoxicity in mice by decreasing the activities of inflammasome components, oxidative stress and caspase-3. Toxicol Appl Pharmacol 281:1–10PubMedCrossRefPubMedCentralGoogle Scholar
  178. Zhao WY, Zhang L, Sui MX, Zhu YH, Zeng L (2016) Protective effects of sirtuin 3 in a murine model of sepsis-induced acute kidney injury. Sci Rep 6:33201PubMedPubMedCentralCrossRefGoogle Scholar
  179. Zhen J, Zhang L, Pan J, Ma S, Yu X, Li X, Chen S, Du W (2014) AIM2 mediates inflammation-associated renal damage in hepatitis B virus-associated glomerulonephritis by regulating caspase-1, IL-1beta, and IL-18. Mediat Inflamm 2014:190860CrossRefGoogle Scholar
  180. Zheng L, Zhang J, Yuan X, Tang J, Qiu S, Peng Z, Yuan Q, Xie Y, Mei W, Tang Y, Meng J, Hu G, Tao L (2017) Fluorofenidone attenuates IL-1beta production by interacting with NLRP3 inflammasome in unilateral ureteral obstruction. Nephrology [Epub ahead of print]Google Scholar
  181. Zhong S, Zhao L, Li Q, Yang P, Varghese Z, Moorhead JF, Chen Y, Ruan XZ (2015) Inflammatory stress exacerbated mesangial foam cell formation and renal injury via disrupting cellular cholesterol homeostasis. Inflammation 38:959–971PubMedCrossRefPubMedCentralGoogle Scholar
  182. Zhou R, Tardivel A, Thorens B, Choi I, Tschopp J (2010) Thioredoxin-interacting protein links oxidative stress to inflammasome activation. Nat Immunol 11:136–140PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Holly L. Hutton
    • 1
  • Maliha A. Alikhan
    • 1
  • A. Richard Kitching
    • 1
    • 2
    • 3
  1. 1.Centre for Inflammatory Diseases, Monash University Department of MedicineMonash Medical CentreClaytonAustralia
  2. 2.Department of NephrologyMonash HealthClaytonAustralia
  3. 3.Department of Paediatric NephrologyMonash HealthClaytonAustralia

Personalised recommendations