Advertisement

Aging and the Inflammasomes

  • Fabiola Marín-Aguilar
  • Jesús Ruiz-Cabello
  • Mario D. Cordero
Chapter
Part of the Experientia Supplementum book series (EXS, volume 108)

Abstract

The inflammasomes are innate immune system sensors that control the activation of caspase-1 and induce inflammation in response to infectious microbes and molecules originating from host proteins, leading to the release of pro-inflammatory cytokines, Il1b and IL18, and a particular inflammatory type of cell death termed pyroptosis. It is broadly considered that chronic inflammation may be a common link in age-related diseases, aging being the greatest risk factor for the development of chronic diseases. In this sense, we discuss the role of inflammasomes in non-infectious inflammation and their interest in aging and age-related diseases.

Keywords

Inflammasomes Aging Age-related diseases Chronic inflammatory diseases 

Bibliography

  1. Allen IC (2014) Non-inflammasome forming NLRs in inflammation and tumorigenesis. Front Immunol 5:169CrossRefPubMedPubMedCentralGoogle Scholar
  2. Allen IC, Moore CB, Schneider M, Lei Y, Davis BK, Scull MA et al (2011) NLRX1 protein attenuates inflammatory responses to infection by interfering with the RIG-I-MAVS and TRAF6-NF-κB signaling pathways. Immunity 34:854–865CrossRefPubMedPubMedCentralGoogle Scholar
  3. Allen IC, Wilson JE, Schneider M, Lich JD, Roberts RA, Arthur JC et al (2012) NLRP12 suppresses colon inflammation and tumorigenesis through the negative regulation of non canonical NF-kB signaling. Immunity 36:742–754CrossRefPubMedPubMedCentralGoogle Scholar
  4. Amer A, Franchi L, Kanneganti TD, Body- Malapel M, Ozoren N, Brady G et al (2006) Regulation of Legionella phagosome maturation and infection through flagellin and host Ipaf. J Biol Chem 281:35217–35223CrossRefPubMedGoogle Scholar
  5. Anand PK, Kanneganti TD (2013) NLRP6 in infection and inflammation. Microbes Infect 15:661–668CrossRefPubMedGoogle Scholar
  6. Barker BR, Taxman DJ, Ting JP (2011) Cross-regulation between the IL-1B/IL-18 processing inflammasome and other inflammatory cytokines. Curr Open Immunol 23:591–597CrossRefGoogle Scholar
  7. Bauernfeind FG et al (2009) Cutting edge: NF-kappaB activating pattern recognition and cytokine receptors license NLRP3 inflammasome activation by regulating NLRP3 expression. J Immunol 183:787–791CrossRefPubMedPubMedCentralGoogle Scholar
  8. Böni-Schnetzler M, Donath MY (2013) How biologics targeting the IL-1 system are being considered for the treatment of type 2 diabetes. Br J Clin Pharmacol 76:263–268CrossRefPubMedGoogle Scholar
  9. Boyden ED, Dietrich WF (2006) Nalp1b controls mouse macrophage susceptibility to anthrax lethal toxin. Nat Genet 38:240–244CrossRefPubMedGoogle Scholar
  10. Brunette RL, Young JM, Whitley DG, Brodsky IE, Malik HS, Stetson DB (2012) Extensive evolutionary and functional diversity among mammalian AIM2-like receptors. J Exp Med 209:1969–1983CrossRefPubMedPubMedCentralGoogle Scholar
  11. Chandrasekaran A, Idelchik MD, Melendez JA (2017) Redox control of senescence and age-related disease. Redox Biol 11:91–102CrossRefPubMedGoogle Scholar
  12. Chiti F, Dobson CM (2006) Protein misfolding, functional amyloid, and human disease. Annu Rev Biochem 75:333–366CrossRefPubMedGoogle Scholar
  13. Choubey D (2012) DNA-responsive inflammasomes and their regulators in autoimmunity. Clin Immunol 142:223–231CrossRefPubMedGoogle Scholar
  14. Cui J, Zhu L, Xia X, Wang HY, Legras X, Hong J et al (2010) NLRC5 negatively regulates the NF-kB and type I interferon signaling pathways. Cell 141:483–496CrossRefPubMedPubMedCentralGoogle Scholar
  15. De Nooijer R, von der Thüsen JH, Verkleij CJ, Kuiper J, Jukema JW, van der Wall EE et al (2004) Overexpression of IL-18 decreases intimal collagen content and promote a vulnerable plaque phenotype in apolipoprotein-E-deficient mice. Aterioscler Thromb Vasc Biol 24:2313–2319CrossRefGoogle Scholar
  16. De Zoete MR, Palm NW, Zhu S, Flavell RA (2014) Inflammasomes. Cold Spring Harb Perspect Biol 6:a016287CrossRefPubMedPubMedCentralGoogle Scholar
  17. Donath MY, Shoelson SE (2011) Type 2 diabetes as an inflammatory disease. Nat Rev Immunol 11:98–107CrossRefPubMedGoogle Scholar
  18. Dostert C, Petrilli V, Van Bruggen R, Steele C, Mossman BT, Tschopp J (2008) Innate immune activation through Nalp3 inflammasome sensing asbestos and silica. Science 320:674–677CrossRefPubMedPubMedCentralGoogle Scholar
  19. Duewell P, Kono H, Rayner KJ, Sirois CM, Vladimer G, Bauernfeind FG et al (2010) NLRP3 inflammasomes are required for atherogenesis and activated by colesterol crystals. Nature 464:1357–1361CrossRefPubMedPubMedCentralGoogle Scholar
  20. Eisenbarth SC, Williams A, Colegio OR, Meng H, Strowig T, Rongvaux A et al (2012) NLRP10 is a NOD-like receptor essential to initiate adaptive immunity by dendritic cells. Nature 484:510–513CrossRefPubMedPubMedCentralGoogle Scholar
  21. Elhage R, Jawien J, Rudling M, Ljunggren HG, Takeda K, Akira S et al (2003) Reduced aterosclerosis in interleukin-18 deficient apolipoprotein E-knockout mice. Cardiovasc Res 59:234–240CrossRefPubMedGoogle Scholar
  22. Faustin B, Lartigue L, Bruey JM, Luciano F, Sergienko E, Bailly-Maitre B et al (2007) Reconstituted NALP1 inflammasome reveals two-step mechanism of caspase-1 activation. Mol Cell 25:713–724CrossRefPubMedGoogle Scholar
  23. Fernandes-Alnemri T, Yu JW, Juliana C, Solorzano L, Kang S, Wu J et al (2010) The AIM2 inflammasome is critical for innate immunity to Francisella tularensis. Nat Immunol 11:385–393CrossRefPubMedPubMedCentralGoogle Scholar
  24. Ferrucci L, Corsi A, Lauretani F, Bandinelli S, Bartali B, Taub DD et al (2005) The origins of age-related pro inflammatory state. Blood 105:2294–2299CrossRefPubMedGoogle Scholar
  25. Franceschi C, Campisi J (2014) Chronic inflammation (inflammaging) and its potential contribution to age-related diseases. J Gerontol A Biol Sci Med Sci 69:S4–S9CrossRefPubMedGoogle Scholar
  26. Franceschi C, Bonafè M, Valensin S, Olivieri F, De Luca M, Ottaviani E, De Benedictis G (2000) Inflamm-aging. An evolutionary perspective on immunosenescence. Ann N Y Acad Sci 908:244–254Google Scholar
  27. Goldberg EL, Dixit VD (2015) Drivers of age-related inflammation and strategies for health span extension. Immunol Rev 265:63–74CrossRefPubMedPubMedCentralGoogle Scholar
  28. Grebe A, Latz E (2013) Cholesterol crystals and inflammation. Curr Rheumatol Rep 15:313CrossRefPubMedPubMedCentralGoogle Scholar
  29. Grenier JM, Wang L, Manji GA, Huang WJ, Al-Garawi A, Kelly R et al (2002) Functional screening of five PYPAF family members identifies PYPAF5 as a novel regulator of NF-kB and caspase-1. FEBS Lett 530:73–78CrossRefPubMedGoogle Scholar
  30. Guarda G et al (2011) Differential expression of NLRP3 among hematopoietic cells. J Immunol 186:2529–2534CrossRefPubMedGoogle Scholar
  31. Guo H, Callaway JB, Ting JP (2015) Inflammasomes: mechanisms of action, role in disease, and therapeutics. Nat Med 21:677–687CrossRefPubMedPubMedCentralGoogle Scholar
  32. Gurcel L, Abrami L, Girardin S, Tschopp J, van der Goot FG (2006) Caspase-1 activation of lipid metabolic pathways in response to bacterial pore-forming toxins promotes cell survival. Cell 136:1135–1145CrossRefGoogle Scholar
  33. Halle A, Hornung V, Petzold GC, Stewart CR, Monks BG, Reinheckel T et al (2008) The NALP3 inflammasome is involved in the innate immune response to amyloid-beta. Nat Immunol 9:857–865CrossRefPubMedPubMedCentralGoogle Scholar
  34. Heneka MT, Golenbock DT, Latz E (2015) Innate immunity in Alzheimer’s disease. Nat Immunol 16:229–236CrossRefPubMedGoogle Scholar
  35. Hook VY, Kindy M, Hook G (2008) Inhibitors of cathepsin B improve memory and reduce beta-amyloid in transgenic Alzheimer disease mice expressing the wild type, but not the Swedish mutant, beta-secretase site of the amyloid precursor protein. J Biol Chem 283:7745–7753CrossRefPubMedGoogle Scholar
  36. Hotamisligil GS, Shargill NS, Spiegelman BM (1993) Adipose expression of tumor necrosis factor-alpha: direct role in obesity-linked insulin resistance. Science 259:87–91CrossRefPubMedGoogle Scholar
  37. Hu B, Elinav E, Huber S, Strowig T, Had L, Hafemann A et al (2013) Microbiota-induced activation of epithelial IL-6 signaling links inflammasome-driven inflammation with transmissible cancer. Proc Natl Acad Sci U S A 110:9862–9867CrossRefPubMedPubMedCentralGoogle Scholar
  38. Jin K (2010) Modern biological theories of aging. Aging Dis 1:72–74PubMedPubMedCentralGoogle Scholar
  39. Jin T, Perry A, Jiang J, Smith P, Curry JA, Unterholzner L et al (2012) Structures of the HIN domain: DNA complexes reveal ligand binding and activation mechanisms of the AIM2 inflammasome and IFI16 receptor. Immunity 36:561–571CrossRefPubMedPubMedCentralGoogle Scholar
  40. Jin T, Perry A, Smith P, Jiang J, Xiao TS (2013) Structure of the absent in melanoma 2 (AIM2) pyrin domain provides insights into the mechanisms of AIM2 auto inhibition and inflammasome assembly. J Biol Chem 288:13225–13235CrossRefPubMedPubMedCentralGoogle Scholar
  41. Jones JW, Kayagaki N, Broz P, Henry T, Newton K, O’Rourke K et al (2010) Absent in melanoma 2 is required for innate immune recognition of Francisella tularensis. Proc Natl Acad Sci U S A 107:9771–9776CrossRefPubMedPubMedCentralGoogle Scholar
  42. Jourdan T, Godlewski G, Cinar R, Bertola A, Szanda G, Liu J et al (2013) Activation of the NLRP3 inflammasome in infiltrating macrophages by endocannabinoids mediates beta cell loss in type 2 diabetes. Nat Med 19:1132–1140CrossRefPubMedPubMedCentralGoogle Scholar
  43. Karki R, Man SM, Malireddi RK, Kesavardhana S, Zhu Q, Burton AR et al (2016) NLRC3 is an inhibitory sensor of PI3K-mTOR pathways in cancer. Nature.  https://doi.org/10.1038/nature20597
  44. Kayagaki N, Warming S, Lamkanfi M, Vande Walle L, Louie S, Dong J et al (2011) Non-canonical inflammasome activation targets caspase-11. Nature 479:117–121CrossRefPubMedGoogle Scholar
  45. Kirkwood TB (2005) Understanding the odd science of aging. Cell 120:437–447CrossRefPubMedGoogle Scholar
  46. Kirkwood TB, Boys RJ, Gillespie CS, Proctor CJ, Shanley DP, Wilkinson DJ (2003) Towards an e-biology of aging: integrating theory and data. Nat Rev Mol Cell Biol 4:243–249CrossRefPubMedGoogle Scholar
  47. Knrone CL, Trzcinski K, Zborowski T, Sanders EA, Bogaert D (2013) Impaired innate mucosal immunity in aged mice permits prolonged Streptococcus pneumonia colonization. Infect Immun 81:4615–4625CrossRefGoogle Scholar
  48. Kofoed EM, Vance RE (2011) Innate immune recognition of bacterial ligands by NAIPs determines inflammasome specificity. Nature 477:592–595CrossRefPubMedPubMedCentralGoogle Scholar
  49. Lamkanfi M, Amer A, Kanneganti TD, Munoz-Planillo R, Chen G, Vandenabeele P et al (2007) The Nod-like receptor family member Naip5/Bircle restricts Legionella pneumophila growth independently of caspase-1 activation. J Immunol 178:8022–8027CrossRefPubMedGoogle Scholar
  50. Larsen CM, Faulenbach M, Vaag A, Vølund A, Ehses JA, Seifert B et al (2007) Interleukin-1 receptor antagonist in type 2 diabetes mellitus. N Engl J Med 35:1517–1526CrossRefGoogle Scholar
  51. Legrand-Poels S, Esser N, L’homme L, Scheen A, Paquot N, Piette J (2014) Free fatty acids as modulators of the NLRP3 inflammasome in obesity/type 2 diabetes. Biochem Pharmacol 92:131–141CrossRefPubMedGoogle Scholar
  52. Leon LJ, Gustafsson AB (2016) Staying young at heart: autophagy and adaptation to cardiac aging. J Mol Cell Cardiol 95:78–85CrossRefPubMedGoogle Scholar
  53. Levinsohn JL, Newman ZL, Hellmich KA, Fattah R, Getz MA, Liu S et al (2012) Anthrax lethal factor cleavage of Nlrp1 is required for activation of the inflammasome. PLoS Pathog 8:e1002638CrossRefPubMedPubMedCentralGoogle Scholar
  54. Lipsky MS, King M (2015) Biological theories of aging. Dis Mon 61:460–466CrossRefPubMedGoogle Scholar
  55. Liu R, Truax AD, Chen L, Hu P, Li Z, Chen J et al (2015) Expression profile of innate immune receptors, NLRs and AIM2, in human colorectal cancer: correlation with cancer stages and inflammasome components. Oncotarget 6:33456–33469PubMedPubMedCentralGoogle Scholar
  56. Ljubuncic P, Reznick AZ (2009) The evolutionary theories of aging revisited. A mini-review. Gerontology 55:205–216CrossRefPubMedGoogle Scholar
  57. Mallat Z, Corbaz A, Scoazec A, Graber P, Alouani S, Esposito B et al (2001) Interleukin-18/interleukin-18 binding protein signaling modulates atherosclerotic lesion development and stability. Circ Res 89:E41–E45CrossRefPubMedGoogle Scholar
  58. Mariathasan S, Newton K, Monack DM, Vucic D, French DM, Lee WP et al (2004) Differential activation of the inflammasome by caspase-1 adaptors ASC and Ipaf. Nature 430:213–218CrossRefPubMedGoogle Scholar
  59. Mariathasan S, Weiss DS, Newton K, McBride J, O’Rourke K, Roose-Girma M et al (2006) Cryopyrin activates the inflammasome in response to toxins and ATP. Nature 440:228–232CrossRefPubMedGoogle Scholar
  60. Martinon F, Burns K, Tschopp J (2002) The inflammasome: a molecular platform triggering activation of inflammatory cascades and processing of pro-IL-B. Mol Cell 10:417–426CrossRefGoogle Scholar
  61. Martinon F, Petrilli V, Mayor A, Tardivel A, Tschopp J (2006) Gout-associated uric acid crystals activate the NALP3 inflammasome. Nature 440:237–241CrossRefPubMedGoogle Scholar
  62. Masters SL, O’Neill LA (2011) Disease-associated amyloid and misfolded protein aggregates activate the inflammasome. Trends Mol Med 17:276–282CrossRefPubMedGoogle Scholar
  63. Masters SL, Latz E, O’Neill LA (2011) The inflammasome in atherosclerosis and type 2 diabetes. Sci Transl Med 3:81ps17CrossRefPubMedGoogle Scholar
  64. Medzhitov R (2008) Origin and physiological roles of inflammation. Nature 454:428–435CrossRefPubMedGoogle Scholar
  65. Meissner TB, Li A, Biswas A, Lee KH, Liu YJ, Bayir E et al (2010) NLR family member NLRC5 is a transcriptional regulator of MHC class I genes. Proc Natl Acad Sci U S A 107:13794–13799CrossRefPubMedPubMedCentralGoogle Scholar
  66. Miao EA, Alpuche-Aranda CM, Dors M, Clark AE, Bader MW, Miller SI et al (2006) Cytoplasmic flagellin activates caspase-1 and secretion of interleukin 1b via Ipaf. Nat Immunol 7:569–575CrossRefPubMedGoogle Scholar
  67. Miao EA, Ernst RK, Dors M, Mao DP, Aderem A (2008) Pseudomonas aeruginosa activates caspase 1 through Ipaf. Proc Nat Acad Sci U S A 105:2562–2567CrossRefGoogle Scholar
  68. Miao EA, Mao DP, Yudkovsky N, Bonneau R, Lorang CG, Warren SE et al (2010) Innate immune detection of type III secretion apparatus through the NLRC4 inflammasome. Proc Nat Acad Sci U S A 107:3076–3080CrossRefGoogle Scholar
  69. Monroe KM, Yang Z, Johnson JR, Geng X, Doitsh G, Krogan NJ et al (2014) IFI16 DNA sensor is required for death of lymphoid CD4 T cells abortively infected with HIV. Science 343:428–432CrossRefPubMedGoogle Scholar
  70. Moore CB, Bergstralh DT, Duncan JA, Lei Y, Morrison TE, Zimmermann AG et al (2008) NLRX1 is a regulator of mitochondrial antiviral immunity. Nature 451:573–577CrossRefPubMedGoogle Scholar
  71. North BJ, Sinclair DA (2012) The intersection between aging and cardiovascular disease. Circ Res 110:1097–1108CrossRefPubMedPubMedCentralGoogle Scholar
  72. Poeck H, Bscheider M, Gross O, Finger K, Roth S, Rebsamen M et al (2010) Recognition of RNA virus by RIG-I results in activation of CARD9 and inflammasome signaling for interleukin 1β production. Nat Immunol 11:63 pgsCrossRefGoogle Scholar
  73. Rathinam VA, Jiang Z, Waggoner SN, Sharma S, Cole LE, Waggoner L et al (2010) The AIM2 inflammasome is essential for host defense against cytosolic bacteria and DNA viruses. Nat Immunol 11:395–402CrossRefPubMedPubMedCentralGoogle Scholar
  74. Robbins GR, Wen H, Ting GP (2014) Inflammasomes and metabolic disorders: old genes in modern diseases. Mol Cell 54:297–308CrossRefPubMedPubMedCentralGoogle Scholar
  75. Rock KL, Latz E, Ontiveros F, Kino H (2010) The sterile inflammatory response. Annu Rev Immunol 28:321–342CrossRefPubMedPubMedCentralGoogle Scholar
  76. Schattgen SA, Fitzgerald KA (2011) The PYHIN protein family as mediators of host defenses. Immunol Rev 243:109–118CrossRefPubMedGoogle Scholar
  77. Schneider M, Zimmermann AG, Roberts RA, Zhang L, Swanson KV, Wen H et al (2012) The innate immune sensor NLRC3 attenuates Toll-like receptor signaling via modification of the signaling adaptor TRAF6 and transcription factor NF-kB. Nat Immunol 13:823–831CrossRefPubMedPubMedCentralGoogle Scholar
  78. Schroder K, Tschopp J (2010) The inflammasomes. Cell 140:821–832CrossRefPubMedGoogle Scholar
  79. Sharma N, Jha S (2016) NLR-regulated pathways in cancer: opportunities and obstacles for therapeutic interventions. Cell Mol Life Sci 73:1741–1764CrossRefPubMedGoogle Scholar
  80. Shulman JM, De Jager PL, Feany MB (2011) Parkinson’s disease: genetics and pathogenesis. Annu Rev Pathol 6:193–122CrossRefPubMedGoogle Scholar
  81. Soares F, Tattoli I, Rahman MA, Robertson SJ, Belcheva A, Liu D et al (2014) The mitochondrial protein NLRX1 controls the balance between extrinsic and intrinsic apoptosis. J Biol Chem 289:19317–19330CrossRefPubMedPubMedCentralGoogle Scholar
  82. Spadaro O, Goldberg EL, Camell CD, Youm YH, Kopchick JJ, Nguyen KY et al (2016) Growth hormone receptor deficiency protects against age-related NLRP3 inflammasome activation and immune senescence. Cell Rep 14:1571–1580CrossRefPubMedPubMedCentralGoogle Scholar
  83. Strowig T, Henao-Mejia J, Elinav E, Flavell R (2012) Inflammasomes in health and disease. Nature 481:278–286CrossRefPubMedGoogle Scholar
  84. Sutterwala FS, Mijares LA, Li L, Ogura Y, Kazmierczak BI, Flavell RA (2007) Immune recognition of Pseudomonas aeruginosa mediated by the IPAF/NLRC4 inflammasome. J Exp Med 204:3235–3245CrossRefPubMedPubMedCentralGoogle Scholar
  85. Suzuki T, Franchi L, Toma C, Ashida H, Ogawa M, Yoshikawa Y et al (2007) Differential regulation of caspase-1 activation, pyroptosis, and autophagy via Ipaf and ASC in Shigella-infected macrophages. PLoS Pathog 3:e111CrossRefPubMedPubMedCentralGoogle Scholar
  86. Tan HW, Liu X, Bi XP, Xing SS, Li L, Gong HP, al e (2010) IL-18 overexpression promotes vascular inflammation and remodeling in a rat model of metabolic syndrome. Atherosclerosis 208:350–357CrossRefPubMedGoogle Scholar
  87. Ting JP, Lovering RC, Alnemri ES, Bertin J, Boss JM, Davis BK et al (2008) The NLR gene family: a standard nomenclature. Immunity 28:285–287CrossRefPubMedPubMedCentralGoogle Scholar
  88. Ting JP, Duncan JA, Lei Y (2010) How the noninflammasome NLRs function in the innate immune system. Science 327:286–290CrossRefPubMedPubMedCentralGoogle Scholar
  89. Von Moltke J, Trinidad NJ, Moayeri M, Kintzer AF, Wang SB, van Rooijen N et al (2012) Rapid induction of inflammatory lipid mediators by the inflammasome in vivo. Nature 490:107–111CrossRefGoogle Scholar
  90. Walsh JG, Muruve DA, Power C (2014) Inflammasomes in the CNS. Nat Rev Neurosci 15:84–97CrossRefPubMedGoogle Scholar
  91. Wen H, Gris D, Lei Y, Jha S, Zhang L, Huang MT et al (2011) Fatty acid-induced NLRP3-ASC inflammasome activation interferes with insulin signaling. Nat Immunol 12:408–415CrossRefPubMedPubMedCentralGoogle Scholar
  92. Wlodarska M, Thaiss CA, Nowarski R, Henao-Mejia J, Zhang JP, Brown EM et al (2014) NLRP6 inflammasome orchestrates the colonic host-microbial interface by regulating goblet cell mucus secretion. Cell 156:1045–1059CrossRefPubMedPubMedCentralGoogle Scholar
  93. Xia X, Cui J, Wang HY, Zhu L, Matsueda S, Wang Q et al (2011) NLRX1 negatively regulates TLR-induced NF-κB signaling by targeting TRAF6 and IKK. Immunity 34:843–853CrossRefPubMedPubMedCentralGoogle Scholar
  94. Xiao TS, Ting JPY (2012) NLRX1 has a tail to tell. Immunity 36:311–312CrossRefPubMedPubMedCentralGoogle Scholar
  95. Yan Y, Jiang W, Liu L, Wang X, Ding C, Tian Z et al (2015) Dopamine controls systemic inflammation through inhibition of NLRP3 inflammasome. Cell 160:62–73CrossRefPubMedGoogle Scholar
  96. Youm YH, Grant RW, McCabe LR, Albarado DC, Nguyen KY, Ravussin A et al (2013) Canonical Nlrp3 inflammasome links systemic low-grade inflammation to functional decline in aging. Cell Metab 18:519–532CrossRefPubMedPubMedCentralGoogle Scholar
  97. Zaki MH, Boyd KL, Vogel P, Kastan MB, Lamkanfi M, Kanneganti TD (2010) The NLRP3 inflammasome protects against loss of epithelial integrity and mortality during experimental colitis. Immunity 32:379–391CrossRefPubMedPubMedCentralGoogle Scholar
  98. Zaki MH, Vogel P, Malireddi RK, Body-Malapel M, Anand PK, Bertin J et al (2011) The NOD-like receptor NLRP12 attenuated colon inflammation and tumorigenesis. Cancer Cell 20:649–660CrossRefPubMedPubMedCentralGoogle Scholar
  99. Zhang W, Cai Y, Xu W, Gao X, Xiong S (2013) AIM2 facilitates the apoptotic DNA-induced systemic lupus erythematosus via arbitrating macrophage functional maturation. J Clin Immunol 33:925–937CrossRefPubMedGoogle Scholar
  100. Zhang L, Mo J, Swanson KV, Wen H, Petrucelli A, Gregory SM, et al (2014) NLRC3, a member of the NLR family of proteins, is a negative regulator of innate immune signaling induced by the DNA sensor STING. Immunity 40:329–341Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Fabiola Marín-Aguilar
    • 1
  • Jesús Ruiz-Cabello
    • 2
    • 3
    • 4
    • 5
    • 6
  • Mario D. Cordero
    • 7
  1. 1.Research Laboratory, Oral Medicine DepartmentUniversity of SevillaSevillaSpain
  2. 2.CIC biomaGUNE, San Sebastian-Donostia, SpainMadridSpain
  3. 3.CIC biomaGUNEMadridSpain
  4. 4.IKERBASQUE, Basque Foundation for ScienceBiscaySpain
  5. 5.CIBER de Enfermedades Respiratorias (CIBERES)MadridSpain
  6. 6.Universidad Complutense MadridMadridSpain
  7. 7.Department of PhysiologyInstitute of Nutrition and Food Technology “José Mataix”, Biomedical Research Center (CIBM), University of GranadaArmillaSpain

Personalised recommendations