Advertisement

Inhibiting Inflammasomes with Small Molecules

  • Avril A. B. Robertson
Chapter
Part of the Experientia Supplementum book series (EXS, volume 108)

Abstract

Modulation of inflammasomes has tremendous therapeutic potential and is hotly pursued by industry and academia alike. Indeed a growing number of patents are emerging to protect the intellectual property in valuable compound classes. This chapter focusses specifically on the suite of small-molecule NLRP3 inflammasome inhibitors published, as specific modulation of other inflammasomes is not yet well established. Synthetic molecules, known drugs and natural product NLRP3 modulators will be detailed. Some of the molecular classes discussed have been extensively characterised through cell-based screening, pharmacokinetic profiling and therapeutic proof of concept animal models. However, many inhibitors lack rigorous studies and/or have multiple activities of which NLRP3 modulation is only one. While this is not intended as an exhaustive list, it should give an impression of the range of structures and strategies that are being used, alongside challenges encountered, in an effort to exploit the significant therapeutic benefits of targeting inflammasomes.

Keywords

Inflammasome NLRP3 Drug discovery Anti-inflammatory Immunomodulation 

References

  1. Abderrazak A, Couchie D, Mahmood DF, Elhage R, Vindis C, Laffargue M, Mateo V, Buchele B, Ayala MR, El Gaafary M, Syrovets T, Slimane MN, Friguet B, Fulop T, Simmet T, El Hadri K, Rouis M (2015) Anti-inflammatory and antiatherogenic effects of the NLRP3 inflammasome inhibitor arglabin in ApoE2.Ki mice fed a high-fat diet. Circulation 131(12):1061–1070.  https://doi.org/10.1161/CIRCULATIONAHA.114.013730CrossRefPubMedGoogle Scholar
  2. Abderrazak A, El Hadri K, Bosc E, Blondeau B, Slimane MN, Buchele B, Simmet T, Couchie D, Rouis M (2016) Inhibition of the inflammasome NLRP3 by arglabin attenuates inflammation, protects pancreatic beta-Cells from apoptosis, and prevents type 2 diabetes mellitus development in ApoE2Ki mice on a chronic high-fat diet. J Pharmacol Exp Ther 357(3):487–494.  https://doi.org/10.1124/jpet.116.232934CrossRefPubMedGoogle Scholar
  3. Ackermann TF, Boini KM, Beier N, Scholz W, Fuchss T, Lang F (2011) EMD638683, a novel SGK inhibitor with antihypertensive potency. Cell Physiol Biochem 28(1):137–146.  https://doi.org/10.1159/000331722CrossRefPubMedGoogle Scholar
  4. Administration USFaD (2017a) Drugs@FDA: FDA approved drug products. New drug application 209176. https://www.accessdata.fda.gov/scripts/cder/daf/index.cfm?event=overview.process&ApplNo=209176. Accessed 15 Nov 2017
  5. Administration USFaD (2017b) FDA approves drug to treat ALS. https://www.fda.gov/NewsEvents/Newsroom/PressAnnouncements/ucm557102.htm. Accessed 15 Nov 2017
  6. Ahmad I, Muneer K, Tamimi I, Chang M, Ata M, Yusuf N (2013) Thymoquinone suppresses metastasis of melanoma cells by inhibition of NLRP3 inflammasome. Toxicol Appl Pharmacol 270:70–76.  https://doi.org/10.1016/j.taap.2013.03.027CrossRefPubMedGoogle Scholar
  7. Ahn H, Lee G-S (2017) Isorhamnetin and hyperoside derived from water dropwort inhibits inflammasome activation. Phytomedicine 24:77–86.  https://doi.org/10.1016/j.phymed.2016.11.019CrossRefPubMedGoogle Scholar
  8. Alcocer-Gomez E, Casas-Barquero N, Williams MR, Romero-Guillena SL, Canadas-Lozano D, Bullon P, Sanchez-Alcazar JA, Navarro-Pando JM, Cordero MD (2017) Antidepressants induce autophagy dependent-NLRP3-inflammasome inhibition in major depressive disorder. Pharmacol Res 121:114–121.  https://doi.org/10.1016/j.phrs.2017.04.028CrossRefPubMedGoogle Scholar
  9. Aldieri E, Atragene D, Bergandi L, Riganti C, Costamagna C, Bosia A, Ghigo D (2003) Artemisinin inhibits inducible nitric oxide synthase and nuclear factor NF-kB activation. FEBS Lett 552(2–3):141–144.  https://doi.org/10.1016/S0014-5793(03)00905-0CrossRefPubMedGoogle Scholar
  10. Aruna R, Geetha A, Suguna P (2014) Rutin modulates ASC expression in NLRP3 inflammasome: a study in alcohol and cerulein-induced rat model of pancreatitis. Mol Cell Biochem 396:269–280.  https://doi.org/10.1007/s11010-014-2162-8CrossRefPubMedGoogle Scholar
  11. Ashcroft FM (2005) ATP-sensitive potassium channelopathies: focus on insulin secretion. J Clin Invest 115(8):2047–2058.  https://doi.org/10.1172/JCI25495CrossRefPubMedPubMedCentralGoogle Scholar
  12. Baldwin AG, Rivers-Auty J, Daniels MJD, White CS, Schwalbe CH, Schilling T, Hammadi H, Jaiyong P, Spencer NG, England H, Luheshi NM, Kadirvel M, Lawrence CB, Rothwell NJ, Harte MK, Bryce RA, Allan SM, Eder C, Freeman S, Brough D (2017) Boron-based inhibitors of the NLRP3 inflammasome. Cell Chem Biol 24(11):1321–1335.  https://doi.org/10.1016/j.chembiol.2017.08.011CrossRefPubMedPubMedCentralGoogle Scholar
  13. Barbaro NR, Fontana V, Modolo R, De Faria AP, Sabbatini AR, Fonseca FH, Anhe GF, Moreno H (2015) Increased arterial stiffness in resistant hypertension is associated with inflammatory biomarkers. Blood Press 24(1):7–13.  https://doi.org/10.3109/08037051.2014.940710CrossRefPubMedGoogle Scholar
  14. Basiorka AA, McGraw KL, Eksioglu EA, Chen X, Johnson J, Zhang L, Zhang Q, Irvine BA, Cluzeau T, Sallman DA, Padron E, Komrokji R, Sokol L, Coll RC, Robertson AA, Cooper MA, Cleveland JL, O’Neill LA, Wei S, List AF (2016) The NLRP3 inflammasome functions as a driver of the myelodysplastic syndrome phenotype. Blood 128(25):2960–2975.  https://doi.org/10.1182/blood-2016-07-730556CrossRefPubMedPubMedCentralGoogle Scholar
  15. Boriushkin E, Wang JJ, Li J, Bhatta M, Zhang SX (2016) p58(IPK) suppresses NLRP3 inflammasome activation and IL-1beta production via inhibition of PKR in macrophages. Sci Rep 6:25013.  https://doi.org/10.1038/srep25013CrossRefPubMedPubMedCentralGoogle Scholar
  16. Brough D, Allan SM, Freeman S, Baldwin AG (2017) Cyclic diarylboron derivatives as NLRP3 inflammasome inhibitors. University of Manchester. WO/2017/017469Google Scholar
  17. Brydges SD, Mueller JL, McGeough MD, Pena CA, Misaghi A, Gandhi C, Putnam CD, Boyle DL, Firestein GS, Horner AA, Soroosh P, Watford WT, O’Shea JJ, Kastner DL, Hoffman HM (2009) Inflammasome-mediated disease animal models reveal roles for innate but not adaptive immunity. Immunity 30(6):875–887.  https://doi.org/10.1016/j.immuni.2009.05.005CrossRefPubMedPubMedCentralGoogle Scholar
  18. Bugyei-Twum A, Abadeh A, Thai K, Zhang Y, Mitchell M, Kabir G, Connelly KA (2016) Suppression of NLRP3 inflammasome activation ameliorates chronic kidney disease-induced cardiac fibrosis and diastolic dysfunction. Sci Rep 6:39551.  https://doi.org/10.1038/srep39551CrossRefPubMedPubMedCentralGoogle Scholar
  19. Cassidy A, Minihane AM (2017) The role of metabolism (and the microbiome) in defining the clinical efficacy of dietary flavonoids. Am J Clin Nutr 105(1):10–22.  https://doi.org/10.3945/ajcn.116.136051CrossRefPubMedGoogle Scholar
  20. Chang YP, Ka SM, Hsu WH, Chen A, Chao LK, Lin CC, Hsieh CC, Chen MC, Chiu HW, Ho CL, Chiu YC, Liu ML, Hua KF (2015) Resveratrol inhibits NLRP3 inflammasome activation by preserving mitochondrial integrity and augmenting autophagy. J Cell Physiol 230(7):1567–1579.  https://doi.org/10.1002/jcp.24903CrossRefPubMedGoogle Scholar
  21. Chavarria-Smith J, Vance RE (2015) The NLRP1 inflammasomes. Immunol Rev 265(1):22–34.  https://doi.org/10.1111/imr.12283CrossRefPubMedGoogle Scholar
  22. Chung IC, OuYang CN, Yuan SN, Li HP, Chen JT, Shieh HR, Chen YJ, Ojcius DM, Chu CL, Yu JS, Chang YS, Chen LC (2016) Pyk2 activates the NLRP3 inflammasome by directly phosphorylating ASC and contributes to inflammasome-dependent peritonitis. Sci Rep 6:36214.  https://doi.org/10.1038/srep36214CrossRefPubMedPubMedCentralGoogle Scholar
  23. Co Ha (19 Nov 2016) Harnessing the clinical potential of sulforaphane. http://www.directorstalkinterviews.com/evgen-pharma-plc-harnessing-clinical-potential-sulforaphane/412717321. Accessed 09 Nov 2017
  24. Cocco M, Garella D, Di Stilo A, Borretto E, Stevanato L, Giorgis M, Marini E, Fantozzi R, Miglio G, Bertinaria M (2014) Electrophilic warhead-based design of compounds preventing NLRP3 inflammasome-dependent pyroptosis. J Med Chem 57(24):10366–10382.  https://doi.org/10.1021/jm501072bCrossRefPubMedGoogle Scholar
  25. Cocco M, Miglio G, Giorgis M, Garella D, Marini E, Costale A, Regazzoni L, Vistoli G, Orioli M, Massulaha-Ahmed R, Detraz-Durieux I, Groslambert M, Py BF, Bertinaria M (2016) Design, synthesis, and evaluation of acrylamide derivatives as direct NLRP3 inflammasome inhibitors. ChemMedChem 11(16):1790–1803.  https://doi.org/10.1002/cmdc.201600055CrossRefPubMedGoogle Scholar
  26. Cocco M, Pellegrini C, Martinez-Banadocha H, Giorgis M, Marini E, Costale A, Miglio G, Fomai M, Antonioli L, Lopez-Castejon G, Tapia-Abellan A, Angosto D, Hafner-Bratkovic I, Regazzoni L, Blandizzi C, Pelegrin P, Bertinaria M (2017) Development of an acrylate derivative targeting the NLRP3 inflammasome for the treatment of inflammatory bowel disease. J Med Chem 60(9):3656–3671.  https://doi.org/10.1021/acs.jmedchem.6b01624CrossRefPubMedGoogle Scholar
  27. Coll RC, Robertson A, Butler M, Cooper M, O’Neill LA (2011) The cytokine release inhibitory drug CRID3 targets ASC oligomerisation in the NLRP3 and AIM2 inflammasomes. PLoS One 6(12):e29539.  https://doi.org/10.1371/journal.pone.0029539CrossRefPubMedPubMedCentralGoogle Scholar
  28. Coll RC, Robertson AA, Chae JJ, Higgins SC, Munoz-Planillo R, Inserra MC, Vetter I, Dungan LS, Monks BG, Stutz A, Croker DE, Butler MS, Haneklaus M, Sutton CE, Nunez G, Latz E, Kastner DL, Mills KH, Masters SL, Schroder K, Cooper MA, O’Neill LA (2015) A small-molecule inhibitor of the NLRP3 inflammasome for the treatment of inflammatory diseases. Nat Med 21(3):248–255.  https://doi.org/10.1038/nm.3806CrossRefPubMedPubMedCentralGoogle Scholar
  29. Corporation NP (2011) Highlights of prescribing information: Ilaris (canakinumab). https://www.accessdata.fda.gov/drugsatfda_docs/label/2012/125319s047lbl.pdf. Accessed 15 Nov 2017
  30. D’Anneo A, Carlisi D, Lauricella M, Puleio R, Martinez R, Di Bella S, Di Marco P, Emanuele S, Di Fiore R, Guercio A, Vento R, Tesoriere G (2013) Parthenolide generates reactive oxygen species and autophagy in MDA-MB231 cells. A soluble parthenolide analogue inhibits tumour growth and metastasis in a xenograft model of breast cancer. Cell Death Dis 4:e891.  https://doi.org/10.1038/cddis.2013.415CrossRefPubMedPubMedCentralGoogle Scholar
  31. Dai YF, Zhou WW, Meng J, Du XL, Sui YP, Dai L, Wang PQ, Huo HR, Sui F (2017) The pharmacological activities and mechanisms of artemisinin and its derivatives: a systematic review. Med Chem Res 26(5):867–880.  https://doi.org/10.1007/s00044-016-1778-5CrossRefGoogle Scholar
  32. Dalekos GN, Elisaf M, Bairaktari E, Tsolas O, Siamopoulos KC (1997) Increased serum levels of interleukin-1beta in the systemic circulation of patients with essential hypertension: additional risk factor for atherogenesis in hypertensive patients? J Lab Clin Med 129(3):300–308.  https://doi.org/10.1016/S0022-2143(97)90178-5CrossRefPubMedGoogle Scholar
  33. Daniels MJ, Rivers-Auty J, Schilling T, Spencer NG, Watremez W, Fasolino V, Booth SJ, White CS, Baldwin AG, Freeman S, Wong R, Latta C, Yu S, Jackson J, Fischer N, Koziel V, Pillot T, Bagnall J, Allan SM, Paszek P, Galea J, Harte MK, Eder C, Lawrence CB, Brough D (2016) Fenamate NSAIDs inhibit the NLRP3 inflammasome and protect against Alzheimer’s disease in rodent models. Nat Commun 7:12504.  https://doi.org/10.1038/ncomms12504CrossRefPubMedPubMedCentralGoogle Scholar
  34. Dempsey C, Rubio Araiz A, Bryson KJ, Finucane O, Larkin C, Mills EL, Robertson AAB, Cooper MA, O’Neill LAJ, Lynch MA (2017) Inhibiting the NLRP3 inflammasome with MCC950 promotes non-phlogistic clearance of amyloid-beta and cognitive function in APP/PS1 mice. Brain Behav Immun 61:306–316.  https://doi.org/10.1016/j.bbi.2016.12.014CrossRefPubMedGoogle Scholar
  35. Dey S, Sarkar M, Giri B (2016) Anti-inflammatory and anti-tumor activities of parthenolide: an update. J Chem Biol Therp 1(2):107.  https://doi.org/10.4172/2572-0406.1000107CrossRefGoogle Scholar
  36. Dinarello CA (2010) Anti-inflammatory agents: present and future. Cell 140(6):935–950.  https://doi.org/10.1016/j.cell.2010.02.043CrossRefPubMedPubMedCentralGoogle Scholar
  37. Dinh QN, Drummond GR, Kemp-Harper BK, Diep H, De Silva TM, Kim HA, Vinh A, Robertson AAB, Cooper MA, Mansell A, Chrissobolis S, Sobey CG (2017) Pressor response to angiotensin II is enhanced in aged mice and associated with inflammation, vasoconstriction and oxidative stress. Aging (Albany NY) 9(6):1595–1606.  https://doi.org/10.18632/aging.101255CrossRefGoogle Scholar
  38. Dombroski MA, Eggler JF (1998) Sulfonyl urea derivatives and their use in the control of interleukin-1 activity. Pfizer Inc. WO1998032733Google Scholar
  39. Ekstedt M, Hagstrom H, Nasr P, Fredrikson M, Stal P, Kechagias S, Hultcrantz R (2015) Fibrosis stage is the strongest predictor for disease-specific mortality in NAFLD after up to 33 years of follow-up. Hepatology 61(5):1547–1554.  https://doi.org/10.1002/hep.27368CrossRefPubMedGoogle Scholar
  40. Ellis LZ, Liu W, Luo Y, Okamoto M, Qu D, Dunn JH, Fujita M (2011) Green tea polyphenol epigallocatechin-3-gallate suppresses melanoma growth by inhibiting inflammasome and IL-1beta secretion. Biochem Biophys Res Commun 414(3):551–556.  https://doi.org/10.1016/j.bbrc.2011.09.115CrossRefPubMedPubMedCentralGoogle Scholar
  41. Fernandes-Alnemri T, Kang S, Anderson C, Sagara J, Fitzgerald KA, Alnemri ES (2013) Cutting edge: TLR signaling licenses IRAK1 for rapid activation of the NLRP3 inflammasome. J Immunol 191(8):3995–3999.  https://doi.org/10.4049/jimmunol.1301681CrossRefPubMedPubMedCentralGoogle Scholar
  42. Fu Y, Wang Y, Du L, Xu C, Cao J, Fan T, Liu J, Su X, Fan S, Liu Q, Fan F (2013) Resveratrol inhibits ionising irradiation-induced inflammation in MSCs by activating SIRT1 and limiting NLRP-3 inflammasome activation. Int J Mol Sci 14(7):14105–14118.  https://doi.org/10.3390/ijms140714105CrossRefPubMedPubMedCentralGoogle Scholar
  43. Fu SP, Wang JF, Xue WJ, Liu HM, Liu BR, Zeng YL, Li SN, Huang BX, Lv QK, Wang W, Liu JX (2015) Anti-inflammatory effects of BHBA in both in vivo and in vitro Parkinson’s disease models are mediated by GPR109A-dependent mechanisms. J Neuroinflammation 12:9.  https://doi.org/10.1186/s12974-014-0230-3CrossRefPubMedPubMedCentralGoogle Scholar
  44. Fu J, Sun H, Zhang Y, Xu W, Wang C, Fang Y, Zhao J (2017) Neuroprotective effects of luteolin against spinal cord ischemia-reperfusion injury by attenuation of oxidative stress, inflammation, and apoptosis. J Med Food 21(1):13–20.  https://doi.org/10.1089/jmf.2017.4021CrossRefPubMedGoogle Scholar
  45. Gan W, Ren J, Li T, Lv S, Li C, Liu Z, Yang M (2017) The SGK1 inhibitor EMD638683, prevents Angiotensin II-induced cardiac inflammation and fibrosis by blocking NLRP3 inflammasome activation. Biochim Biophys Acta 1864(1):1–10.  https://doi.org/10.1016/j.bbadis.2017.10.001CrossRefPubMedGoogle Scholar
  46. Gao Y-Z, Zhao L-F, Ma J, Xue W-H, Zhao H (2016) Protective mechanisms of wogonoside against Lipopolysaccharide/D-galactosamine-induced acute liver injury in mice. Eur J Pharmacol 780:8–15.  https://doi.org/10.1016/j.ejphar.2016.02.040CrossRefPubMedGoogle Scholar
  47. Gehringer M, Muth F, Koch P, Laufer SA (2015) c-Jun N-terminal kinase inhibitors: a patent review (2010-2014). Expert Opin Ther Pat 25(8):849–872.  https://doi.org/10.1517/13543776.2015.1039984CrossRefPubMedGoogle Scholar
  48. Goldbach-Mansky R, Wilson M, Fleischmann R, Olsen N, Silverfield J, Kempf P, Kivitz A, Sherrer Y, Pucino F, Csako G, Costello R, Pham TH, Snyder C, van der Heijde D, Tao X, Wesley R, Lipsky PE (2009) Comparison of Tripterygium wilfordii Hook F versus sulfasalazine in the treatment of rheumatoid arthritis: a randomized trial. Ann Intern Med 151(4):229–240 W249-251CrossRefPubMedPubMedCentralGoogle Scholar
  49. Gong Z, Zhou J, Li H, Gao Y, Xu C, Zhao S, Chen Y, Cai W, Wu J (2015) Curcumin suppresses NLRP3 inflammasome activation and protects against LPS-induced septic shock. Mol Nutr Food Res 59(11):2132–2142.  https://doi.org/10.1002/mnfr.201500316CrossRefPubMedGoogle Scholar
  50. Greaney AJ, Maier NK, Leppla SH, Moayeri M (2016) Sulforaphane inhibits multiple inflammasomes through an Nrf2-independent mechanism. J Leukoc Biol 99(1):189–199.  https://doi.org/10.1189/jlb.3A0415-155RRCrossRefPubMedGoogle Scholar
  51. Green RH, Brightling CE, Woltmann G, Parker D, Wardlaw AJ, Pavord ID (2002) Analysis of induced sputum in adults with asthma: identification of subgroup with isolated sputum neutrophilia and poor response to inhaled corticosteroids. Thorax 57(10):875–879CrossRefPubMedPubMedCentralGoogle Scholar
  52. Gris D, Ye Z, Iocca HA, Wen H, Craven RR, Gris P, Huang M, Schneider M, Miller SD, Ting JP (2010) NLRP3 plays a critical role in the development of experimental autoimmune encephalomyelitis by mediating Th1 and Th17 responses. J Immunol 185(2):974–981.  https://doi.org/10.4049/jimmunol.0904145CrossRefPubMedPubMedCentralGoogle Scholar
  53. Gross CJ, Mishra R, Schneider KS, Medard G, Wettmarshausen J, Dittlein DC, Shi H, Gorka O, Koenig PA, Fromm S, Magnani G, Cikovic T, Hartjes L, Smollich J, Robertson AA, Cooper MA, Schmidt-Supprian M, Schuster M, Schroder K, Broz P, Traidl-Hoffmann C, Beutler B, Kuster B, Ruland J, Schneider S, Perocchi F, Gross O (2016) K+ Efflux-Independent NLRP3 Inflammasome Activation by Small Molecules Targeting Mitochondria. Immunity 45(4):761–773.  https://doi.org/10.1016/j.immuni.2016.08.010CrossRefPubMedGoogle Scholar
  54. Grundmann S, Bode C, Moser M (2011) Inflammasome activation in reperfusion injury: friendly fire on myocardial infarction? Circulation 123(6):574–576.  https://doi.org/10.1161/CIRCULATIONAHA.111.018176CrossRefPubMedGoogle Scholar
  55. Guo A, He D, Xu HB, Geng CA, Zhao J (2015) Promotion of regulatory T cell induction by immunomodulatory herbal medicine licorice and its two constituents. Sci Rep 5:14046.  https://doi.org/10.1038/srep14046CrossRefPubMedPubMedCentralGoogle Scholar
  56. Guo C, Fulp JW, Jiang Y, Li X, Chojnacki JE, Wu J, Wang XY, Zhang S (2017) Development and characterization of a hydroxyl-sulfonamide analogue, 5-chloro-N-[2-(4-hydroxysulfamoyl-phenyl)-ethyl]-2-methoxy-benzamide, as a novel NLRP3 inflammasome inhibitor for potential treatment of Multiple Sclerosis. ACS Chem Neurosci 8(10):2194–2201.  https://doi.org/10.1021/acschemneuro.7b00124CrossRefPubMedGoogle Scholar
  57. Guzman ML, Rossi RM, Neelakantan S, Li X, Corbett CA, Hassane DC, Becker MW, Bennett JM, Sullivan E, Lachowicz JL, Vaughan A, Sweeney CJ, Matthews W, Carroll M, Liesveld JL, Crooks PA, Jordan CT (2007) An orally bioavailable parthenolide analog selectively eradicates acute myelogenous leukemia stem and progenitor cells. Blood 110(13):4427–4435.  https://doi.org/10.1182/blood-2007-05-090621CrossRefPubMedPubMedCentralGoogle Scholar
  58. Halle A, Hornung V, Petzold GC, Stewart CR, Monks BG, Reinheckel T, Fitzgerald KA, Latz E, Moore KJ, Golenbock DT (2008) The NALP3 inflammasome is involved in the innate immune response to amyloid-beta. Nat Immunol 9(8):857–865.  https://doi.org/10.1038/ni.1636CrossRefPubMedPubMedCentralGoogle Scholar
  59. Hamon Y, Luciani MF, Becq F, Verrier B, Rubartelli A, Chimini G (1997) Interleukin-1beta secretion is impaired by inhibitors of the Atp binding cassette transporter, ABC1. Blood 90(8):2911–2915PubMedGoogle Scholar
  60. Han SC, Cai WX, Yang XK, Jia YH, Zheng Z, Wang HT, Li J, Li Y, Gao JX, Fan L, Hu DH (2015) ROS-,ediated NLRP3 inflammasome activity is essential for burn-induced acute lung injury. Mediat Inflamm. Artn 720457.  https://doi.org/10.1155/2015/720457
  61. Hara H, Tsuchiya K, Kawamura I, Fang R, Hernandez-Cuellar E, Shen Y, Mizuguchi J, Schweighoffer E, Tybulewicz V, Mitsuyama M (2013) Phosphorylation of the adaptor ASC acts as a molecular switch that controls the formation of speck-like aggregates and inflammasome activity. Nat Immunol 14(12):1247–1257.  https://doi.org/10.1038/ni.2749CrossRefPubMedPubMedCentralGoogle Scholar
  62. Hastie AT, Moore WC, Meyers DA, Vestal PL, Li H, Peters SP, Bleecker ER (2010) Analyses of asthma severity phenotypes and inflammatory proteins in subjects stratified by sputum granulocytes. J Allergy Clin Immunol 125(5):1028–1036 e1013.  https://doi.org/10.1016/j.jaci.2010.02.008CrossRefPubMedPubMedCentralGoogle Scholar
  63. He Y, Varadarajan S, Munoz-Planillo R, Burberry A, Nakamura Y, Nunez G (2014) 3,4-methylenedioxy-beta-nitrostyrene inhibits NLRP3 inflammasome activation by blocking assembly of the inflammasome. J Biol Chem 289(2):1142–1150.  https://doi.org/10.1074/jbc.M113.515080CrossRefPubMedGoogle Scholar
  64. He Y, Hara H, Nunez G (2016a) Mechanism and regulation of NLRP3 inflammasome activation. Trends Biochem Sci 41(12):1012–1021.  https://doi.org/10.1016/j.tibs.2016.09.002CrossRefPubMedPubMedCentralGoogle Scholar
  65. He Y, Zeng MY, Yang D, Motro B, Nunez G (2016b) NEK7 is an essential mediator of NLRP3 activation downstream of potassium efflux. Nature 530(7590):354–357.  https://doi.org/10.1038/nature16959CrossRefPubMedPubMedCentralGoogle Scholar
  66. Henao-Mejia J, Elinav E, Jin C, Hao L, Mehal WZ, Strowig T, Thaiss CA, Kau AL, Eisenbarth SC, Jurczak MJ, Camporez JP, Shulman GI, Gordon JI, Hoffman HM, Flavell RA (2012) Inflammasome-mediated dysbiosis regulates progression of NAFLD and obesity. Nature 482(7384):179–185.  https://doi.org/10.1038/nature10809CrossRefPubMedPubMedCentralGoogle Scholar
  67. Heneka MT, Kummer MP, Stutz A, Delekate A, Schwartz S, Vieira-Saecker A, Griep A, Axt D, Remus A, Tzeng TC, Gelpi E, Halle A, Korte M, Latz E, Golenbock DT (2013) NLRP3 is activated in Alzheimer’s disease and contributes to pathology in APP/PS1 mice. Nature 493(7434):674.  https://doi.org/10.1038/nature11729CrossRefPubMedGoogle Scholar
  68. Higdon J, Drake V, Delage B, Crozier A (2005) Flavonoids. Linus Pauling Institute, Oregon State University. http://lpi.oregonstate.edu/mic/dietary-factors/phytochemicals/flavonoids. Accessed 12 Nov 2017
  69. Hill JR, Coll RC, Sue N, Reid JC, Dou J, Holley CL, Pelingon R, Dickinson JB, Biden TJ, Schroder K, Cooper MA, Robertson AAB (2017) Sulfonylureas as concomitant insulin secretagogues and NLRP3 inflammasome inhibitors. ChemMedChem 12(17):1449–1457.  https://doi.org/10.1002/cmdc.201700270CrossRefPubMedGoogle Scholar
  70. Honda H, Nagai Y, Matsunaga T, Okamoto N, Watanabe Y, Tsuneyama K, Hayashi H, Fujii I, Ikutani M, Hirai Y, Muraguchi A, Takatsu K (2014) Isoliquiritigenin is a potent inhibitor of NLRP3 inflammasome activation and diet-induced adipose tissue inflammation. J Leukoc Biol 96(6):1087–1100.  https://doi.org/10.1189/jlb.3A0114-005RRCrossRefPubMedGoogle Scholar
  71. Hostetler G, Riedl K, Cardenas H, Diosa-Toro M, Arango D, Schwartz S, Doseff AI (2012) Flavone deglycosylation increases their anti-inflammatory activity and absorption. Mol Nutr Food Res 56(4):558–569.  https://doi.org/10.1002/mnfr.201100596CrossRefPubMedPubMedCentralGoogle Scholar
  72. Ito K, Chung KF, Adcock IM (2006) Update on glucocorticoid action and resistance. J Allergy Clin Immunol 117(3):522–543.  https://doi.org/10.1016/j.jaci.2006.01.032CrossRefPubMedGoogle Scholar
  73. Ito M, Shichita T, Okada M, Komine R, Noguchi Y, Yoshimura A, Morita R (2015) Bruton’s tyrosine kinase is essential for NLRP3 inflammasome activation and contributes to ischaemic brain injury. Nat Commun 6:7360.  https://doi.org/10.1038/ncomms8360CrossRefPubMedPubMedCentralGoogle Scholar
  74. Ives A, Nomura J, Martinon F, Roger T, LeRoy D, Miner JN, Simon G, Busso N, So A (2015) Xanthine oxidoreductase regulates macrophage IL1beta secretion upon NLRP3 inflammasome activation. Nat Commun 6:6555.  https://doi.org/10.1038/ncomms7555CrossRefPubMedPubMedCentralGoogle Scholar
  75. Jiang L, Zhang L, Kang K, Fei DS, Gong R, Cao YH, Pan SH, Zhao MR, Zhao MY (2016a) Resveratrol ameliorates LPS-induced acute lung injury via NLRP3 inflammasome modulation. Biomed Pharmacother 84:130–138.  https://doi.org/10.1016/j.biopha.2016.09.020CrossRefPubMedGoogle Scholar
  76. Jiang W, He F, Li M, Bian Z, Zhu L, Huang Y, Han N, Liu J, Sun T (2016b) Quercetin suppresses NLRP3 inflammasome activation and attenuates histopathology in a rat model of spinal cord injury. Spinal Cord 54(6):592–596.  https://doi.org/10.1038/sc.2015.227CrossRefPubMedGoogle Scholar
  77. Jiang H, He H, Chen Y, Huang W, Cheng J, Ye J, Wang A, Tao J, Wang C, Liu Q, Jin T, Jiang W, Deng X, Zhou R (2017) Identification of a selective and direct NLRP3 inhibitor to treat inflammatory disorders. J Exp Med 214(11):3219–3238.  https://doi.org/10.1084/jem.20171419CrossRefPubMedPubMedCentralGoogle Scholar
  78. Juliana C, Fernandes-Alnemri T, Wu J, Datta P, Solorzano L, Yu JW, Meng R, Quong AA, Latz E, Scott CP, Alnemri ES (2010) Anti-inflammatory compounds parthenolide and Bay 11-7082 are direct inhibitors of the inflammasome. J Biol Chem 285(13):9792–9802.  https://doi.org/10.1074/jbc.M109.082305CrossRefPubMedPubMedCentralGoogle Scholar
  79. Katsnelson MA, Rucker LG, Russo HM, Dubyak GR (2015) K+ Efflux agonists induce NLRP3 inflammasome activation independently of Ca2+ signaling. J Immunol 194(8):3937.  https://doi.org/10.4049/jimmunol.1402658CrossRefPubMedPubMedCentralGoogle Scholar
  80. Kaufmann FN, Costa AP, Ghisleni G, Diaz AP, Rodrigues ALS, Peluffo H, Kaster MP (2017) NLRP3 inflammasome-driven pathways in depression: clinical and preclinical findings. Brain Behav Immun 64:367–383.  https://doi.org/10.1016/j.bbi.2017.03.002CrossRefPubMedGoogle Scholar
  81. Khan MA, Tania M, Fu SY, Fu JJ (2017) Thymoquinone, as an anticancer molecule: from basic research to clinical investigation. Oncotarget 8(31):51907–51919.  https://doi.org/10.18632/oncotarget.17206CrossRefGoogle Scholar
  82. Kim RY, Pinkerton JW, Essilfie AT, Robertson AA, Baines KJ, Brown AC, Mayall JR, Ali MK, Starkey MR, Hansbro NG, Hirota JA, Wood LG, Simpson JL, Knight DA, Wark PA, Gibson PG, O’Neill LA, Cooper MA, Horvat JC, Hansbro PM (2017) Role for NLRP3 inflammasome-mediated, IL-1beta-dependent responses in severe, steroid-resistant asthma. Am J Respir Crit Care Med.  https://doi.org/10.1164/rccm.201609-1830OC
  83. Koh GC, Maude RR, Schreiber MF, Limmathurotsakul D, Wiersinga WJ, Wuthiekanun V, Lee SJ, Mahavanakul W, Chaowagul W, Chierakul W, White NJ, van der Poll T, Day NP, Dougan G, Peacock SJ (2011) Glyburide is anti-inflammatory and associated with reduced mortality in melioidosis. Clin Infect Dis 52(6):717–725.  https://doi.org/10.1093/cid/ciq192CrossRefPubMedPubMedCentralGoogle Scholar
  84. Kong F, Ye B, Cao J, Cai X, Lin L, Huang S, Huang W, Huang Z (2016) Curcumin represses NLRP3 inflammasome activation via TLR4/MyD88/NF-kappaB and P2X7R signaling in PMA-induced macrophages. Front Pharmacol 7:369.  https://doi.org/10.3389/fphar.2016.00369CrossRefPubMedPubMedCentralGoogle Scholar
  85. Koo JW, Duman RS (2008) IL-1beta is an essential mediator of the antineurogenic and anhedonic effects of stress. Proc Natl Acad Sci U S A 105(2):751–756.  https://doi.org/10.1073/pnas.0708092105CrossRefPubMedPubMedCentralGoogle Scholar
  86. Krishnan SM, Dowling JK, Ling YH, Diep H, Chan CT, Ferens D, Kett MM, Pinar A, Samuel CS, Vinh A, Arumugam TV, Hewitson TD, Kemp-Harper BK, Robertson AA, Cooper MA, Latz E, Mansell A, Sobey CG, Drummond GR (2016) Inflammasome activity is essential for one kidney/deoxycorticosterone acetate/salt-induced hypertension in mice. Br J Pharmacol 173(4):752–765.  https://doi.org/10.1111/bph.13230CrossRefPubMedGoogle Scholar
  87. Lai MZ, Chen RH (2014) Regulation of inflammation by DAPK. Apoptosis 19(2):357–363.  https://doi.org/10.1007/s10495-013-0933-4CrossRefPubMedGoogle Scholar
  88. Laliberte RE, Eggler J, Gabel CA (1999) ATP treatment of human monocytes promotes caspase-1 maturation and externalization. J Biol Chem 274(52):36944–36951CrossRefPubMedGoogle Scholar
  89. Laliberte RE, Perregaux DG, Hoth LR, Rosner PJ, Jordan CK, Peese KM, Eggler JF, Dombroski MA, Geoghegan KF, Gabel CA (2003) Glutathione s-transferase omega 1-1 is a target of cytokine release inhibitory drugs and may be responsible for their effect on interleukin-1beta posttranslational processing. J Biol Chem 278(19):16567–16578.  https://doi.org/10.1074/jbc.M211596200CrossRefPubMedGoogle Scholar
  90. Lalor SJ, Dungan LS, Sutton CE, Basdeo SA, Fletcher JM, Mills KH (2011) Caspase-1-processed cytokines IL-1beta and IL-18 promote IL-17 production by gammadelta and CD4 T cells that mediate autoimmunity. J Immunol 186(10):5738–5748.  https://doi.org/10.4049/jimmunol.1003597CrossRefPubMedGoogle Scholar
  91. Lamkanfi M, Mueller JL, Vitari AC, Misaghi S, Fedorova A, Deshayes K, Lee WP, Hoffman HM, Dixit VM (2009) Glyburide inhibits the Cryopyrin/Nalp3 inflammasome. J Cell Biol 187(1):61–70.  https://doi.org/10.1083/jcb.200903124CrossRefPubMedPubMedCentralGoogle Scholar
  92. LaRock CN, Todd J, LaRock DL, Olson J, O’Donoghue AJ, Robertson AAB, Cooper MA, Hoffman HM, Nizet V (2016) IL-1beta is an innate immune sensor of microbial proteolysis. Sci Immunol 1(2):eaah3539.  https://doi.org/10.1126/sciimmunol.aah3539CrossRefPubMedPubMedCentralGoogle Scholar
  93. Latz E, Xiao TS, Stutz A (2013) Activation and regulation of the inflammasomes. Nat Rev Immunol 13(6):397–411.  https://doi.org/10.1038/nri3452CrossRefPubMedGoogle Scholar
  94. Lee H, Shin EA, Lee JH, Ahn D, Kim CG, Kim JH, Kim SH (2017) Caspase inhibitors: a review of recently patented compounds (2013-2015). Expert Opin Ther Pat:1–13.  https://doi.org/10.1080/13543776.2017.1378426
  95. Li S, Gao X, Wu X, Wu Z, Cheng L, Zhu L, Shen D, Tong X (2015) Parthenolide inhibits LPS-induced inflammatory cytokines through the toll-like receptor 4 signal pathway in THP-1 cells. Acta Biochim Biophys Sin Shanghai 47(5):368–375.  https://doi.org/10.1093/abbs/gmv019CrossRefPubMedGoogle Scholar
  96. Li A, Zhang S, Li J, Liu K, Huang F, Liu B (2016a) Metformin and resveratrol inhibit Drp1-mediated mitochondrial fission and prevent ER stress-associated NLRP3 inflammasome activation in the adipose tissue of diabetic mice. Mol Cell Endocrinol 434:36–47.  https://doi.org/10.1016/j.mce.2016.06.008CrossRefPubMedGoogle Scholar
  97. Li R, Wang X, Qin T, Qu R, Ma S (2016b) Apigenin ameliorates chronic mild stress-induced depressive behavior by inhibiting interleukin-1beta production and NLRP3 inflammasome activation in the rat brain. Behav Brain Res 296:318–325.  https://doi.org/10.1016/j.bbr.2015.09.031CrossRefPubMedGoogle Scholar
  98. Li H, Lin S, Qin T, Li H, Ma Z, Ma S (2017) Senegenin exerts anti-depression effect in mice induced by chronic un-predictable mild stress via inhibition of NF-kappaB regulating NLRP3 signal pathway. Int Immunopharmacol 53:24–32.  https://doi.org/10.1016/j.intimp.2017.10.001CrossRefPubMedGoogle Scholar
  99. Lin KM, Hu W, Troutman TD, Jennings M, Brewer T, Li XX, Nanda S, Cohen P, Thomas JA, Pasare C (2014) IRAK-1 bypasses priming and directly links TLRs to rapid NLRP3 inflammasome activation. Proc Natl Acad Sci U S A 111(2):775–780.  https://doi.org/10.1073/pnas.1320294111CrossRefPubMedGoogle Scholar
  100. Lin YC, Huang DY, Wang JS, Lin YL, Hsieh SL, Huang KC, Lin WW (2015) Syk is involved in NLRP3 inflammasome-mediated caspase-1 activation through adaptor ASC phosphorylation and enhanced oligomerization. J Leukoc Biol 97(5):825–835.  https://doi.org/10.1189/jlb.3HI0814-371RRCrossRefPubMedGoogle Scholar
  101. Liu D, Mamorska-Dyga A (2017) Syk inhibitors in clinical development for hematological malignancies. J Hematol Oncol 10(1):145.  https://doi.org/10.1186/s13045-017-0512-1CrossRefPubMedPubMedCentralGoogle Scholar
  102. Liu W, Guo W, Wu J, Luo Q, Tao F, Gu Y, Shen Y, Li J, Tan R, Xu Q, Sun Y (2013) A novel benzo[d]imidazole derivate prevents the development of dextran sulfate sodium-induced murine experimental colitis via inhibition of NLRP3 inflammasome. Biochem Pharmacol 85(10):1504–1512.  https://doi.org/10.1016/j.bcp.2013.03.008CrossRefPubMedGoogle Scholar
  103. Long HB, Xu BC, Luo YL, Luo KQ (2016) Artemisinin protects mice against burn sepsis through inhibiting NLRP3 inflammasome activation. Am J Emerg Med 34(5):772–777.  https://doi.org/10.1016/j.ajem.2015.12.075CrossRefPubMedGoogle Scholar
  104. Lu M, Yin N, Liu W, Cui X, Chen S, Wang E (2017) Curcumin ameliorates diabetic nephropathy by suppressing NLRP3 inflammasome signaling. Biomed Res Int 2017:1516985.  https://doi.org/10.1155/2017/1516985CrossRefPubMedPubMedCentralGoogle Scholar
  105. Ludwig-Portugall I, Bartok E, Dhana E, Evers BD, Primiano MJ, Hall JP, Franklin BS, Knolle PA, Hornung V, Hartmann G, Boor P, Latz E, Kurts C (2016) An NLRP3-specific inflammasome inhibitor attenuates crystal-induced kidney fibrosis in mice. Kidney Int 90(3):525–539.  https://doi.org/10.1016/j.kint.2016.03.035CrossRefPubMedGoogle Scholar
  106. MacKenzie SH, Schipper JL, Clark AC (2010) The potential for caspases in drug discovery. Curr Opin Drug Discov Devel 13(5):568–576PubMedPubMedCentralGoogle Scholar
  107. Marble A (1971) Glibenclamide, a new sulphonylurea: whither oral hypoglycaemic agents? Drugs 1(2):109–115CrossRefPubMedGoogle Scholar
  108. Marchetti C, Chojnacki J, Toldo S, Mezzaroma E, Tranchida N, Rose SW, Federici M, Van Tassell BW, Zhang S, Abbate A (2014) A novel pharmacologic inhibitor of the NLRP3 inflammasome limits myocardial injury after ischemia-reperfusion in the mouse. J Cardiovasc Pharmacol 63(4):316–322.  https://doi.org/10.1097/FJC.0000000000000053CrossRefPubMedPubMedCentralGoogle Scholar
  109. Marchetti C, Toldo S, Chojnacki J, Mezzaroma E, Liu K, Salloum FN, Nordio A, Carbone S, Mauro AG, Das A, Zalavadia AA, Halquist MS, Federici M, Van Tassell BW, Zhang S, Abbate A (2015) Pharmacologic inhibition of the NLRP3 inflammasome preserves cardiac function after ischemic and nonischemic injury in the mouse. J Cardiovasc Pharmacol 66(1):1–8.  https://doi.org/10.1097/FJC.0000000000000247CrossRefPubMedPubMedCentralGoogle Scholar
  110. Marty V, Medina C, Combe C, Parnet P, Amedee T (2005) ATP binding cassette transporter ABC1 is required for the release of interleukin-1beta by P2X7-stimulated and lipopolysaccharide-primed mouse Schwann cells. Glia 49(4):511–519.  https://doi.org/10.1002/glia.20138CrossRefPubMedGoogle Scholar
  111. Miyaji Y, Yoshimura S, Sakai N, Yamagami H, Egashira Y, Shirakawa M, Uchida K, Kageyama H, Tomogane Y (2015) Effect of edaravone on favorable outcome in patients with acute cerebral large vessel occlusion: subanalysis of RESCUE-Japan Registry. Neurol Med Chir (Tokyo) 55(3):241–247.  https://doi.org/10.2176/nmc.ra.2014-0219CrossRefGoogle Scholar
  112. Mridha AR, Wree A, Robertson AA, Yeh MM, Johnson CD, Van Rooyen DM, Haczeyni F, Teoh NC, Savard C, Ioannou GN, Masters SL, Schroder K, Cooper MA, Feldstein AE, Farrell GC (2017) NLRP3 inflammasome blockade reduces liver inflammation and fibrosis in experimental NASH in mice. J Hepatol 66(5):1037–1046.  https://doi.org/10.1016/j.jhep.2017.01.022CrossRefPubMedGoogle Scholar
  113. Mulay SR, Evan A, Anders HJ (2014) Molecular mechanisms of crystal-related kidney inflammation and injury. Implications for cholesterol embolism, crystalline nephropathies and kidney stone disease. Nephrol Dial Transplant 29(3):507–514.  https://doi.org/10.1093/ndt/gft248CrossRefPubMedGoogle Scholar
  114. Murphy JJ, Heptinstall S, Mitchell JR (1988) Randomised double-blind placebo-controlled trial of feverfew in migraine prevention. Lancet 2(8604):189–192.  https://doi.org/10.1016/S0140-6736(88)92289-1CrossRefPubMedGoogle Scholar
  115. Neumann K, Ruland J (2013) Kinases conquer the inflammasomes. Nat Immunol 14(12):1207–1208.  https://doi.org/10.1038/ni.2763CrossRefPubMedGoogle Scholar
  116. Newman JC, Verdin E (2014) beta-hydroxybutyrate: much more than a metabolite. Diabetes Res Clin Pr 106(2):173–181.  https://doi.org/10.1016/j.diabres.2014.08.009CrossRefGoogle Scholar
  117. Okada M, Matsuzawa A, Yoshimura A, Ichijo H (2014) The lysosome rupture-activated TAK1-JNK pathway regulates NLRP3 inflammasome activation. J Biol Chem 289(47).  https://doi.org/10.1074/jbc.M114.579961
  118. Pan L, Hang N, Zhang C, Chen Y, Li S, Sun Y, Li Z, Meng X (2017) Synthesis and biological evaluation of novel benzimidazole derivatives and analogs targeting the NLRP3 inflammasome. Molecules 22(2):213–228.  https://doi.org/10.3390/molecules22020213CrossRefGoogle Scholar
  119. Paris D, Ait-Ghezala G, Bachmeier C, Laco G, Beaulieu-Abdelahad D, Lin Y, Jin C, Crawford F, Mullan M (2014) The spleen tyrosine kinase (Syk) regulates Alzheimer amyloid-beta production and Tau hyperphosphorylation. J Biol Chem 289(49):33927–33944.  https://doi.org/10.1074/jbc.M114.608091CrossRefPubMedPubMedCentralGoogle Scholar
  120. Periyanayagam S, Arumugam G, Ravikumar A, Ganesan VS (2015) Thymoquinone ameliorates NLRP3-mediated inflammation in the pancreas of albino Wistar rats fed ethanol and high-fat diet. J Basic Clin Physiol Pharmacol 26(6):623–632.  https://doi.org/10.1515/jbcpp-2014-0109CrossRefPubMedGoogle Scholar
  121. Perregaux DG, McNiff P, Laliberte R, Hawryluk N, Peurano H, Stam E, Eggler J, Griffiths R, Dombroski MA, Gabel CA (2001) Identification and characterization of a novel class of interleukin-1 post-translational processing inhibitors. J Pharmacol Exp Ther 299(1):187–197PubMedGoogle Scholar
  122. Pinar A, Dowling JK, Bitto NJ, Robertson AA, Latz E, Stewart CR, Drummond GR, Cooper MA, McAuley JL, Tate MD, Mansell A (2017) PB1-F2 peptide derived from avian influenza a virus H7N9 induces inflammation via activation of the NLRP3 inflammasome. J Biol Chem 292(3):826–836.  https://doi.org/10.1074/jbc.M116.756379CrossRefPubMedGoogle Scholar
  123. Pinkerton JW, Kim RY, Robertson AAB, Hirota JA, Wood LG, Knight DA, Cooper MA, O’Neill LAJ, Horvat JC, Hansbro PM (2017) Inflammasomes in the lung. Mol Immunol 86:44–55.  https://doi.org/10.1016/j.molimm.2017.01.014CrossRefPubMedGoogle Scholar
  124. Primiano MJ, Lefker BA, Bowman MR, Bree AG, Hubeau C, Bonin PD, Mangan M, Dower K, Monks BG, Cushing L, Wang S, Guzova J, Jiao A, Lin LL, Latz E, Hepworth D, Hall JP (2016) Efficacy and pharmacology of the NLRP3 inflammasome inhibitor CP-456,773 (CRID3) in murine models of dermal and pulmonary inflammation. J Immunol 197(6):2421–2433.  https://doi.org/10.4049/jimmunol.1600035CrossRefPubMedGoogle Scholar
  125. Qiu J, Wang M, Zhang J, Cai Q, Lu D, Li Y, Dong Y, Zhao T, Chen H (2016) The neuroprotection of Sinomenine against ischemic stroke in mice by suppressing NLRP3 inflammasome via AMPK signaling. Int Immunopharmacol 40:492–500.  https://doi.org/10.1016/j.intimp.2016.09.024CrossRefPubMedGoogle Scholar
  126. Rabkin SW (2009) The role of interleukin 18 in the pathogenesis of hypertension-induced vascular disease. Nat Clin Pract Cardiovasc Med 6(3):192–199.  https://doi.org/10.1038/ncpcardio1453CrossRefPubMedGoogle Scholar
  127. Rada B, Park JJ, Sil P, Geiszt M, Leto TL (2014) NLRP3 inflammasome activation and interleukin-1 beta release in macrophages require calcium but are independent of calcium-activated NADPH oxidases. Inflamm Res 63(10):821–830.  https://doi.org/10.1007/s00011-014-0756-yCrossRefPubMedPubMedCentralGoogle Scholar
  128. Ron Leuty SFBT (2013) Rigel to cut 30 jobs, focus on three drug programs. https://www.bizjournals.com/sanfrancisco/blog/biotech/2013/09/rigel-fostamatinib-itp-rigl-layoffs.html. Accessed 14 Nov 2017
  129. Salla M, Butler MS, Pelingon R, Kaeslin G, Croker DE, Reid JC, Baek JM, Bernhardt PV, Gillam EM, Cooper MA, Robertson AA (2016) Identification, synthesis, and biological evaluation of the major human metabolite of NLRP3 inflammasome inhibitor MCC950. ACS Med Chem Lett 7(12):1034–1038.  https://doi.org/10.1021/acsmedchemlett.6b00198CrossRefPubMedPubMedCentralGoogle Scholar
  130. Schaale K, Peters KM, Murthy AM, Fritzsche AK, Phan MD, Totsika M, Robertson AA, Nichols KB, Cooper MA, Stacey KJ, Ulett GC, Schroder K, Schembri MA, Sweet MJ (2016) Strain- and host species-specific inflammasome activation, IL-1beta release, and cell death in macrophages infected with uropathogenic Escherichia coli. Mucosal Immunol 9(1):124–136.  https://doi.org/10.1038/mi.2015.44CrossRefPubMedGoogle Scholar
  131. Schmid-Burgk JL, Chauhan D, Schmidt T, Ebert TS, Reinhardt J, Endl E, Hornung V (2016) A genome-wide CRISPR (clustered regularly interspaced short palindromic repeats) screen identifies NEK7 as an essential component of NLRP3 inflammasome activation. J Biol Chem 291(1):103–109.  https://doi.org/10.1074/jbc.C115.700492CrossRefPubMedGoogle Scholar
  132. Schroder K, Tschopp J (2010) The inflammasomes. Cell 140(6):821–832.  https://doi.org/10.1016/j.cell.2010.01.040CrossRefPubMedGoogle Scholar
  133. Shanmugam R, Kusumanchi P, Appaiah H, Cheng L, Crooks P, Neelakantan S, Peat T, Klaunig J, Matthews W, Nakshatri H, Sweeney CJ (2011) A water soluble parthenolide analog suppresses in vivo tumor growth of two tobacco-associated cancers, lung and bladder cancer, by targeting NF-kappaB and generating reactive oxygen species. Int J Cancer 128(10):2481–2494.  https://doi.org/10.1002/ijc.25587CrossRefPubMedPubMedCentralGoogle Scholar
  134. Sheridan C (2017) Novartis trial validates inflammasome as chronic disease driver. Nat Biotechnol 35(10)Google Scholar
  135. Sheth KN, Simard JM, Elm J, Kronenberg G, Kunte H, Kimberly WT (2016) Human data supporting glyburide in ischemic stroke. Acta Neurochir Suppl 121:13–18.  https://doi.org/10.1007/978-3-319-18497-5_3CrossRefPubMedPubMedCentralGoogle Scholar
  136. Shi JQ, Zhang CC, Sun XL, Cheng XX, Wang JB, Zhang YD, Xu J, Zou HQ (2013) Antimalarial drug artemisinin extenuates amyloidogenesis and neuroinflammation in APPswe/PS1dE9 transgenic mice via inhibition of nuclear factor-kappaB and NLRP3 inflammasome activation. CNS Neurosci Ther 19(4):262–268.  https://doi.org/10.1111/cns.12066CrossRefPubMedGoogle Scholar
  137. Shi JJ, Zhao Y, Wang YP, Gao WQ, Ding JJ, Li P, Hu LY, Shao F (2014) Inflammatory caspases are innate immune receptors for intracellular LPS. Nature 514(7521):187–192.  https://doi.org/10.1038/nature13683CrossRefPubMedGoogle Scholar
  138. Shi H, Wang Y, Li X, Zhan X, Tang M, Fina M, Su L, Pratt D, Bu CH, Hildebrand S, Lyon S, Scott L, Quan J, Sun Q, Russell J, Arnett S, Jurek P, Chen D, Kravchenko VV, Mathison JC, Moresco EM, Monson NL, Ulevitch RJ, Beutler B (2016) NLRP3 activation and mitosis are mutually exclusive events coordinated by NEK7, a new inflammasome component. Nat Immunol 17(3):250–258.  https://doi.org/10.1038/ni.3333CrossRefPubMedGoogle Scholar
  139. Shio MT, Eisenbarth SC, Savaria M, Vinet AF, Bellemare MJ, Harder KW, Sutterwala FS, Bohle DS, Descoteaux A, Flavell RA, Olivier M (2009) Malarial hemozoin activates the NLRP3 inflammasome through Lyn and Syk kinases. PLoS Pathog 5(8):e1000559.  https://doi.org/10.1371/journal.ppat.1000559CrossRefPubMedGoogle Scholar
  140. Siedle B, Garcia-Pineres AJ, Murillo R, Schulte-Monting J, Castro V, Rungeler P, Klaas CA, Da Costa FB, Kisiel W, Merfort I (2004) Quantitative structure-activity relationship of sesquiterpene lactones as inhibitors of the transcription factor NF-kappaB. J Med Chem 47(24):6042–6054.  https://doi.org/10.1021/jm049937rCrossRefPubMedGoogle Scholar
  141. Strickson S, Campbell DG, Emmerich CH, Knebel A, Plater L, Ritorto MS, Shpiro N, Cohen P (2013) The anti-inflammatory drug BAY 11-7082 suppresses the MyD88-dependent signalling network by targeting the ubiquitin system. Biochem J 451(3):427–437.  https://doi.org/10.1042/BJ20121651CrossRefPubMedPubMedCentralGoogle Scholar
  142. Studies in natural products chemistry: Volume 52 Bioactive natural products (2017). Elsevier.Google Scholar
  143. Sturm C, Wagner AE (2017) Brassica-derived plant bioactives as modulators of chemopreventive and inflammatory signaling pathways. Int J Mol Sci 18(9):1890–1991.  https://doi.org/10.3390/ijms18091890CrossRefPubMedCentralGoogle Scholar
  144. Sui DM, Xie Q, Yi WJ, Gupta S, Yu XY, Li JB, Wang J, Wang JF, Deng XM (2016) Resveratrol protects against sepsis-associated encephalopathy and inhibits the NLRP3/IL-1beta axis in microglia. Mediat Inflamm 2016:1045657.  https://doi.org/10.1155/2016/1045657CrossRefGoogle Scholar
  145. Sun Y, Zhao Y, Yao J, Zhao L, Wu Z, Wang Y, Pan D, Miao H, Guo Q, Lu N (2015) Wogonoside protects against dextran sulfate sodium-induced experimental colitis in mice by inhibiting NF-kappaB and NLRP3 inflammasome activation. Biochem Pharmacol 94(2):142–154.  https://doi.org/10.1016/j.bcp.2015.02.002CrossRefPubMedGoogle Scholar
  146. Sun Y, Liu W, Zhang H, Li H, Liu J, Zhang F, Jiang T, Jiang S (2017) Curcumin prevents osteoarthritis by inhibiting the activation of inflammasome NLRP3. J Interf Cytokine Res 37(10):449–455.  https://doi.org/10.1089/jir.2017.0069CrossRefGoogle Scholar
  147. Takahashi M (2014) NLRP3 inflammasome as a novel player in myocardial infarction. Int Heart J 55(2):101–105.  https://doi.org/10.1536/ihj.13-388CrossRefPubMedGoogle Scholar
  148. Terada K, Yamada J, Hayashi Y, Wu Z, Uchiyama Y, Peters C, Nakanishi H (2010) Involvement of cathepsin B in the processing and secretion of interleukin-1beta in chromogranin A-stimulated microglia. Glia 58(1):114–124.  https://doi.org/10.1002/glia.20906CrossRefPubMedGoogle Scholar
  149. Toldo S, Marchetti C, Mauro AG, Chojnacki J, Mezzaroma E, Carbone S, Zhang S, Van Tassell B, Salloum FN, Abbate A (2016) Inhibition of the NLRP3 inflammasome limits the inflammatory injury following myocardial ischemia-reperfusion in the mouse. Int J Cardiol 209:215–220.  https://doi.org/10.1016/j.ijcard.2016.02.043CrossRefPubMedGoogle Scholar
  150. Tucey TM, Verma-Gaur J, Nguyen J, Hewitt VL, Lo TL, Shingu-Vazquez M, Robertson AA, Hill JR, Pettolino FA, Beddoe T, Cooper MA, Naderer T, Traven A (2016) The endoplasmic reticulum-mitochondrion tether ERMES orchestrates fungal immune evasion, illuminating inflammasome responses to hyphal signals. mSphere 1(3).  https://doi.org/10.1128/mSphere.00074-16
  151. Van Hauwermeiren F, Lamkanfi M (2016) The NEK-sus of the NLRP3 inflammasome. Nat Immunol 17(3):223–224.  https://doi.org/10.1038/ni.3391CrossRefPubMedGoogle Scholar
  152. van Hout GP, Bosch L, Ellenbroek GH, de Haan JJ, van Solinge WW, Cooper MA, Arslan F, de Jager SC, Robertson AA, Pasterkamp G, Hoefer IE (2016) The selective NLRP3-inflammasome inhibitor MCC950 reduces infarct size and preserves cardiac function in a pig model of myocardial infarction. Eur Heart J 18(9):828–836.  https://doi.org/10.1093/eurheartj/ehw247CrossRefGoogle Scholar
  153. Walle T, Hsieh F, DeLegge MH, Oatis JE Jr, Walle UK (2004) High absorption but very low bioavailability of oral resveratrol in humans. Drug Metab Dispos 32(12):1377–1382.  https://doi.org/10.1124/dmd.104.000885CrossRefPubMedGoogle Scholar
  154. Wanderer AA (2009) Corticosteroid resistance in pulmonary neutrophilic inflammatory disorders and rationale for adjunct IL-1beta targeted therapy. Am J Respir Cell Mol Biol 41(2):246–247CrossRefPubMedGoogle Scholar
  155. Wang WW, Wang C, Ding X-Q, Pan Y, Gu T-T, Wang M-X, Liu Y-L, Wang F-M, Wang S-J, Kong L-D (2013) Quercetin and allopurinol reduce liver thioredoxin-interacting protein to alleviate inflammation and lipid accumulation in diabetic rats. Br J Pharmacol 169(6):1352–1371.  https://doi.org/10.1111/bph.12226CrossRefPubMedPubMedCentralGoogle Scholar
  156. Wang C, Zeng L, Zhang T, Liu J, Wang W (2016) Casticin inhibitrs lipopolysaccharide-induced acute lung injury in mice. Eur J Pharmacol 789:172–178.  https://doi.org/10.1016/j.ejphar.2016.07.035CrossRefPubMedGoogle Scholar
  157. Wang HM, Zhang T, Huang JK, Xiang JY, Chen JJ, Fu JL, Zhao YW (2017a) Edaravone attenuates the proinflammatory response in amyloid-beta-treated microglia by inhibiting NLRP3 inflammasome-mediated IL-1beta secretion. Cell Physiol Biochem 43(3):1113–1125.  https://doi.org/10.1159/000481753CrossRefPubMedGoogle Scholar
  158. Wang S, Zhao X, Yang S, Chen B, Shi J (2017b) Salidroside alleviates high glucose-induced oxidative stress and extracellular matrix accumulation in rat glomerular mesangial cells by the TXNIP-NLRP3 inflammasome pathway. Chem Biol Interact 278:48–53.  https://doi.org/10.1016/j.cbi.2017.10.012CrossRefPubMedGoogle Scholar
  159. Wang W, Wu QH, Sui Y, Wang Y, Qiu X (2017c) Rutin protects endothelial dysfunction by disturbing Nox4 and ROS-sensitive NLRP3 inflammasome. Biomed Pharmacother 86:32–40.  https://doi.org/10.1016/j.biopha.2016.11.134CrossRefPubMedGoogle Scholar
  160. Wang Y, Xu CF, Liu YJ, Mao YF, Lv Z, Li SY, Zhu XY, Jiang L (2017d) Salidroside attenuates ventilation induced lung injury via SIRT1-dependent inhibition of NLRP3 inflammasome. Cell Physiol Biochem 42(1):34–43.  https://doi.org/10.1159/000477112CrossRefPubMedGoogle Scholar
  161. Watanabe Y, Nagai Y, Honda H, Okamoto N, Yamamoto S, Hamashima T, Ishii Y, Tanaka M, Suganami T, Sasahara M, Miyake K, Takatsu K (2016) Isoliquiritigenin attenuates adipose tissue inflammation in vitro and adipose tissue fibrosis through inhibition of innate immune responses in mice. Sci Rep 6:23097.  https://doi.org/10.1038/srep23097CrossRefPubMedPubMedCentralGoogle Scholar
  162. Wei W, Wang L, Zhou K, Xie H, Zhang M, Zhang C (2017) Rhapontin ameliorates colonic epithelial dysfunction in experimental colitis through SIRT1 signaling. Int Immunopharmacol 42:185–194.  https://doi.org/10.1016/j.intimp.2016.11.024CrossRefPubMedGoogle Scholar
  163. Wen H, Ting JP, O’Neill LA (2012) A role for the NLRP3 inflammasome in metabolic diseases – did Warburg miss inflammation? Nat Immunol 13(4):352–357.  https://doi.org/10.1038/ni.2228CrossRefPubMedPubMedCentralGoogle Scholar
  164. Wiersinga WJ, van der Poll T (2007) Is the septic response good or bad? Curr Infect Dis Rep 9(5):366–373.  https://doi.org/10.1007/s11908-007-0057-5CrossRefPubMedGoogle Scholar
  165. Wu J, Xu X, Li Y, Kou J, Huang F, Liu B, Liu K (2014) Quercetin, luteolin and epigallocatechin gallate alleviate TXNIP and NLRP3-mediated inflammation and apoptosis with regulation of AMPK in endothelial cells. Eur J Pharmacol 745:59–68.  https://doi.org/10.1016/j.ejphar.2014.09.046CrossRefPubMedGoogle Scholar
  166. Wu J, Maoqiang L, Fan H, Zhenyu B, Qifang H, Xuepeng W, Liulong Z (2016) Rutin attenuates neuroinflammation in spinal cord injury rats. J Surg Res 203(2):331–337.  https://doi.org/10.1016/j.jss.2016.02.041CrossRefPubMedGoogle Scholar
  167. Xiao M, Li L, Li C, Liu L, Yu Y, Ma L (2016) 3,4-Methylenedioxy-beta-nitrostyrene ameliorates experimental burn wound progression by inhibiting the NLRP3 inflammasome activation. Plast Reconstr Surg 137(3):566e–575e.  https://doi.org/10.1097/01.prs.0000479972.06934.83CrossRefPubMedGoogle Scholar
  168. Xin W, Wang Q, Zhang D, Wang C (2017) A new mechanism of inhibition of IL-1beta secretion by celastrol through the NLRP3 inflammasome pathway. Eur J Pharmacol 814:240–247.  https://doi.org/10.1016/j.ejphar.2017.08.036CrossRefPubMedGoogle Scholar
  169. Xu F, Wang F, Wen T, Sang W, He X, Li L, Zeng N (2017) Protective effect of cinnamic acid in endotoxin-poisoned mice. Phytother Res 31(12):1946–1953.  https://doi.org/10.1002/ptr.5944CrossRefPubMedGoogle Scholar
  170. Yamanashi T, Iwata M, Kamiya N, Tsunetomi K, Kajitani N, Wada N, Iitsuka T, Yamauchi T, Miura A, Pu S, Shirayama Y, Watanabe K, Duman RS, Kaneko K (2017) Beta-hydroxybutyrate, an endogenic NLRP3 inflammasome inhibitor, attenuates stress-induced behavioral and inflammatory responses. Sci Rep 7(1):7677.  https://doi.org/10.1038/s41598-017-08055-1CrossRefPubMedPubMedCentralGoogle Scholar
  171. Yang ZJ, Ge WZ, Li QY, Lu Y, Gong JM, Kuang BJ, Xi X, Wu H, Zhang Q, Chen Y (2015) Syntheses and biological evaluation of costunolide, parthenolide, and their fluorinated analogues. J Med Chem 58(17):7007–7020.  https://doi.org/10.1021/acs.jmedchem.5b00915CrossRefPubMedGoogle Scholar
  172. Yang Y, Wang H, Li L, Li X, Wang Q, Ding H, Wang X, Ye Z, Wu L, Zhang X, Zhou M, Pan H (2016) Sinomenine provides neuroprotection in model of traumatic brain injury via the Nrf2-ARE pathway. Front Neurosci 10:580.  https://doi.org/10.3389/fnins.2016.00580CrossRefPubMedPubMedCentralGoogle Scholar
  173. Yang SJ, Shao GF, Chen JL, Gong J (2017) The NLRP3 inflammasome: an important driver of neuroinflammation in hemorrhagic stroke. Cell Mol Neurobiol 38(3):595–603.  https://doi.org/10.1007/s10571-017-0526-9CrossRefPubMedGoogle Scholar
  174. Yaron JR, Gangaraju S, Rao MY, Kong X, Zhang L, Su F, Tian Y, Glenn HL, Meldrum DR (2015) K+ regulates Ca2+ to drive inflammasome signaling: dynamic visualization of ion flux in live cells. Cell Death Dis 6:e1954.  https://doi.org/10.1038/cddis.2015.277CrossRefPubMedPubMedCentralGoogle Scholar
  175. Yim HC, Williams BR (2014) Protein kinase R and the inflammasome. J Interf Cytokine Res 34(6):447–454.  https://doi.org/10.1089/jir.2014.0008CrossRefGoogle Scholar
  176. Yonglin Z, Zhaojie W, Fengguang G, Jingsheng W, Hanzhong Z, Wenqiang Z (2017) Wogonoside alleviates inflammation induced by traumatic spinal cord injury by suppressing NF-κB and NLRP3 inflammasome activation. Exp Ther Med 14(4):3304–3308.  https://doi.org/10.3892/etm.2017.4904CrossRefGoogle Scholar
  177. Youm YH, Nguyen KY, Grant RW, Goldberg EL, Bodogai M, Kim D, D’Agostino D, Planavsky N, Lupfer C, Kanneganti TD, Kang S, Horvath TL, Fahmy TM, Crawford PA, Biragyn A, Alnemri E, Dixit VD (2015) The ketone metabolite beta-hydroxybutyrate blocks NLRP3 inflammasome-mediated inflammatory disease. Nat Med 21(3):263–269.  https://doi.org/10.1038/nm.3804CrossRefPubMedPubMedCentralGoogle Scholar
  178. Yu H, Wu M, Lu G, Cao T, Chen N, Zhang Y, Jiang H, Fan H, Yao R (2017a) Prednisone alleviates demyelination through regulation of the NLRP3 inflammasome in a C57BL/6 mouse model of cuprizone-induced demyelination. Brain Res 1678:75–84.  https://doi.org/10.1016/j.brainres.2017.09.034CrossRefPubMedGoogle Scholar
  179. Yu X, Zhao Q, Zhang X, Zhang H, Liu Y, Wu X, Li M, Li X, Zhang J, Ruan X, Zhang H (2017b) Celastrol ameliorates inflammation through inhibition of NLRP3 inflammasome activation. Oncotarget 8(40):67300–67314.  https://doi.org/10.18632/oncotarget.18619CrossRefPubMedPubMedCentralGoogle Scholar
  180. Zeng J, Chen Y, Ding R, Feng L, Fu Z, Yang S, Deng X, Xie Z, Zheng S (2017) Isoliquiritigenin alleviates early brain injury after experimental intracerebral hemorrhage via suppressing ROS- and/or NF-kappaB-mediated NLRP3 inflammasome activation by promoting Nrf2 antioxidant pathway. J Neuroinflammation 14(1):119.  https://doi.org/10.1186/s12974-017-0895-5CrossRefPubMedPubMedCentralGoogle Scholar
  181. Zhang X, Wang G, Gurley EC, Zhou H (2014) Flavonoid apigenin inhibits lipopolysaccharide-induced inflammatory response through multiple mechanisms in macrophages. PLoS One 9(9):e107072.  https://doi.org/10.1371/journal.pone.0107072CrossRefPubMedPubMedCentralGoogle Scholar
  182. Zhang A, Wang K, Ding L, Bao X, Wang X, Qiu X, Liu J (2017) Bay11-7082 attenuates neuropathic pain via inhibition of nuclear factor-kappa B and nucleotide-binding domain-like receptor protein 3 inflammasome activation in dorsal root ganglions in a rat model of lumbar disc herniation. J Pain Res 10:375–382.  https://doi.org/10.2147/JPR.S119820CrossRefPubMedPubMedCentralGoogle Scholar
  183. Zhao J, Zhang H, Huang Y, Wang H, Wang S, Zhao C, Liang Y, Yang N (2013) Bay11-7082 attenuates murine lupus nephritis via inhibiting NLRP3 inflammasome and NF-kappaB activation. Int Immunopharmacol 17(1):116–122.  https://doi.org/10.1016/j.intimp.2013.05.027CrossRefPubMedGoogle Scholar
  184. Zhao Z, Xiao J, Wang J, Dong W, Peng Z, An D (2015) Anti-inflammatory effects of novel sinomenine derivatives. Int Immunopharmacol 29(2):354–360.  https://doi.org/10.1016/j.intimp.2015.10.030CrossRefPubMedGoogle Scholar
  185. Zhu CS, Xiong ZJ, Chen XH, Peng FH, Hu XQ, Chen YM, Wang Q (2012) Artemisinin attenuates lipopolysaccharide-stimulated proinflammatory responses by inhibiting NF-kappa B pathway in microglia cells. PLoS One 7(4):e35125.  https://doi.org/10.1371/journal.pone.0035125CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Chemistry and Molecular BiosciencesThe University of QueenslandBrisbaneAustralia

Personalised recommendations