Advertisement

Medical Systems Biology

  • María Elena Álvarez-Buylla Roces
  • Juan Carlos Martínez-García
  • José Dávila-Velderrain
  • Elisa Domínguez-Hüttinger
  • Mariana Esther Martínez-Sánchez
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1069)

Abstract

The aim of this volume is to encourage the use of systems-level methodologies to contribute to the improvement of human-health . We intend to motivate biomedical researchers to complement their current theoretical and empirical practice with up-to-date systems biology conceptual approaches. Our perspective is based on the deep understanding of the key biomolecular regulatory mechanisms that underlie health, as well as the emergence and progression of human-disease . We strongly believe that the contemporary systems biology perspective opens the door to the effective development of novel methodologies to the improvement of prevention . This requires a deeper and integrative understanding of the involved underlying systems-level mechanisms. In order to explain our proposal in a simple way, in this chapter we privilege the conceptual exposition of our chosen framework over formal considerations. The formal exposition of our proposal will be expanded and discussed later in the next chapters.

References

  1. 4.
    Ahn, A. C., Tewari, M., Poon, C. S., & Phillips, R. S. (2006). The limits of reductionism in medicine: Could systems biology offer an alternative?. PLoS Medicine, 3(6), e208.PubMedPubMedCentralCrossRefGoogle Scholar
  2. 5.
    Alberch, P. (1991). From genes to phenotype: Dynamical systems and evolvability. Genetica, 84, 5–11.PubMedCrossRefPubMedCentralGoogle Scholar
  3. 9.
    Albert, R., & Othmer, H. G. (2003). The topology of the regulatory interactions predicts the expression pattern of the segment polarity genes in Drosophila melanogaster. Journal of Theoretical Biology, 223(1), 1–18.PubMedCrossRefPubMedCentralGoogle Scholar
  4. 10.
    Aldana, M., Balleza, E., Kauffman, S., & Resendiz, O. (2007). Robustness and evolvability in genetic regulatory networks. Journal of Theoretical Biology, 245(3), 433–448.PubMedCrossRefPubMedCentralGoogle Scholar
  5. 13.
    Allam, M. F., & Arjona, M. O. (2013). Health promotion or pharmacological treatment for chronic diseases? Journal of Preventive Medicine and Hygiene, 54(1), 11.PubMedPubMedCentralGoogle Scholar
  6. 16.
    Álvarez-Buylla, E. R., Azpeitia, E., Barrio, R., Benítez, M., & Padilla-Longoria, P. (2010). From ABC genes to regulatory networks, epigenetic landscapes and flower morphogenesis: Making biological sense of theoretical approaches. Seminars in Cell & Developmental Biology, 21(1), 108–117.CrossRefGoogle Scholar
  7. 17.
    Álvarez-Buylla, E. R., Benítez, M., Davila, E. B., Chaos, A., Espinosa-Soto, C., & Padilla-Longoria, P. (2007). Gene regulatory network models for plant development. Current Opinion in Plant Biology, 10(1), 83–91.PubMedCrossRefPubMedCentralGoogle Scholar
  8. 18.
    Álvarez-Buylla, E. R., Chaos, Á., Aldana, M., Benítez, M., Cortes-Poza, Y., Espinosa-Soto, C., et al. (2008). Floral morphogenesis: Stochastic explorations of a gene network epigenetic landscape. PLoS One, 3(11), e3626.PubMedPubMedCentralCrossRefGoogle Scholar
  9. 19.
    Álvarez-Buylla, E. R., Dávila-Velderrain, J., & Martínez-García, J. C. (2016). Systems biology approaches to development beyond bioinformatics: Nonlinear mechanistic models using plant systems. BioScience, 66(5), 371–383.CrossRefGoogle Scholar
  10. 21.
    Anderson, D. F., & Kurtz, T. G. (2015). Stochastic analysis of biochemical systems (Vol. 1). Berlin: Springer.CrossRefGoogle Scholar
  11. 26.
    Arendt, D., Musser, J. M., Baker, C. V., Bergman, A., Cepko, C., Erwin, D. H., et al. (2016). The origin and evolution of cell types. Nature Reviews Genetics, 17(12), 744–757.PubMedCrossRefPubMedCentralGoogle Scholar
  12. 27.
    Arroyo, A. G., & Iruela-Arispe, M. L. (2010). Extracellular matrix, inflammation, and the angiogenic response. Cardiovascular Research, 86(2), 226–235.PubMedPubMedCentralCrossRefGoogle Scholar
  13. 28.
    Azpeitia, E., Benítez, M., Padilla-Longoria, P., Espinosa-Soto, C., & Álvarez-Buylla, E. R. (2011). Dynamic network-based epistasis analysis: Boolean examples. Frontiers in Plant Science, 2, 92.PubMedPubMedCentralCrossRefGoogle Scholar
  14. 29.
    Azpeitia, E., Benítez, M., Vega, I., Villarreal, C., & Álvarez-buylla, E. R. (2010). Single-cell and coupled GRN models of cell patterning in the Arabidopsis thaliana root stem cell niche. BMC Systems Biology, 4, 134.PubMedPubMedCentralCrossRefGoogle Scholar
  15. 31.
    Azpeitia, E., Muñoz, S., González-Tokman, D., Martínez-Sánchez, M. E., Weinstein, N., Naldi, A., et al. (2017). The combination of the functionalities of feedback circuits is determinant for the attractors’ number and size in pathway-like Boolean networks. Scientific Reports, 7, 42023.PubMedPubMedCentralCrossRefGoogle Scholar
  16. 32.
    Azpeitia, E., Weinstein, N., Benítez, M., Mendoza, L., & Álvarez-Buylla, E. R. (2013). Finding missing interactions of the Arabidopsis thaliana root stem cell niche gene regulatory network. Frontiers in Plant Science, 4, 110.PubMedPubMedCentralCrossRefGoogle Scholar
  17. 41.
    Barrio, R. A. (2008). Turing systems: A general model for complex patterns in nature. In Physics of emergence and organization (pp. 267–296). Singapore: World Scientific. ISBN: 13 978-981-277-994-6, ISBN: 10 981-277-994-9.Google Scholar
  18. 42.
    Barrio, R. A., Hernandez-Machado, A., Varea, C., Romero-Arias, J. R., & Álvarez-Buylla, E. (2010). Flower development as an interplay between dynamical physical fields and genetic networks. PLoS One, 5(10), e13523.PubMedPubMedCentralCrossRefGoogle Scholar
  19. 43.
    Barrio, R. A., Romero-Arias, J. R., Noguez, M. A., Azpeitia, E., Ortiz-Gutiérrez, E., Hernández-Hernández, V., et al. (2013). Cell patterns emerge from coupled chemical and physical fields with cell proliferation dynamics: The Arabidopsis thaliana root as a study system. PLoS Computational Biology, 9(5), e1003026.PubMedPubMedCentralCrossRefGoogle Scholar
  20. 48.
    Ben-Haim, N., Lu, C., Guzman-Ayala, M., Pescatore, L., Mesnard, D., Bischofberger, M., et al. (2006). The nodal precursor acting via activin receptors induces mesoderm by maintaining a source of its convertases and BMP4. Developmental Cell, 11(3), 313–323.PubMedCrossRefPubMedCentralGoogle Scholar
  21. 53.
    Bevilacqua, C., & Ducos, B. (2017). Laser microdissection: A powerful tool for genomics at cell level. Molecular Aspects of Medicine, 59, 5–27.PubMedCrossRefPubMedCentralGoogle Scholar
  22. 54.
    Blaser, M. J. (2017). The theory of disappearing microbiota and the epidemics of chronic diseases. Nature Reviews Immunology, 17(8), 461–463.PubMedCrossRefPubMedCentralGoogle Scholar
  23. 57.
    Bousquet, J., Anto, J. M., Sterk, P. J., Adcock, I. M., Chung, K. F., Roca, J., et al. (2011). Systems medicine and integrated care to combat chronic noncommunicable diseases. Genome Medicine, 3(7), 43.PubMedPubMedCentralCrossRefGoogle Scholar
  24. 59.
    Brady, T., Roth, S. L., Malani, N., Wang, G. P., Berry, C. C., Leboulch, P., et al. (2011). A method to sequence and quantify DNA integration for monitoring outcome in gene therapy. Nucleic Acids Research, 39(11), e72.PubMedPubMedCentralCrossRefGoogle Scholar
  25. 63.
    Bressloff, P. C. (2014). Stochastic processes in cell biology (Vol. 41). New York: Springer.Google Scholar
  26. 67.
    Bruggeman, F. J., & Westerhoff, H. V. (2007). The nature of systems biology. Trends in Microbiology, 15(1), 45–50.PubMedCrossRefPubMedCentralGoogle Scholar
  27. 69.
    Çaǧatay, T., Turcotte, M., Elowitz, M. B., Garcia-Ojalvo, J., & Süel, G. M. (2009). Architecture-dependent noise discriminates functionally analogous differentiation circuits. Cell, 139(3), 512–522.Google Scholar
  28. 72.
    Campbell, C., & Albert, R. (2014). Stabilization of perturbed Boolean network attractors through compensatory interactions. BMC Systems Biology, 8(1), 53.PubMedPubMedCentralCrossRefGoogle Scholar
  29. 78.
    Chaldakov, G. N., Fiore, M., Ghenev, P. I., Beltowski, J., Ranćić, G., Tunçel, N., & Aloe, L. (2014). Triactome: Neuro-immune-adipose interactions. Implication in vascular biology. Frontiers in Immunology, 5, 130.Google Scholar
  30. 84.
    Chen, L., Liu, R., Liu, Z. P., Li, M., & Aihara, K. (2012). Detecting early-warning signals for sudden deterioration of complex diseases by dynamical network biomarkers. Scientific Reports, 2, 342.PubMedPubMedCentralCrossRefGoogle Scholar
  31. 88.
    Christodoulides, P., Hirata, Y., Domínguez-Hüttinger, E., Danby, S. G., Cork, M. J., Williams, H. C., et al. (2017). Computational design of treatment strategies for proactive therapy on atopic dermatitis using optimal control theory. Philosophical Transactions of the Royal Society A, 375(2096), 20160285.CrossRefGoogle Scholar
  32. 94.
    Conley, S. J., Gheordunescu, E., Kakarala, P., Newman, B., Korkaya, H., Heath, A. N., et al. (2012). Antiangiogenic agents increase breast cancer stem cells via the generation of tumor hypoxia. Proceedings of the National Academy of Sciences of the United States of America, 109(8), 2784–2789.PubMedPubMedCentralCrossRefGoogle Scholar
  33. 109.
    Davila-Velderrain, J., & Álvarez-Buylla, E. R. (2014). Bridging genotype and phenotype. In Frontiers in ecology, evolution and complexity (pp. 144–154). Mexico: EditoraC3 CopIt-arXives, UNAM.Google Scholar
  34. 112.
    Davila-Velderrain, J., Villarreal, C., & Álvarez-Buylla, E. R. (2015). Reshaping the epigenetic landscape during early flower development: Induction of attractor transitions by relative differences in gene decay rates. BMC Systems Biology, 9(1), 20.PubMedPubMedCentralCrossRefGoogle Scholar
  35. 119.
    Dolinoy, D. C., Weidman, J. R., & Jirtle, R. L. (2007). Epigenetic gene regulation: Linking early developmental environment to adult disease. Reproductive Toxicology, 23(3), 297–307.PubMedCrossRefGoogle Scholar
  36. 121.
    Dominguez-Hüttinger, E., Boon, N. J., Clarke, T. B., & Tanaka, R. J. (2017). Mathematical modelling of colonization, invasive infection and treatment of Streptococcus pneumoniae. Frontiers in Physiology, 8, 115.PubMedPubMedCentralCrossRefGoogle Scholar
  37. 122.
    Domínguez-Hüttinger, E., Christodoulides, P., Miyauchi, K., Irvine, A. D., Okada-Hatakeyama, M., Kubo, M., et al. (2017). Mathematical modeling of atopic dermatitis reveals “double-switch” mechanisms underlying 4 common disease phenotypes. Journal of Allergy and Clinical Immunology, 139(6), 1861–1872.PubMedCrossRefPubMedCentralGoogle Scholar
  38. 123.
    Domínguez-Hüttinger, E., Ono, M., Barahona, M., & Tanaka, R. J. (2013). Risk factor-dependent dynamics of atopic dermatitis: Modelling multi-scale regulation of epithelium homeostasis. Interface Focus, 3(2), 20120090.PubMedPubMedCentralCrossRefGoogle Scholar
  39. 132.
    Elias, P. M., Hatano, Y., & Williams, M. L. (2008). Basis for the barrier abnormality in atopic dermatitis: Outside-inside-outside pathogenic mechanisms. Journal of Allergy and Clinical Immunology, 121(6), 1337–1343.PubMedCrossRefGoogle Scholar
  40. 135.
    Elinav, E., Nowarski, R., Thaiss, C. A., Hu, B., Jin, C., & Flavell, R. A. (2013). Inflammation-induced cancer: Crosstalk between tumours, immune cells and microorganisms. Nature Reviews Cancer, 13(11), 759–771.PubMedCrossRefPubMedCentralGoogle Scholar
  41. 138.
    Ellner, S. P., & Guckenheimer, J. (2011). Dynamic models in biology. Princeton: Princeton University Press.Google Scholar
  42. 141.
    Espinosa-Soto, C., Padilla-Longoria, P., & Álvarez-Buylla, E. R. (2004). A gene regulatory network model for cell–fate determination during Arabidopsis thaliana flower development that is robust and recovers experimental gene expression profiles. Plant Cell, 16, 2923–2939.PubMedPubMedCentralCrossRefGoogle Scholar
  43. 149.
    Fey, D., Halasz, M., Dreidax, D., Kennedy, S. P., Hastings, J. F., Rauch, N., et al. (2015). Signaling pathway models as biomarkers: Patient-specific simulations of JNK activity predict the survival of neuroblastoma patients. Science Signaling, 8(408), 1–16.CrossRefGoogle Scholar
  44. 150.
    Flintoft, L. (2005). From genotype to phenotype: A shortcut through the library. Nature Reviews Genetics, 6. Article ID 520.Google Scholar
  45. 154.
    Franks, P. W., Pearson, E., & Florez, J. C. (2013). Gene-environment and gene-treatment interactions in type 2 diabetes. Diabetes Care, 36(5), 1413–1421.PubMedPubMedCentralCrossRefGoogle Scholar
  46. 159.
    Gallagher, K. L., Sozzani, R., & Lee, C. M. (2014). Intercellular protein movement: Deciphering the language of development. Annual Review of Cell and Developmental Biology, 30, 207–233.PubMedCrossRefPubMedCentralGoogle Scholar
  47. 161.
    Gao, J., Barzel, B., & Barabási, A. L. (2016). Universal resilience patterns in complex networks. Nature, 530(7590), 307–312.PubMedCrossRefPubMedCentralGoogle Scholar
  48. 170.
    Goldberg, M. (2008). A systematic review of the relation between long-term exposure to ambient air pollution and chronic diseases. Reviews on Environmental Health, 23(4), 243–298.PubMedCrossRefPubMedCentralGoogle Scholar
  49. 172.
    Goodwin, B. C. (1994). How the leopard changed its spots. In The evolution of complexity. Princeton: Princeton University Press.Google Scholar
  50. 174.
    Gordillo, M., Evans, T., & Gouon-Evans, V. (2015). Orchestrating liver development. Development, 142(12), 2094–2108.PubMedPubMedCentralCrossRefGoogle Scholar
  51. 178.
    Grarup, N., Sandholt, C. H., Hansen, T., & Pedersen, O. (2014). Genetic susceptibility to type 2 diabetes and obesity: From genome-wide association studies to rare variants and beyond. Diabetologia, 57(8), 1528–1541.PubMedCrossRefPubMedCentralGoogle Scholar
  52. 181.
    Groß-Hardt, R., & Laux, T. (2003). Stem cell regulation in the shoot meristem. Journal of Cell Science, 116(9), 1659–1666.PubMedCrossRefPubMedCentralGoogle Scholar
  53. 189.
    Hamant, O., Traas, J., & Boudaoud, A. (2010). Regulation of shape and patterning in plant development. Current Opinion in Genetics & Development, 20(4), 454–459.CrossRefGoogle Scholar
  54. 197.
    Hinz, B. (2009). Tissue stiffness, latent TGF-β1 activation, and mechanical signal transduction: Implications for the pathogenesis and treatment of fibrosis. Current Rheumatology Reports, 11(2), 120–126.PubMedCrossRefPubMedCentralGoogle Scholar
  55. 198.
    Hirata, Y., Bruchovsky, N., & Aihara, K. (2010). Development of a mathematical model that predicts the outcome of hormone therapy for prostate cancer. Journal of Theoretical Biology, 264(2), 517–527.PubMedCrossRefPubMedCentralGoogle Scholar
  56. 199.
    Hirata, Y., di Bernardo, M., Bruchovsky, N., & Aihara, K. (2010). Hybrid optimal scheduling for intermittent androgen suppression of prostate cancer. Chaos: An Interdisciplinary Journal of Nonlinear Science, 20(4), 045125.CrossRefGoogle Scholar
  57. 200.
    Hirata, Y., Morino, K., Akakura, K., Higano, C. S., Bruchovsky, N., Gambol, T., et al. (2015). Intermittent androgen suppression: Estimating parameters for individual patients based on initial PSA data in response to androgen deprivation therapy. PloS One, 10(6), e0130372.PubMedPubMedCentralCrossRefGoogle Scholar
  58. 211.
    Huang, S. (2011). Systems biology of stem cells: Three useful perspectives to help overcome the paradigm of linear pathways. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 366(1575), 2247–2259.PubMedCrossRefPubMedCentralGoogle Scholar
  59. 213.
    Huang, S. (2013). Genetic and non-genetic instability in tumor progression: Link between the fitness landscape and the epigenetic landscape of cancer cells. Cancer and Metastasis Reviews, 32(3–4), 423–448.PubMedCrossRefPubMedCentralGoogle Scholar
  60. 214.
    Huang, S., Eichler, G., Bar-Yam, Y., & Ingber, D. E. (2005). Cell fates as high-dimensional attractor states of a complex gene regulatory network. Physical Review Letters, 94(12), 128701.PubMedCrossRefPubMedCentralGoogle Scholar
  61. 215.
    Huang, S., Ernberg, I., & Kauffman, S. (2009). Cancer attractors: A systems view of tumors from a gene network dynamics and developmental perspective. Seminars in Cell & Developmental Biology, 20(7), 869–876.CrossRefGoogle Scholar
  62. 217.
    Huang, S., & Kauffman, S. A. (2009). Complex GRN regulatory networks: From structure to biological observables: Cell fate determination. In Encyclopedia of complexity and systems science (pp. 1180–1213). New York: Springer.CrossRefGoogle Scholar
  63. 226.
    Jensen, K. J., Moyer, C. B., & Janes, K. A. (2016). Network architecture predisposes an enzyme to either pharmacologic or genetic targeting. Cell Systems, 2(2), 112–121.PubMedPubMedCentralCrossRefGoogle Scholar
  64. 227.
    Jeong, H., Mason, S. P., Barabási, A. L., & Oltvai, Z. N. (2001). Lethality and centrality in protein networks. Nature, 411(6833), 41–42.PubMedCrossRefPubMedCentralGoogle Scholar
  65. 230.
    Kalluri, R. (2009). EMT: When epithelial cells decide to become mesenchymal-like cells. The Journal of Clinical Investigation, 119(6), 1417.PubMedPubMedCentralCrossRefGoogle Scholar
  66. 232.
    Kaneko, K. (2006). Life: An introduction to complex systems biology. Berlin: Springer.CrossRefGoogle Scholar
  67. 240.
    Kauffman, S. A. (1969). Metabolic stability and epigenesis in randomly constructed genetic nets. Journal of Theoretical Biology, 22(3), 437–467.PubMedCrossRefPubMedCentralGoogle Scholar
  68. 241.
    Kauffman, S. A. (1993). The origins of order: Self-organization and selection in evolution. Oxford: Oxford University Press.Google Scholar
  69. 244.
    Kennedy, M. A., Gonzalez-Sarmiento, R., Kees, U. R., Lampert, F., Dear, N., Boehm, T., et al. (1991). HOX11, a homeobox-containing T-cell oncogene on human chromosome 10q24. Proceedings of the National Academy of Sciences, 88(20), 8900–8904.CrossRefGoogle Scholar
  70. 246.
    Kim, Y. A., & Przytycka, T. M. (2013). Bridging the gap between genotype and phenotype via network approaches. Frontiers in Genetics, 3, 227.PubMedPubMedCentralCrossRefGoogle Scholar
  71. 261.
    Latham, A. M., Molina-París, C., Homer-Vanniasinkam, S., & Ponnambalam, S. (2010). An integrative model for vascular endothelial growth factor A as a tumour biomarker. Integrative Biology, 2(9), 397–407.PubMedCrossRefPubMedCentralGoogle Scholar
  72. 263.
    Laubenbacher, R., Hower, V., Jarrah, A., Torti, S. V., Shulaev, V., Mendes, P., et al. (2009). A systems biology view of cancer. Biochimica et Biophysica Acta—Reviews on Cancer, 1796(2), 129–139.CrossRefGoogle Scholar
  73. 264.
    Laurent, M., & Kellershohn, N. (1999). Multistability: A major means of differentiation and evolution in biological systems. Trends in Biochemical Sciences, 24(11), 418–422.PubMedCrossRefPubMedCentralGoogle Scholar
  74. 271.
    Lewontin, R. (1974). The genetic basis of evolutionary change. Columbia biological series. Columbia: Columbia University Press.Google Scholar
  75. 275.
    Li, E., Materna, S. C., & Davidson, E. H. (2013). New regulatory circuit controlling spatial and temporal gene expression in the sea urchin embryo oral ectoderm GRN. Developmental Biology, 382(1), 268–279.PubMedPubMedCentralCrossRefGoogle Scholar
  76. 276.
    Liberman, L. M., Sozzani, R., & Benfey, P. N. (2012). Integrative systems biology: An attempt to describe a simple weed. Current Opinion in Plant Biology, 15(2), 162–167.PubMedPubMedCentralCrossRefGoogle Scholar
  77. 278.
    Lindberg, M. J., Popko-Scibor, A. E., Hansson, M. L., & Wallberg, A. E. (2010). SUMO modification regulates the transcriptional activity of MAML1. The FASEB Journal, 24(7), 2396–2404.PubMedCrossRefPubMedCentralGoogle Scholar
  78. 281.
    Liu, E. T., & Lauffenburger, D. A. (Eds.). (2009). Systems biomedicine: Concepts and perspectives. New York: Academic.Google Scholar
  79. 282.
    Liu, L., You, Z., Yu, H., Zhou, L., Zhao, H., Yan, X., et al. (2017). Mechanotransduction-modulated fibrotic microniches reveal the contribution of angiogenesis in liver fibrosis. Nature Materials, 16, 1252. nmat5024.Google Scholar
  80. 286.
    Loktionov, A. (2003). Common gene polymorphisms and nutrition: Emerging links with pathogenesis of multifactorial chronic diseases. The Journal of Nutritional Biochemistry, 14(8), 426–451.PubMedCrossRefPubMedCentralGoogle Scholar
  81. 291.
    Lynch, J., & Smith, G. D. (2005). A life course approach to chronic disease epidemiology. Annual Review of Public Health, 26, 1–35.PubMedCrossRefPubMedCentralGoogle Scholar
  82. 295.
    Mammoto, T., & Ingber, D. E. (2010). Mechanical control of tissue and organ development. Development, 137(9), 1407–1420.PubMedPubMedCentralCrossRefGoogle Scholar
  83. 299.
    Marchiando, A. M., Graham, W. V., & Turner, J. R. (2010). Epithelial barriers in homeostasis and disease. Annual Review of Pathological Mechanical Disease, 5, 119–144.CrossRefGoogle Scholar
  84. 302.
    Marioni, J. C., & Arendt, D. (2017). How single-cell genomics is changing evolutionary and developmental biology. Annual Review of Cell and Developmental Biology, 33(1), 537–553.PubMedCrossRefPubMedCentralGoogle Scholar
  85. 304.
    Mayburd, A. L. (2009). Expression variation: Its relevance to emergence of chronic disease and to therapy. PLoS One, 4(6), e5921.PubMedPubMedCentralCrossRefGoogle Scholar
  86. 307.
    McDonnell, M. D., & Abbott, D. (2009). What is stochastic resonance?. Definitions, misconceptions, debates, and its relevance to biology. PLoS Computational Biology, 5(5), e1000348.Google Scholar
  87. 308.
    McGeer, P. L., & Mcgeer, E. G. (2004). Inflammation and the degenerative diseases of aging. Annals of the New York Academy of Sciences, 1035(1), 104–116.PubMedCrossRefPubMedCentralGoogle Scholar
  88. 311.
    Meaburn, K. J., Burman, B., & Misteli, T. (2016). Spatial genome organization and disease. In The functional nucleus (pp. 101–125). Berlin: Springer International Publishing.CrossRefGoogle Scholar
  89. 312.
    Meinhardt, H. (1982). Models of biological pattern formation. London: Academic.Google Scholar
  90. 316.
    Méndez-López, L. F., Davila-Velderrain, J., Domínguez-Hüttinger, E., Enríquez-Olguín, C., Martínez-García, J. C., & Álvarez-Buylla, E. R. (2017). Gene regulatory network underlying the immortalization of epithelial cells. BMC Systems Biology, 11(1), 24.PubMedPubMedCentralCrossRefGoogle Scholar
  91. 318.
    Mendoza, L., & Álvarez-Buylla, E. R. (1998). Dynamics of the genetic regulatory network for arabidopsis thaliana flower morphogenesis. Journal of Theoretical Biology, 193(2), 307–319.PubMedCrossRefPubMedCentralGoogle Scholar
  92. 320.
    Mendoza, L., Thieffry, D., & Álvarez-Buylla, E. R. (1999). Genetic control of flower morphogenesis in Arabidopsis thaliana: A logical analysis. Bioinformatics, 15, 593–606.PubMedCrossRefPubMedCentralGoogle Scholar
  93. 321.
    Meng, L., Maskarinec, G., Lee, J., & Kolonel, L. N. (1999). Lifestyle factors and chronic diseases: Application of a composite risk index. Preventive Medicine, 29(4), 296–304.PubMedCrossRefPubMedCentralGoogle Scholar
  94. 326.
    Mirabet, V., Das, P., Boudaoud, A., & Hamant, O. (2011). The role of mechanical forces in plant morphogenesis. Annual Review of Plant Biology, 62, 365–385.PubMedCrossRefPubMedCentralGoogle Scholar
  95. 327.
    Molina, D. M., Jafari, R., Ignatushchenko, M., Seki, T., Larsson, E. A., Dan, C., et al. (2013). Monitoring drug target engagement in cells and tissues using the cellular thermal shift assay. Science, 341(6141), 84–87.CrossRefGoogle Scholar
  96. 348.
    Nieto, M. A., Huang, R. Y. J., Jackson, R. A., & Thiery, J. P. (2016). EMT: 2016. Cell, 166(1), 21–45.PubMedCrossRefPubMedCentralGoogle Scholar
  97. 353.
    Oates, A. C. (2011). What’s all the noise about developmental stochasticity?. Development, 138(4), 601–607.PubMedCrossRefPubMedCentralGoogle Scholar
  98. 363.
    Park, S., & Lehner, B. (2015). Cancer type-dependent genetic interactions between cancer driver alterations indicate plasticity of epistasis across cell types. Molecular Systems Biology, 11(7), 824.PubMedPubMedCentralCrossRefGoogle Scholar
  99. 366.
    Pawankar, R. (2014). Allergic diseases and asthma: A global public health concern and a call to action. World Allergy Organization Journal, 7(1), 12.PubMedCrossRefPubMedCentralGoogle Scholar
  100. 370.
    Perkins, T. J., & Swain, P. S. (2009). Strategies for cellular decision-making. Molecular Systems Biology, 5(1), 326.PubMedPubMedCentralGoogle Scholar
  101. 371.
    Pfeuty, B., & Kaneko, K. (2014). Reliable binary cell-fate decisions based on oscillations. Physical Review E, 89(2), 022707.CrossRefGoogle Scholar
  102. 372.
    Pisco, A. O., & Huang, S. (2015). Non-genetic cancer cell plasticity and therapy-induced stemness in tumour relapse: ‘What does not kill me strengthens me’. British Journal of Cancer, 112(11), 1725.PubMedPubMedCentralCrossRefGoogle Scholar
  103. 376.
    Poplawski, N. J., Swat, M., Gens, J. S., & Glazier, J. A. (2007). Adhesion between cells, diffusion of growth factors, and elasticity of the AER produce the paddle shape of the chick limb. Physica A: Statistical Mechanics and Its Applications, 373, 521–532.PubMedCrossRefPubMedCentralGoogle Scholar
  104. 377.
    Prina, E., Ranzani, O. T., & Torres, A. (2015). Community-acquired pneumonia. The Lancet, 386(9998), 1097–1108.CrossRefGoogle Scholar
  105. 378.
    Prochiantz, A., & Joliot, A. (2003). Can transcription factors function as cell–cell signalling molecules?. Nature Reviews Molecular Cell Biology, 4(10), 814–819.PubMedCrossRefPubMedCentralGoogle Scholar
  106. 384.
    Raviv, S., Bharti, K., Rencus-Lazar, S., Cohen-Tayar, Y., Schyr, R., Evantal, N., et al. (2014). PAX6 regulates melanogenesis in the retinal pigmented epithelium through feed-forward regulatory interactions with MITF. PLoS Genetics, 10(5), e1004360.PubMedPubMedCentralCrossRefGoogle Scholar
  107. 386.
    Richard, M., & Yvert, G. (2014). How does evolution tune biological noise?. Frontiers in Genetics, 5, 374.PubMedPubMedCentralCrossRefGoogle Scholar
  108. 391.
    Rogers, E. D., Jackson, T., Moussaieff, A., Aharoni, A., & Benfey, P. N. (2012). Cell type-specific transcriptional profiling: Implications for metabolite profiling. The Plant Journal, 70(1), 5–17.PubMedPubMedCentralCrossRefGoogle Scholar
  109. 392.
    Romero, I. G., Ruvinsky, I., & Gilad, Y. (2012). Comparative studies of gene expression and the evolution of gene regulation. Nature Reviews Genetics, 13(7), 505–516.PubMedPubMedCentralCrossRefGoogle Scholar
  110. 394.
    Rybinski, B., Franco-Barraza, J., & Cukierman, E. (2014). The wound healing, chronic fibrosis, and cancer progression triad. Physiological Genomics, 46(7), 223–244.PubMedPubMedCentralCrossRefGoogle Scholar
  111. 398.
    Sandmann, T., Girardot, C., Brehme, M., Tongprasit, W., Stolc, V., & Furlong, E. E. (2007). A core transcriptional network for early mesoderm development in Drosophila melanogaster. Genes & Development, 21(4), 436–449.CrossRefGoogle Scholar
  112. 401.
    Sawyer, J. M., Harrell, J. R., Shemer, G., Sullivan-Brown, J., Roh-Johnson, M., & Goldstein, B. (2010). Apical constriction: A cell shape change that can drive morphogenesis. Developmental Biology, 341(1), 5–19.PubMedCrossRefPubMedCentralGoogle Scholar
  113. 407.
    Schoepe, S., Schäcke, H., May, E., & Asadullah, K. (2006). Glucocorticoid therapy-induced skin atrophy. Experimental Dermatology, 15(6), 406–420.PubMedCrossRefPubMedCentralGoogle Scholar
  114. 409.
    Schwabe, R. F., & Jobin, C. (2013). The microbiome and cancer. Nature Reviews Cancer, 13(11), 800–812.PubMedPubMedCentralCrossRefGoogle Scholar
  115. 411.
    Sewell, G. W., Marks, D. J., & Segal, A. W. (2009). The immunopathogenesis of Crohn’s disease: A three-stage model. Current Opinion in Immunology, 21(5), 506–513.PubMedPubMedCentralCrossRefGoogle Scholar
  116. 419.
    Simões-Costa, M., & Bronner, M. E. (2015). Establishing neural crest identity: A gene regulatory recipe. Development, 142(2), 242–257.PubMedPubMedCentralCrossRefGoogle Scholar
  117. 422.
    Solé, R. V., & Goodwin, B. C. (2000). Signs of life: How complexity pervades biology. London: Basic Books.Google Scholar
  118. 425.
    Steinway, S. N., Zañudo, J. G. T., Michel, P. J., Feith, D. J., Loughran, T. P., & Albert, R. (2015). Combinatorial interventions inhibit TGF β-driven epithelial-to-mesenchymal transition and support hybrid cellular phenotypes. NPJ Systems Biology and Applications, 1, 15014.PubMedPubMedCentralCrossRefGoogle Scholar
  119. 426.
    Stelling, J., Sauer, U., Szallasi, Z., Doyle, F. J., & Doyle, J. (2004). Robustness of cellular functions. Cell, 118(6), 675–685.PubMedCrossRefPubMedCentralGoogle Scholar
  120. 440.
    Tanay, A., & Regev, A. (2017). Scaling single-cell genomics from phenomenology to mechanism. Nature, 541(7637), 331–338.PubMedPubMedCentralCrossRefGoogle Scholar
  121. 442.
    Tawfik, D. S. (2010). Messy biology and the origins of evolutionary innovations. Nature Chemical Biology, 6(10), 692.PubMedCrossRefPubMedCentralGoogle Scholar
  122. 445.
    Theodorakis, C. W. (2001). Integration of genotoxic and population genetic endpoints in biomonitoring and risk assessment. Ecotoxicology, 10(4), 245–256.PubMedCrossRefPubMedCentralGoogle Scholar
  123. 446.
    Thom, R. (1983). Paraboles et catastrophes. Paris: Flammarion.Google Scholar
  124. 449.
    Tiemann, C. A., Vanlier, J., Hilbers, P. A., & van Riel, N. A. (2011). Parameter adaptations during phenotype transitions in progressive diseases. BMC Systems Biology, 5(1), 174.PubMedPubMedCentralCrossRefGoogle Scholar
  125. 450.
    Tiemann, C. A., Vanlier, J., Oosterveer, M. H., Groen, A. K., Hilbers, P. A., & van Riel, N. A. (2013). Parameter trajectory analysis to identify treatment effects of pharmacological interventions. PLoS Computational Biology, 9(8), e1003166.PubMedPubMedCentralCrossRefGoogle Scholar
  126. 452.
    Tomlin, C. J., & Axelrod, J. D. (2007). Biology by numbers: Mathematical modelling in developmental biology. Nature Reviews Genetics, 8(5), 331.PubMedCrossRefPubMedCentralGoogle Scholar
  127. 455.
    Tsai, C. C., Chen, Y. J., Yew, T. L., Chen, L. L., Wang, J. Y., Chiu, C. H., & Hung, S. C. (2011). Hypoxia inhibits senescence and maintains mesenchymal stem cell properties through down-regulation of E2A-p21 by HIF-TWIST. Blood, 117(2), 459–469.PubMedCrossRefPubMedCentralGoogle Scholar
  128. 457.
    Turing, A. M. (1952). The chemical basis of morphogenesis. Philosophical Transactions of the Royal Society of London B, 237(641), 37–72.CrossRefGoogle Scholar
  129. 458.
    Turner, J. R. (2009). Intestinal mucosal barrier function in health and disease. Nature Reviews Immunology, 9(11), 799–809.PubMedCrossRefPubMedCentralGoogle Scholar
  130. 460.
    USDA-NRCS PLANTS Database/Britton, N. L., & Brown, A. (1913). An illustrated flora of the Northern United States, Canada and the British Possessions (3 vols., Vol. 2, p. 176). New York: Charles Scribner’s Sons.Google Scholar
  131. 468.
    Villarreal, C., Padilla-Longoria, P., & Álvarez-Buylla, E. R. (2012). General theory of genotype to phenotype mapping: Derivation of epigenetic landscapes from N-node complex gene regulatory networks. Physical Review Letters, 109(11), 118102.PubMedCrossRefPubMedCentralGoogle Scholar
  132. 472.
    Von Dassow, G., Meir, E., Munro, E. M., & Odell, G. M. (2000). The segment polarity network is a robust developmental module. Nature, 406(6792), 188.CrossRefGoogle Scholar
  133. 473.
    Waddington, C. H. (1957). The strategy of the genes. A discussion of some aspects of theoretical biology; with an appendix by H. Kacser. London: George Allen & Unwin.Google Scholar
  134. 483.
    Weidinger, S., Baurecht, H., Wagenpfeil, S., Henderson, J., Novak, N., Sandilands, A., et al. (2008). Analysis of the individual and aggregate genetic contributions of previously identified serine peptidase inhibitor Kazal type 5 (SPINK5), kallikrein-related peptidase 7 (KLK7), and filaggrin (FLG) polymorphisms to eczema risk. Journal of Allergy and Clinical Immunology, 122(3), 560–568.PubMedCrossRefPubMedCentralGoogle Scholar
  135. 487.
    Weisburger, J. H. (2002). Lifestyle, health and disease prevention: The underlying mechanisms. European Journal of Cancer Prevention: The Official Journal of the European Cancer Prevention Organization (ECP), 11, S1-7.CrossRefGoogle Scholar
  136. 494.
    Wolpert, L. (1969). Positional information and the spatial pattern of cellular differentiation. Journal of Theoretical Biology, 25(1), 1–47.PubMedCrossRefPubMedCentralGoogle Scholar
  137. 495.
    Wood, T., Burke, J., & Rieseberg, L. (2005). Parallel genotypic adaptation: When evolution repeats itself. In Genetics of adaptation (pp. 157–170). Dordrecht: Springer.CrossRefGoogle Scholar
  138. 497.
    Xing, F., Saidou, J., & Watabe, K. (2010). Cancer associated fibroblasts (CAFs) in tumor microenvironment. Frontiers in Bioscience: A Journal and Virtual Library, 15, 166.CrossRefGoogle Scholar
  139. 508.
    Yu, C., Wang, F., Jin, C., Wu, X., Chan, W. K., & McKeehan, W. L. (2002). Increased carbon tetrachloride-induced liver injury and fibrosis in FGFR4-deficient mice. The American Journal of Pathology, 161(6), 2003–2010.PubMedPubMedCentralCrossRefGoogle Scholar
  140. 509.
    Yu, R., Liu, Q., Liu, J., Wang, Q., & Wang, Y. (2016). Concentrations of organophosphorus pesticides in fresh vegetables and related human health risk assessment in Changchun, Northeast China. Food Control, 60, 353–360.CrossRefGoogle Scholar
  141. 511.
    Zernicka-Goetz, M., & Huang, S. (2010). Stochasticity versus determinism in development: A false dichotomy?. Nature Reviews Genetics, 11(11), 743.PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • María Elena Álvarez-Buylla Roces
    • 1
  • Juan Carlos Martínez-García
    • 2
  • José Dávila-Velderrain
    • 3
  • Elisa Domínguez-Hüttinger
    • 4
  • Mariana Esther Martínez-Sánchez
    • 1
  1. 1.Ciudad Universitaria, UNAM, Instituto de EcologíaCiudad de MéxicoMexico
  2. 2.Departamento de Control AutomáticoCINVESTAVCiudad de MéxicoMexico
  3. 3.CSIL, Massachusetts Institute of TechnologyCambridgeUSA
  4. 4.Centro de Ciencias Matemáticas, UNAMMoreliaMéxico

Personalised recommendations