Modeling Procedures

  • María Elena Álvarez-Buylla Roces
  • Juan Carlos Martínez-García
  • José Dávila-Velderrain
  • Elisa Domínguez-Hüttinger
  • Mariana Esther Martínez-Sánchez
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1069)


Being concerned by the understanding of the mechanism underlying chronic degenerative diseases, we presented in the previous chapter the medical systems biology conceptual framework that we present for that purpose in this volume. More specifically, we argued there the clear advantages offered by a state-space perspective when applied to the systems-level description of the biomolecular machinery that regulates complex degenerative diseases. We also discussed the importance of the dynamical interplay between the risk factors and the network of interdependencies that characterizes the biochemical, cellular, and tissue-level biomolecular reactions that underlie the physiological processes in health and disease. As we pointed out in the previous chapter, the understanding of this interplay (articulated around cellular phenotypic plasticity properties, regulated by specific kinds of gene regulatory networks) is necessary if prevention is chosen as the human-health improvement strategy (potentially involving the modulation of the patient’s lifestyle). In this chapter we provide the medical systems biology mathematical and computational modeling tools required for this task.


  1. 3.
    Adler, M., & Alon, U. (2018). Fold-change detection in biological systems. Current Opinion in Systems Biology, 8, 81–89.CrossRefGoogle Scholar
  2. 6.
    Albert, I., Thakar, J., Li, S., Zhang, R., & Albert, R. (2008). Boolean network simulations for life scientists. Source Code for Biology and Medicine, 3(1), 16.PubMedPubMedCentralCrossRefGoogle Scholar
  3. 8.
    Albert, R., & Barabási, A. L. (2002). Statistical mechanics of complex networks. Reviews of Modern Physics, 74(1), 47.CrossRefGoogle Scholar
  4. 11.
    Al-Hashmi, S., Ekanayake, M., & Martin, C. (2009). Type II diabetes and obesity: A control theoretic model. Emergent Problems in Nonlinear Systems and Control, 393, 1–19.CrossRefGoogle Scholar
  5. 14.
    Alon, U., Surette, M. G., Barkai, N., & Leibler, S. (1999). Robustness in bacterial chemotaxis. Nature, 397(6715), 168–171.PubMedCrossRefPubMedCentralGoogle Scholar
  6. 17.
    Álvarez-Buylla, E. R., Benítez, M., Davila, E. B., Chaos, A., Espinosa-Soto, C., & Padilla-Longoria, P. (2007). Gene regulatory network models for plant development. Current Opinion in Plant Biology, 10(1), 83–91.PubMedCrossRefPubMedCentralGoogle Scholar
  7. 18.
    Álvarez-Buylla, E. R., Chaos, Á., Aldana, M., Benítez, M., Cortes-Poza, Y., Espinosa-Soto, C., et al. (2008). Floral morphogenesis: Stochastic explorations of a gene network epigenetic landscape. PLoS One, 3(11), e3626.PubMedPubMedCentralCrossRefGoogle Scholar
  8. 19.
    Álvarez-Buylla, E. R., Dávila-Velderrain, J., & Martínez-García, J. C. (2016). Systems biology approaches to development beyond bioinformatics: Nonlinear mechanistic models using plant systems. BioScience, 66(5), 371–383.CrossRefGoogle Scholar
  9. 22.
    Angeli, D., Ferrell, J. E., & Sontag, E. D. (2004). Detection of multistability, bifurcations, and hysteresis in a large class of biological positive-feedback systems. Proceedings of the National Academy of Sciences of the United States of America, 101(7), 1822–1827.PubMedPubMedCentralCrossRefGoogle Scholar
  10. 25.
    Arellano, G., Argil, J., Azpeitia, E., Benítez, M., Carrillo, M., Góngora, P., et al. (2011). “Antelope”: A hybrid-logic model checker for branching-time Boolean GRN analysis. BMC Bioinformatics, 12(1), 490.PubMedPubMedCentralCrossRefGoogle Scholar
  11. 29.
    Azpeitia, E., Benítez, M., Vega, I., Villarreal, C., & Álvarez-buylla, E. R. (2010). Single-cell and coupled GRN models of cell patterning in the Arabidopsis thaliana root stem cell niche. BMC Systems Biology, 4, 134.PubMedPubMedCentralCrossRefGoogle Scholar
  12. 30.
    Azpeitia, E., Davila-Velderrain, J., Villarreal, C., & Álvarez-Buylla, E. R. (2014). Gene regulatory network models for floral organ determination. In Flower development: Methods and protocols (pp. 441–469). New York: Humana Press.CrossRefGoogle Scholar
  13. 31.
    Azpeitia, E., Muñoz, S., González-Tokman, D., Martínez-Sánchez, M. E., Weinstein, N., Naldi, A., et al. (2017). The combination of the functionalities of feedback circuits is determinant for the attractors’ number and size in pathway-like Boolean networks. Scientific Reports, 7, 42023.PubMedPubMedCentralCrossRefGoogle Scholar
  14. 34.
    Bak, P., & Paczuski, M. (1995). Complexity, contingency, and criticality. Proceedings of the National Academy of Sciences of the United States of America, 92(15), 6689–6696.PubMedPubMedCentralCrossRefGoogle Scholar
  15. 36.
    Balázsi, G., van Oudenaarden, A., & Collins, J. J. (2011). Cellular decision making and biological noise: From microbes to mammals. Cell, 144(6), 910–925.PubMedPubMedCentralCrossRefGoogle Scholar
  16. 37.
    Baldwin, G., Bayer, T., Dickinson, R., Ellis, T., Freemont, P. S., Kitney, R. I., et al. (2015). Synthetic biology—A primer. Singapore: World Scientific. Revised edition.CrossRefGoogle Scholar
  17. 40.
    Bargaje, R., Trachana, K., Shelton, M. N., McGinnis, C. S., Zhou, J. X., Chadick, C., et al. (2017). Cell population structure prior to bifurcation predicts efficiency of directed differentiation in human induced pluripotent cells. Proceedings of the National Academy of Sciences of the United States of America, 114(9), 2271–2276.PubMedPubMedCentralCrossRefGoogle Scholar
  18. 44.
    Batchelor, E., Loewer, A., Mock, C., & Lahav, G. (2011). Stimulus-dependent dynamics of p53 in single cells. Molecular Systems Biology, 7(1), 488.PubMedPubMedCentralCrossRefGoogle Scholar
  19. 45.
    Batchelor, E., Mock, C. S., Bhan, I., Loewer, A., & Lahav, G. (2008). Recurrent initiation: A mechanism for triggering p53 pulses in response to DNA damage. Molecular Cell, 30(3), 277–289.PubMedPubMedCentralCrossRefGoogle Scholar
  20. 47.
    Becskei, A., & Serrano, L. (2000). Engineering stability in gene networks by autoregulation. Nature, 405(6786), 590–593.PubMedCrossRefPubMedCentralGoogle Scholar
  21. 49.
    Benítez, M., Espinosa-Soto, C., Padilla-Longoria, P., & Álvarez-Buylla, E. R. (2008). Interlinked nonlinear subnetworks underlie the formation of robust cellular patterns in Arabidopsis epidermis: A dynamic spatial model. BMC Systems Biology, 2(1), 98.PubMedPubMedCentralCrossRefGoogle Scholar
  22. 61.
    Bratus, A., Samokhin, I., Yegorov, I., & Yurchenko, D. (2017). Maximization of viability time in a mathematical model of cancer therapy. Mathematical Biosciences, 294, 110–119.PubMedCrossRefPubMedCentralGoogle Scholar
  23. 64.
    Briggs, G. E., & Haldane, J. B. S. (1925). A note on the kinetics of enzyme action. Biochemical Journal, 19(2), 338.PubMedPubMedCentralCrossRefGoogle Scholar
  24. 70.
    Caligaris, C., Vázquez-Victorio, G., Sosa-Garrocho, M., Ríos-López, D. G., Marín-Hernández, A., & Macías-Silva, M. (2015). Actin-cytoskeleton polymerization differentially controls the stability of Ski and SnoN co-repressors in normal but not in transformed hepatocytes. Biochimica et Biophysica Acta (BBA)-General Subjects, 1850(9), 1832–1841.CrossRefGoogle Scholar
  25. 71.
    Calzone, L., Fages, F., & Soliman, S. (2006). BIOCHAM: An environment for modeling biological systems and formalizing experimental knowledge. Bioinformatics, 22(14), 1805–1807.PubMedCrossRefPubMedCentralGoogle Scholar
  26. 74.
    Cannavó, F. (2012). Sensitivity analysis for volcanic source modeling quality assessment and model selection. Computers & Geosciences, 44, 52–59.CrossRefGoogle Scholar
  27. 77.
    Cellier, F. E. (1991). Continuous system modeling. New York: Springer.CrossRefGoogle Scholar
  28. 79.
    Chalmers, D. J. (2006). Strong and weak emergence. In The reemergence of emergence (pp. 244–256). Oxford: Oxford University Press.Google Scholar
  29. 80.
    Chaos, A., Aldana, M., Espinosa-Soto, C., de León, B. G. P., Arroyo, A. G., & Alvarez-Buylla, E. R. (2006). From genes to flower patterns and evolution: Dynamic models of gene regulatory networks. Journal of Plant Growth Regulation, 25(4), 278–289.CrossRefGoogle Scholar
  30. 82.
    Chaves, M., & Tournier, L. (2011). Predicting the asymptotic dynamics of large biological networks by interconnections of Boolean modules. In 2011 50th IEEE Conference on Decision and Control and European Control Conference (CDC-ECC) (pp. 3026–3031). New York: IEEE.CrossRefGoogle Scholar
  31. 84.
    Chen, L., Liu, R., Liu, Z. P., Li, M., & Aihara, K. (2012). Detecting early-warning signals for sudden deterioration of complex diseases by dynamical network biomarkers. Scientific Reports, 2, 342.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 85.
    Cheng, D., Qi, H., & Li, Z. (2010). Analysis and control of Boolean networks: A semi-tensor product approach. Berlin: Springer Science & Business Media.Google Scholar
  33. 86.
    Chickarmane, V., Troein, C., Nuber, U. A., Sauro, H. M., & Peterson, C. (2006). Transcriptional dynamics of the embryonic stem cell switch. PLoS Computational Biology, 2(9), e123.PubMedPubMedCentralCrossRefGoogle Scholar
  34. 88.
    Christodoulides, P., Hirata, Y., Domínguez-Hüttinger, E., Danby, S. G., Cork, M. J., Williams, H. C., et al. (2017). Computational design of treatment strategies for proactive therapy on atopic dermatitis using optimal control theory. Philosophical Transactions of the Royal Society A, 375(2096), 20160285.CrossRefGoogle Scholar
  35. 91.
    Clausznitzer, D., Oleksiuk, O., Løvdok, L., Sourjik, V., & Endres, R. G. (2010). Chemotactic response and adaptation dynamics in Escherichia coli. PLoS Computational Biology, 6(5), e1000784.PubMedPubMedCentralCrossRefGoogle Scholar
  36. 92.
    Clune, J., Mouret, J. B., & Lipson, H. (2013). The evolutionary origins of modularity. Proceedings of the Royal Society B, 280(1755), 20122863.PubMedCrossRefPubMedCentralGoogle Scholar
  37. 93.
    Colman-Lerner, A., Gordon, A., Serra, E., Chin, T., Resnekov, O., Endy, D., et al. (2005). Regulated cell-to-cell variation in a cell-fate decision system. Nature, 437(7059), 699–706.PubMedCrossRefPubMedCentralGoogle Scholar
  38. 97.
    Corblin, F., Fanchon, E., & Trilling, L. (2010). Applications of a formal approach to decipher discrete genetic networks. BMC Bioinformatics, 11(1), 385.PubMedPubMedCentralCrossRefGoogle Scholar
  39. 100.
    Cosentino, C., & Bates, D. (2011). Feedback control in systems biology. Boca Raton: CRC Press.Google Scholar
  40. 101.
    Craciun, G., & Feinberg, M. (2005). Multiple equilibria in complex chemical reaction networks: I. The injectivity property. SIAM Journal on Applied Mathematics, 65(5), 1526–1546.CrossRefGoogle Scholar
  41. 110.
    Davila-Velderrain, J., Juarez-Ramiro, L., Martinez-Garcia, J. C., Alvarez-Buylla, E. R. (2015). Methods for characterizing the epigenetic attractors landscape associated with Boolean gene regulatory networks. arXiv preprint. arXiv:1510.04230.Google Scholar
  42. 112.
    Davila-Velderrain, J., Villarreal, C., & Álvarez-Buylla, E. R. (2015). Reshaping the epigenetic landscape during early flower development: Induction of attractor transitions by relative differences in gene decay rates. BMC Systems Biology, 9(1), 20.PubMedPubMedCentralCrossRefGoogle Scholar
  43. 115.
    De Jong, H., Geiselmann, J., Hernandez, C., & Page, M. (2003). Genetic network analyzer: Qualitative simulation of genetic regulatory networks. Bioinformatics, 19(3), 336–344.PubMedCrossRefPubMedCentralGoogle Scholar
  44. 120.
    Domínguez Hüttinger, E. (2014). Mathematical modelling of epithelium homeostasis (Doctoral dissertation, Imperial College London).Google Scholar
  45. 121.
    Dominguez-Hüttinger, E., Boon, N. J., Clarke, T. B., & Tanaka, R. J. (2017). Mathematical modelling of colonization, invasive infection and treatment of Streptococcus pneumoniae. Frontiers in Physiology, 8, 115.PubMedPubMedCentralCrossRefGoogle Scholar
  46. 122.
    Domínguez-Hüttinger, E., Christodoulides, P., Miyauchi, K., Irvine, A. D., Okada-Hatakeyama, M., Kubo, M., et al. (2017). Mathematical modeling of atopic dermatitis reveals “double-switch” mechanisms underlying 4 common disease phenotypes. Journal of Allergy and Clinical Immunology, 139(6), 1861–1872.PubMedCrossRefPubMedCentralGoogle Scholar
  47. 123.
    Domínguez-Hüttinger, E., Ono, M., Barahona, M., & Tanaka, R. J. (2013). Risk factor-dependent dynamics of atopic dermatitis: Modelling multi-scale regulation of epithelium homeostasis. Interface Focus, 3(2), 20120090.PubMedPubMedCentralCrossRefGoogle Scholar
  48. 125.
    Doncic, A., Atay, O., Valk, E., Grande, A., Bush, A., Vasen, G., et al. (2015). Compartmentalization of a bistable switch enables memory to cross a feedback-driven transition. Cell, 160(6), 1182–1195.PubMedPubMedCentralCrossRefGoogle Scholar
  49. 129.
    Eissing, T., Conzelmann, H., Gilles, E. D., Allgöwer, F., Bullinger, E., & Scheurich, P. (2004). Bistability analyses of a caspase activation model for receptor-induced apoptosis. Journal of Biological Chemistry, 279(35), 36892–36897.PubMedCrossRefPubMedCentralGoogle Scholar
  50. 138.
    Ellner, S. P., & Guckenheimer, J. (2011). Dynamic models in biology. Princeton: Princeton University Press.Google Scholar
  51. 139.
    Elnashaie, S. S., & Uhlig, F. (2007). Numerical techniques for chemical and biological engineers using MATLAB: A simple bifurcation approach. Berlin: Springer Science & Business Media.Google Scholar
  52. 141.
    Espinosa-Soto, C., Padilla-Longoria, P., & Álvarez-Buylla, E. R. (2004). A gene regulatory network model for cell–fate determination during Arabidopsis thaliana flower development that is robust and recovers experimental gene expression profiles. Plant Cell, 16, 2923–2939.PubMedPubMedCentralCrossRefGoogle Scholar
  53. 144.
    Fauré, A., Naldi, A., Chaouiya, C., & Thieffry, D. (2006). Dynamical analysis of a generic Boolean model for the control of the mammalian cell cycle. Bioinformatics, 22(14), e124–e131.PubMedCrossRefPubMedCentralGoogle Scholar
  54. 146.
    Ferrell, J. E. (2012). Bistability, bifurcations, and Waddington’s epigenetic landscape. Current Biology, 22(11), R458–R466.PubMedPubMedCentralCrossRefGoogle Scholar
  55. 147.
    Ferrell, J. E., & Machleder, E. M. (1998). The biochemical basis of an all-or-none cell fate switch in Xenopus oocytes. Science, 280(5365), 895–898.PubMedCrossRefPubMedCentralGoogle Scholar
  56. 148.
    Ferrell, J. E., Pomerening, J. R., Kim, S. Y., Trunnell, N. B., Xiong, W., Huang, C. Y. F., et al. (2009). Simple, realistic models of complex biological processes: Positive feedback and bistability in a cell fate switch and a cell cycle oscillator. FEBS Letters, 583(24), 3999–4005.PubMedCrossRefPubMedCentralGoogle Scholar
  57. 149.
    Fey, D., Halasz, M., Dreidax, D., Kennedy, S. P., Hastings, J. F., Rauch, N., et al. (2015). Signaling pathway models as biomarkers: Patient-specific simulations of JNK activity predict the survival of neuroblastoma patients. Science Signaling, 8(408), 1–16.CrossRefGoogle Scholar
  58. 153.
    Fox, R. F. (1993). Review of Stuart Kauffman, The origins of order: Self-organization and selection in evolution. Biophysical Journal, 65(6), 2698.PubMedCentralCrossRefGoogle Scholar
  59. 157.
    Fuchs, A. (2014). Nonlinear dynamics in complex systems. Berlin: Springer.Google Scholar
  60. 163.
    Garg, A., Mohanram, K., De Micheli, G., & Xenarios, I. (2012). Implicit methods for qualitative modeling of gene regulatory networks. In Gene regulatory networks: Methods and protocols (Vol. 786, pp. 397–443). New York: Humana Press.Google Scholar
  61. 167.
    Gershenfeld, N. (1998). The nature of mathematical modeling. Cambridge: Cambridge University Press.Google Scholar
  62. 169.
    Glass, L., & Kauffman, S. A. (1973). The logical analysis of continuous, non-linear biochemical control networks. Journal of Theoretical Biology, 39(1), 103–129.PubMedCrossRefGoogle Scholar
  63. 171.
    Goldbeter, A., & Koshland, D. E. (1984). Ultrasensitivity in biochemical systems controlled by covalent modification. Interplay between zero-order and multistep effects. Journal of Biological Chemistry, 259(23), 14441–14447.PubMedGoogle Scholar
  64. 173.
    Goodwin, B. C. (2009). Beyond the Darwinian paradigm: Understanding biological forms. In Evolution: The first four billion years (pp. 299–312). Cambridge: Harvard University Press.Google Scholar
  65. 177.
    Grabe, N., & Neuber, K. (2005). A multicellular systems biology model predicts epidermal morphology, kinetics and Ca2+ flow. Bioinformatics, 21(17), 3541–3547.PubMedCrossRefPubMedCentralGoogle Scholar
  66. 180.
    Green, E. D., Rubin, E. M., & Olson, M. V. (2017). The future of DNA sequencing. Nature News, 550(7675), 179.CrossRefGoogle Scholar
  67. 183.
    Guevara, M. R. (2003). Bifurcations involving fixed points and limit cycles in biological systems. In Dynamics in physiology and medicine (pp. 41–85). New York: Springer.CrossRefGoogle Scholar
  68. 187.
    Halasz, M., Kholodenko, B. N., Kolch, W., & Santra, T. (2016). Integrating network reconstruction with mechanistic modeling to predict cancer therapies. Science Signaling, 9(455), ra114.Google Scholar
  69. 194.
    Harrington, H. A., Ho, K. L., Ghosh, S., & Tung, K. C. (2008). Construction and analysis of a modular model of caspase activation in apoptosis. Theoretical Biology and Medical Modelling, 5(1), 26.PubMedCrossRefPubMedCentralGoogle Scholar
  70. 195.
    Hijmans, B. S., Tiemann, C. A., Grefhorst, A., Boesjes, M., van Dijk, T. H., Tietge, U. J., et al. (2015). A systems biology approach reveals the physiological origin of hepatic steatosis induced by liver X receptor activation. The FASEB Journal, 29(4), 1153–1164.PubMedCrossRefPubMedCentralGoogle Scholar
  71. 196.
    Hinrichsen, D., & Pritchard, A. J. (2005). Mathematical Systems Theory I - Modelling, State Space Analysis, Stability and Robustness. Texts in applied mathematics (Vol. 48). Berlin: Springer.Google Scholar
  72. 201.
    Höfer, T., Nathansen, H., Löhning, M., Radbruch, A., & Heinrich, R. (2002). GATA-3 transcriptional imprinting in Th2 lymphocytes: A mathematical model. Proceedings of the National Academy of Sciences, 99(14), 9364–9368.CrossRefGoogle Scholar
  73. 205.
    Hong, T., Watanabe, K., Ta, C. H., Villarreal-Ponce, A., Nie, Q., & Dai, X. (2015). An Ovol2-Zeb1 mutual inhibitory circuit governs bidirectional and multi-step transition between epithelial and mesenchymal states. PLoS Computational Biology, 11(11), e1004569.PubMedPubMedCentralCrossRefGoogle Scholar
  74. 217.
    Huang, S., & Kauffman, S. A. (2009). Complex GRN regulatory networks: From structure to biological observables: Cell fate determination. In Encyclopedia of complexity and systems science (pp. 1180–1213). New York: Springer.CrossRefGoogle Scholar
  75. 218.
    Hucka, M., Finney, A., Sauro, H. M., Bolouri, H., Doyle, J. C., Kitano, H., et al. (2003). The systems biology markup language (SBML). A medium for representation and exchange of biochemical network models. Bioinformatics, 19(4), 524–531.PubMedCrossRefPubMedCentralGoogle Scholar
  76. 220.
    Ideta, A. M., Tanaka, G., Takeuchi, T., & Aihara, K. (2008). A mathematical model of intermittent androgen suppression for prostate cancer. Journal of Nonlinear Science, 18(6), 593–614.CrossRefGoogle Scholar
  77. 221.
    Inoue, K., Shinohara, H., Behar, M., Yumoto, N., Tanaka, G., Hoffmann, A., et al. (2016). Oscillation dynamics underlie functional switching of NF-κB for B-cell activation. NPJ Systems Biology and Applications, 2, 16024.PubMedPubMedCentralCrossRefGoogle Scholar
  78. 224.
    Izhikevich, E. M. (2007). Dynamical systems in neuroscience. Cambridge: MIT Press.Google Scholar
  79. 225.
    Jeanquartier, F., Jean-Quartier, C., Kotlyar, M., Tokar, T., Hauschild, A. C., Jurisica, I., et al. (2016). Machine learning for in silico modeling of tumor growth. In Machine learning for health informatics (pp. 415–434). Berlin: Springer International Publishing.CrossRefGoogle Scholar
  80. 228.
    Juárez-Ramiro, L. (2015). Modelado de patrones de interconexión de módulos de regulación transcripcional: aplicación a la interacción entre la transición epitelio-mesénquima y el ciclo celular. Tesis de Maestría en Ciencias, Agosto, Departamento de Control Automático, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional.Google Scholar
  81. 229.
    Jurtz, V. I., Johansen, A. R., Nielsen, M., Almagro Armenteros, J. J., Nielsen, H., Sønderby, C. K., et al. (2017). An introduction to deep learning on biological sequence data: Examples and solutions. Bioinformatics, 33(22), 3685–3690.PubMedCrossRefPubMedCentralGoogle Scholar
  82. 233.
    Kaneko, K. (2011). Characterization of stem cells and cancer cells on the basis of gene expression profile stability, plasticity, and robustness. Bioessays, 33(6), 403–413.PubMedCrossRefPubMedCentralGoogle Scholar
  83. 235.
    Kaplan, D., & Glass, L. (2012). Understanding nonlinear dynamics. Berlin: Springer Science & Business Media.Google Scholar
  84. 240.
    Kauffman, S. A. (1969). Metabolic stability and epigenesis in randomly constructed genetic nets. Journal of Theoretical Biology, 22(3), 437–467.PubMedCrossRefPubMedCentralGoogle Scholar
  85. 243.
    Keller, A. D. (1995). Model genetic circuits encoding autoregulatory transcription factors. Journal of Theoretical Biology, 172(2), 169–185.PubMedCrossRefPubMedCentralGoogle Scholar
  86. 247.
    Kirkpatrick, S., Gelatt, C. D., Jr., & Vecchi, M. P. (1987). Optimization by simulated annealing. In Spin glass theory and beyond: An introduction to the replica method and its applications, World scientific lecture notes in physics (Vol. 9, pp. 339–348). Singapore: World Scientific.Google Scholar
  87. 256.
    Kuznetsov, Y. A. (2013). Elements of applied bifurcation theory (Vol. 112). Berlin: Springer Science & Business Media.Google Scholar
  88. 258.
    Lanczos, C. (2012). The variational principles of mechanics. North Chelmsford: Courier Corporation.Google Scholar
  89. 265.
    Le Novere, N., Hucka, M., Mi, H., Moodie, S., Schreiber, F., Sorokin, A., et al. (2009). The systems biology graphical notation. Nature Biotechnology, 27(8), 735–741.PubMedCrossRefPubMedCentralGoogle Scholar
  90. 267.
    Lee, T. I., & Young, R. A. (2013). Transcriptional regulation and its misregulation in disease. Cell, 152(6), 1237–1251.PubMedPubMedCentralCrossRefGoogle Scholar
  91. 277.
    Lillacci, G., & Khammash, M. (2010). Parameter estimation and model selection in computational biology. PLoS Computational Biology, 6(3), e1000696.PubMedPubMedCentralCrossRefGoogle Scholar
  92. 279.
    Lipniacki, T., Hat, B., Faeder, J. R., & Hlavacek, W. S. (2008). Stochastic effects and bistability in T cell receptor signaling. Journal of Theoretical Biology, 254(1), 110–122.PubMedPubMedCentralCrossRefGoogle Scholar
  93. 284.
    Lobo, D., & Levin, M. (2015). Inferring regulatory networks from experimental morphological phenotypes: A computational method reverse-engineers planarian regeneration. PLoS Computational Biology, 11(6), e1004295.PubMedPubMedCentralCrossRefGoogle Scholar
  94. 289.
    Louis, M., & Becskei, A. (2002). Binary and graded responses in gene networks. Science STKE, 2002(143), pe33.Google Scholar
  95. 300.
    Margueron, R., & Reinberg, D. (2010). Chromatin structure and the inheritance of epigenetic information. Nature Reviews Genetics, 11(4), 285.PubMedPubMedCentralCrossRefGoogle Scholar
  96. 301.
    Marino, S., Hogue, I. B., Ray, C. J., & Kirschner, D. E. (2008). A methodology for performing global uncertainty and sensitivity analysis in systems biology. Journal of Theoretical Biology, 254(1), 178–196.PubMedPubMedCentralCrossRefGoogle Scholar
  97. 303.
    Martinez-Sanchez, M. E., Mendoza, L., Villarreal, C., & Álvarez-Buylla, E. R. (2015). A minimal regulatory network of extrinsic and intrinsic factors recovers observed patterns of CD4+ T cell differentiation and plasticity. PLoS Computational Biology, 11(6), e1004324.PubMedPubMedCentralCrossRefGoogle Scholar
  98. 305.
    Mayo, A. E., Setty, Y., Shavit, S., Zaslaver, A., & Alon, U. (2006). Plasticity of the cis-regulatory input function of a gene. PLoS Biology, 4(4), e45.PubMedPubMedCentralCrossRefGoogle Scholar
  99. 313.
    Melmed, S., & Conn, P. M. (Eds.). (2007). Endocrinology: Basic and clinical principles. Berlin: Springer Science & Business Media.Google Scholar
  100. 314.
    Mendes, N. D., Lang, F., Le Cornec, Y. S., Mateescu, R., Batt, G., & Chaouiya, C. (2013). Composition and abstraction of logical regulatory modules: Application to multicellular systems. Bioinformatics, 29(6), 749–757.PubMedCrossRefPubMedCentralGoogle Scholar
  101. 315.
    Mendes, P., Hoops, S., Sahle, S., Gauges, R., Dada, J., & Kummer, U. (2009). Computational modeling of biochemical networks using COPASI. In Methods in Molecular Biology, Systems Biology (Vol. 500, pp. 17–59). New York: Humana Press.Google Scholar
  102. 316.
    Méndez-López, L. F., Davila-Velderrain, J., Domínguez-Hüttinger, E., Enríquez-Olguín, C., Martínez-García, J. C., & Álvarez-Buylla, E. R. (2017). Gene regulatory network underlying the immortalization of epithelial cells. BMC Systems Biology, 11(1), 24.PubMedPubMedCentralCrossRefGoogle Scholar
  103. 318.
    Mendoza, L., & Álvarez-Buylla, E. R. (1998). Dynamics of the genetic regulatory network for arabidopsis thaliana flower morphogenesis. Journal of Theoretical Biology, 193(2), 307–319.PubMedCrossRefPubMedCentralGoogle Scholar
  104. 324.
    Milo, R. (2013). What is the total number of protein molecules per cell volume? A call to rethink some published values. Bioessays, 35(12), 1050–1055.PubMedPubMedCentralCrossRefGoogle Scholar
  105. 328.
    Monk, N. A. (2003). Oscillatory expression of Hes1, p53, and NF-κB driven by transcriptional time delays. Current Biology, 13(16), 1409–1413.PubMedCrossRefPubMedCentralGoogle Scholar
  106. 330.
    Moris, N., Pina, C., & Arias, A. M. (2016). Transition states and cell fate decisions in epigenetic landscapes. Nature Reviews Genetics, 17(11), 693–703.PubMedCrossRefPubMedCentralGoogle Scholar
  107. 332.
    Müller, J., & Tjardes, T. (2003). Modeling the cytokine network in vitro and in vivo. Computational and Mathematical Methods in Medicine, 5(2), 93–110.Google Scholar
  108. 335.
    Murray, J. D. (2003). Mathematical biology: II: Spatial models and biomedical applications. Interdisciplinary applied mathematics (3rd ed., Vol. 18). New York: Springer.Google Scholar
  109. 336.
    Müssel, C., Hopfensitz, M., & Kestler, H. A. (2010). BoolNet–An R package for generation, reconstruction and analysis of Boolean networks. Bioinformatics, 26(10), 1378–1380.PubMedCrossRefPubMedCentralGoogle Scholar
  110. 340.
    Naldi, A., Berenguier, D., Fauré, A., Lopez, F., Thieffry, D., & Chaouiya, C. (2009). Logical modelling of regulatory networks with GINsim 2.3. Biosystems, 97(2), 134–139.PubMedCrossRefPubMedCentralGoogle Scholar
  111. 343.
    Nam, J., Aguda, B. D., Rath, B., & Agarwal, S. (2009). Biomechanical thresholds regulate inflammation through the NF-κB pathway: Experiments and modeling. PLoS One, 4(4), e5262.PubMedPubMedCentralCrossRefGoogle Scholar
  112. 346.
    Nevozhay, D., Adams, R. M., Murphy, K. F., Josić, K., & Balázsi, G. (2009). Negative autoregulation linearizes the dose-response and suppresses the heterogeneity of gene expression. Proceedings of the National Academy of Sciences, 106(13), 5123–5128.CrossRefGoogle Scholar
  113. 348.
    Nieto, M. A., Huang, R. Y. J., Jackson, R. A., & Thiery, J. P. (2016). EMT: 2016. Cell, 166(1), 21–45.PubMedCrossRefPubMedCentralGoogle Scholar
  114. 355.
    Olsen, L., Sherratt, J. A., & Maini, P. K. (1996). A mathematical model for fibro-proliferative wound healing disorders. Bulletin of Mathematical Biology, 58(4), 787–808.PubMedCrossRefPubMedCentralGoogle Scholar
  115. 359.
    Oyarzún, D. A., Chaves, M., & Hoff-Hoffmeyer-Zlotnik, M. (2012). Multistability and oscillations in genetic control of metabolism. Journal of Theoretical Biology, 295, 139–153.PubMedCrossRefPubMedCentralGoogle Scholar
  116. 360.
    Ozbudak, E. M., Thattai, M., Lim, H. N., Shraiman, B. I., & Van Oudenaarden, A. (2004). Multistability in the lactose utilization network of Escherichia coli. Nature, 427(6976), 737–740.PubMedCrossRefPubMedCentralGoogle Scholar
  117. 362.
    Pantoja-Hernández, L., & Martínez-García, J. C. (2015). Retroactivity in the context of modularly structured biomolecular systems. Frontiers in Bioengineering and Biotechnology, 3, 85.PubMedPubMedCentralCrossRefGoogle Scholar
  118. 365.
    Paulsen, M., Legewie, S., Eils, R., Karaulanov, E., & Niehrs, C. (2011). Negative feedback in the bone morphogenetic protein 4 (BMP4) synexpression group governs its dynamic signaling range and canalizes development. Proceedings of the National Academy of Sciences, 108(25), 10202–10207.CrossRefGoogle Scholar
  119. 368.
    Pedersen, E., & Bongo, L. A. (2017). Large-scale biological meta-database management. Future Generation Computer Systems, 67, 481–489.CrossRefGoogle Scholar
  120. 369.
    Pérez-Ruiz, R. V., García-Ponce, B., Marsch-Martínez, N., Ugartechea-Chirino, Y., Villajuana-Bonequi, M., de Folter, S., et al. (2015). XAANTAL2 (AGL14) is an important component of the complex gene regulatory network that underlies Arabidopsis shoot apical meristem transitions. Molecular Plant, 8(5), 796–813.PubMedCrossRefPubMedCentralGoogle Scholar
  121. 373.
    Plsek, P., & Greenhalgh, T. (2001). The challenge of complexity in health care: An introduction. BMJ, 323(7314), 625–628.PubMedPubMedCentralCrossRefGoogle Scholar
  122. 374.
    Podtschaske, M., Benary, U., Zwinger, S., Höfer, T., Radbruch, A., & Baumgrass, R. (2007). Digital NFATc2 activation per cell transforms graded T cell receptor activation into an all-or-none IL-2 expression. PLoS One, 2(9), e935.PubMedPubMedCentralCrossRefGoogle Scholar
  123. 379.
    Pujadas, E., & Feinberg, A. P. (2012). Regulated noise in the epigenetic landscape of development and disease. Cell, 148(6), 1123–1131.PubMedPubMedCentralCrossRefGoogle Scholar
  124. 380.
    Purvis, J. E., Karhohs, K. W., Mock, C., Batchelor, E., Loewer, A., & Lahav, G. (2012). p53 dynamics control cell fate. Science, 336(6087), 1440–1444.PubMedPubMedCentralCrossRefGoogle Scholar
  125. 381.
    Purvis, J. E., & Lahav, G. (2013). Encoding and decoding cellular information through signaling dynamics. Cell, 152(5), 945–956.PubMedPubMedCentralCrossRefGoogle Scholar
  126. 385.
    Richard, C. Y., Pesce, C. G., Colman-Lerner, A., Lok, L., Pincus, D., Serra, E., et al. (2008). Negative feedback that improves information transmission in yeast signalling. Nature, 456(7223), 755–761.CrossRefGoogle Scholar
  127. 395.
    Ryu, H., Chung, M., Dobrzyński, M., Fey, D., Blum, Y., Lee, S. S., et al. (2015). Frequency modulation of ERK activation dynamics rewires cell fate. Molecular Systems Biology, 11(11), 838.PubMedPubMedCentralCrossRefGoogle Scholar
  128. 404.
    Schilstra, M. J., & Nehaniv, C. L. (2008). Bio-logic: Gene expression and the laws of combinatorial logic. Artificial Life, 14(1), 121–133.PubMedCrossRefPubMedCentralGoogle Scholar
  129. 405.
    Schmidt, H., & Jirstrand, M. (2005). Systems biology toolbox for MATLAB: A computational platform for research in systems biology. Bioinformatics, 22(4), 514–515.PubMedCrossRefPubMedCentralGoogle Scholar
  130. 410.
    Setty, Y., Mayo, A. E., Surette, M. G., & Alon, U. (2003). Detailed map of a cis-regulatory input function. Proceedings of the National Academy of Sciences, 100(13), 7702–7707.CrossRefGoogle Scholar
  131. 412.
    Shah, N. A., & Sarkar, C. A. (2011). Robust network topologies for generating switch-like cellular responses. PLoS Computational Biology, 7(6), e1002085.PubMedPubMedCentralCrossRefGoogle Scholar
  132. 413.
    Shalek, A. K., Satija, R., Adiconis, X., Gertner, R. S., Gaublomme, J. T., Raychowdhury, R., et al. (2013). Single-cell transcriptomics reveals bimodality in expression and splicing in immune cells. Nature, 498(7453), 236–240.PubMedPubMedCentralCrossRefGoogle Scholar
  133. 417.
    Shin, S., Seong, J. K., & Bae, Y. S. (2016). Ahnak stimulates BMP2-mediated adipocyte differentiation through Smad1 activation. Obesity, 24(2), 398–407.PubMedCrossRefPubMedCentralGoogle Scholar
  134. 421.
    Soetaert, K. E. R., Petzoldt, T., & Setzer, R. W. (2010). Solving differential equations in R: Package deSolve. Journal of Statistical Software, 33, 1–25. ISSN: 1548-7660.Google Scholar
  135. 425.
    Steinway, S. N., Zañudo, J. G. T., Michel, P. J., Feith, D. J., Loughran, T. P., & Albert, R. (2015). Combinatorial interventions inhibit TGF β-driven epithelial-to-mesenchymal transition and support hybrid cellular phenotypes. NPJ Systems Biology and Applications, 1, 15014.PubMedPubMedCentralCrossRefGoogle Scholar
  136. 426.
    Stelling, J., Sauer, U., Szallasi, Z., Doyle, F. J., & Doyle, J. (2004). Robustness of cellular functions. Cell, 118(6), 675–685.PubMedCrossRefPubMedCentralGoogle Scholar
  137. 429.
    Strogatz, S. H. (2014). Nonlinear dynamics and chaos with applications to physics, biology, chemistry, and engineering (2nd ed.). Boulder: Westview Press.Google Scholar
  138. 432.
    Sung, M. H., Li, N., Lao, Q., Gottschalk, R. A., Hager, G. L., & Fraser, I. D. (2014). Switching of the relative dominance between feedback mechanisms in lipopolysaccharide-induced NF-κB signaling. Science Signaling, 7(308), ra6.Google Scholar
  139. 433.
    Sütterlin, T., Huber, S., Dickhaus, H., & Grabe, N. (2009). Modeling multi-cellular behavior in epidermal tissue homeostasis via finite state machines in multi-agent systems. Bioinformatics, 25(16), 2057–2063.PubMedCrossRefPubMedCentralGoogle Scholar
  140. 434.
    Sütterlin, T., Kolb, C., Dickhaus, H., Jäger, D., & Grabe, N. (2012). Bridging the scales: Semantic integration of quantitative SBML in graphical multi-cellular models and simulations with EPISIM and COPASI. Bioinformatics, 29(2), 223–229.PubMedCrossRefPubMedCentralGoogle Scholar
  141. 435.
    Szallasi, Z., Periwal, V., & Stelling, J. (2006). System modeling in cellular biology: From concepts to nuts and bolts. Cambridge: The MIT Press.CrossRefGoogle Scholar
  142. 438.
    Tanaka, G., Christodoulides, P., Domínguez-Hüttinger, E., Aihara, K., & Tanaka, R. J. (2018). Bifurcation analysis of a mathematical model of atopic dermatitis to determine patient-specific effects of treatments on dynamic phenotypes. Journal of Theoretical Biology, 448, 66–79.PubMedCrossRefPubMedCentralGoogle Scholar
  143. 439.
    Tanaka, R. J., Ono, M., & Harrington, H. A. (2011). Skin barrier homeostasis in atopic dermatitis: Feedback regulation of kallikrein activity. PloS One, 6(5), e19895.PubMedPubMedCentralCrossRefGoogle Scholar
  144. 443.
    Tay, S., Hughey, J. J., Lee, T. K., Lipniacki, T., Quake, S. R., & Covert, M. W. (2010). Single-cell NF-κB dynamics reveal digital activation and analogue information processing. Nature, 466(7303), 267–271.PubMedPubMedCentralCrossRefGoogle Scholar
  145. 447.
    Thorén, H., & Gerlee, P. (2010). Weak emergence and complexity. In Artificial Life XII Proceedings of the Twelfth International Conference on the Synthesis and Simulation of Living Systems (pp. 879–886). Cambridge: MIT Press.Google Scholar
  146. 449.
    Tiemann, C. A., Vanlier, J., Hilbers, P. A., & van Riel, N. A. (2011). Parameter adaptations during phenotype transitions in progressive diseases. BMC Systems Biology, 5(1), 174.PubMedPubMedCentralCrossRefGoogle Scholar
  147. 450.
    Tiemann, C. A., Vanlier, J., Oosterveer, M. H., Groen, A. K., Hilbers, P. A., & van Riel, N. A. (2013). Parameter trajectory analysis to identify treatment effects of pharmacological interventions. PLoS Computational Biology, 9(8), e1003166.PubMedPubMedCentralCrossRefGoogle Scholar
  148. 451.
    Tiwari, A., Ray, J. C. J., Narula, J., & Igoshin, O. A. (2011). Bistable responses in bacterial genetic networks: Designs and dynamical consequences. Mathematical Biosciences, 231(1), 76–89.PubMedPubMedCentralCrossRefGoogle Scholar
  149. 453.
    Toni, T., & Stumpf, M. P. (2009). Simulation-based model selection for dynamical systems in systems and population biology. Bioinformatics, 26(1), 104–110.PubMedPubMedCentralCrossRefGoogle Scholar
  150. 454.
    Transtrum, M. K., & Qiu, P. (2016). Bridging mechanistic and phenomenological models of complex biological systems. PLoS Computational Biology, 12(5), e1004915.PubMedPubMedCentralCrossRefGoogle Scholar
  151. 459.
    Tyson, J. J., Chen, K. C., & Novak, B. (2003). Sniffers, buzzers, toggles and blinkers: Dynamics of regulatory and signaling pathways in the cell. Current Opinion in Cell Biology, 15(2), 221–231.PubMedCrossRefPubMedCentralGoogle Scholar
  152. 461.
    Valeyev, N. V., Hundhausen, C., Umezawa, Y., Kotov, N. V., Williams, G., Clop, A., et al. (2010). A systems model for immune cell interactions unravels the mechanism of inflammation in human skin. PLoS Computational Biology, 6(12), e1001024.PubMedPubMedCentralCrossRefGoogle Scholar
  153. 462.
    Van Kampen, N. G. (1992). Stochastic processes in physics and chemistry (revised and enlarged edition). Amsterdam: Elsevier.Google Scholar
  154. 464.
    van Riel, N. A., Tiemann, C. A., Vanlier, J., & Hilbers, P. A. (2013). Applications of analysis of dynamic adaptations in parameter trajectories. Interface Focus, 3(2), 20120084.PubMedPubMedCentralCrossRefGoogle Scholar
  155. 465.
    Veening, J. W., Smits, W. K., & Kuipers, O. P. (2008). Bistability, epigenetics, and bet-hedging in bacteria. Annual Review of Microbiology, 62, 193–210.PubMedCrossRefPubMedCentralGoogle Scholar
  156. 466.
    Velderrain, J. D., Martínez-García, J. C., & Álvarez-Buylla, E. R. (2017). Boolean dynamic modeling approaches to study plant gene regulatory networks: Integration, validation, and prediction. In Methods in molecular biology (Clifton, NJ), (Vol. 629, pp. 297–315). New York: Humana Press.Google Scholar
  157. 473.
    Waddington, C. H. (1957). The strategy of the genes. A discussion of some aspects of theoretical biology; with an appendix by H. Kacser. London: George Allen & Unwin.Google Scholar
  158. 475.
    Wagner, A. (2013). Robustness and evolvability in living systems. Princeton: Princeton University Press.CrossRefGoogle Scholar
  159. 478.
    Wang, R. S., Saadatpour, A., & Albert, R. (2012). Boolean modeling in systems biology: An overview of methodology and applications. Physical Biology, 9(5), 055001.PubMedCrossRefPubMedCentralGoogle Scholar
  160. 482.
    Weber, M., & Buceta, J. (2013). Dynamics of the quorum sensing switch: Stochastic and non-stationary effects. BMC Systems Biology, 7(1), 6.PubMedPubMedCentralCrossRefGoogle Scholar
  161. 488.
    Weiss, J. N. (1997). The Hill equation revisited: Uses and misuses. The FASEB Journal, 11(11), 835–841.PubMedCrossRefPubMedCentralGoogle Scholar
  162. 489.
    Wilhelm, T. (2009). The smallest chemical reaction system with bistability. BMC Systems Biology, 3(1), 90.PubMedPubMedCentralCrossRefGoogle Scholar
  163. 491.
    Williams, J. W., Cui, X., Levchenko, A., & Stevens, A. M. (2008). Robust and sensitive control of a quorum-sensing circuit by two interlocked feedback loops. Molecular Systems Biology, 4(1), 234.PubMedPubMedCentralGoogle Scholar
  164. 493.
    Wolkenhauer, O., Ullah, M., Wellstead, P., & Cho, K. H. (2005). The dynamic systems approach to control and regulation of intracellular networks. FEBS Letters, 579(8), 1846–1853.PubMedCrossRefPubMedCentralGoogle Scholar
  165. 505.
    Yi, T. M., Huang, Y., Simon, M. I., & Doyle, J. (2000). Robust perfect adaptation in bacterial chemotaxis through integral feedback control. Proceedings of the National Academy of Sciences, 97(9), 4649–4653.CrossRefGoogle Scholar
  166. 512.
    Zhang, Q., Bhattacharya, S., Kline, D. E., Crawford, R. B., Conolly, R. B., Thomas, R. S., et al. (2010). Stochastic modeling of B lymphocyte terminal differentiation and its suppression by dioxin. BMC Systems Biology, 4(1), 40.PubMedPubMedCentralCrossRefGoogle Scholar
  167. 513.
    Zhang, T., Schmierer, B., & Novák, B. (2011). Cell cycle commitment in budding yeast emerges from the cooperation of multiple bistable switches. Open Biology, 1(3), 110009.PubMedPubMedCentralCrossRefGoogle Scholar
  168. 516.
    Zhao, Y., Ransom, J. F., Li, A., Vedantham, V., von Drehle, M., Muth, A. N., et al. (2007). Dysregulation of cardiogenesis, cardiac conduction, and cell cycle in mice lacking miRNA-1-2. Cell, 129(2), 303–317.PubMedCrossRefPubMedCentralGoogle Scholar
  169. 519.
    Zhou, J. X., Samal, A., d’Hérouël, A. F., Price, N. D., & Huang, S. (2016). Relative stability of network states in Boolean network models of gene regulation in development. Biosystems, 142, 15–24.PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • María Elena Álvarez-Buylla Roces
    • 1
  • Juan Carlos Martínez-García
    • 2
  • José Dávila-Velderrain
    • 3
  • Elisa Domínguez-Hüttinger
    • 4
  • Mariana Esther Martínez-Sánchez
    • 1
  1. 1.Ciudad Universitaria, UNAM, Instituto de EcologíaCiudad de MéxicoMexico
  2. 2.Departamento de Control AutomáticoCINVESTAVCiudad de MéxicoMexico
  3. 3.CSIL, Massachusetts Institute of TechnologyCambridgeUSA
  4. 4.Centro de Ciencias Matemáticas, UNAMMoreliaMéxico

Personalised recommendations