Cryptanalysis of RSA Variants with Modified Euler Quotient
Abstract
The standard RSA scheme provides the key equation \(ed\equiv 1\pmod {\varphi (N)}\) for \(N=pq\), where \(\varphi (N)=(p-1)(q-1)\) is Euler quotient (or Euler’s totient function), e and d are the public and private keys, respectively. It has been extended to the following variants with modified Euler quotient \(\omega (N)=(p^2-1)(q^2-1)\), which in turn indicates the modified key equation is \(ed\equiv 1\pmod {\omega (N)}\).
-
An RSA-type scheme based on singular cubic curves \(y^2\equiv x^3+bx^2\pmod {N}\) for \(N=pq\).
-
An extended RSA scheme based on the field of Gaussian integers for \(N=PQ\), where P, Q are Gaussian primes with \(p=|P|\), \(q=|Q|\).
-
A scheme working in quadratic field quotients using Lucas sequences with an RSA modulus \(N=pq\).
In this paper, we investigate some key-related attacks on such RSA variants using lattice-based techniques. To be specific, small private key attack, multiple private keys attack, and partial key exposure attack are proposed. Furthermore, we provide the first results for multiple private keys attack and partial key exposure attack when analyzing the RSA variants with modified Euler quotient.
Keywords
RSA variants Modified Euler quotient Lattice Multiple private keys attack Partial key exposure attackNotes
Acknowledgments
The authors would like to thank the anonymous reviewers for their valuable comments and suggestions. This work was partially supported by National Natural Science Foundation of China (Grant Nos. 61522210, 61632013).
References
- 1.Aono, Y.: Minkowski sum based lattice construction for multivariate simultaneous Coppersmith’s technique and applications to RSA. In: Boyd, C., Simpson, L. (eds.) ACISP 2013. LNCS, vol. 7959, pp. 88–103. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39059-3_7CrossRefGoogle Scholar
- 2.Blömer, J., May, A.: New partial key exposure attacks on RSA. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 27–43. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-45146-4_2CrossRefGoogle Scholar
- 3.Boneh, D., Durfee, G.: Cryptanalysis of RSA with private key d less than N0.292. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 1–11. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48910-X_1CrossRefGoogle Scholar
- 4.Boneh, D., Durfee, G., Frankel, Y.: An attack on RSA given a small fraction of the private key bits. In: Ohta, K., Pei, D. (eds.) ASIACRYPT 1998. LNCS, vol. 1514, pp. 25–34. Springer, Heidelberg (1998). https://doi.org/10.1007/3-540-49649-1_3CrossRefGoogle Scholar
- 5.Bunder, M., Nitaj, A., Susilo, W., Tonien, J.: A new attack on three variants of the RSA cryptosystem. In: Liu, J.K., Steinfeld, R. (eds.) ACISP 2016. LNCS, vol. 9723, pp. 258–268. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-40367-0_16CrossRefGoogle Scholar
- 6.Bunder, M., Tonien, J.: New attack on the RSA cryptosystem based on continued fractions. Malays. J. Math. Sci. 11(S3), 45–57 (2017)MathSciNetGoogle Scholar
- 7.Castagnos, G.: An efficient probabilistic public-key cryptosystem over quadratic fields quotients. Finite Fields Appl. 13(3), 563–576 (2007)MathSciNetCrossRefMATHGoogle Scholar
- 8.Coppersmith, D.: Finding a small root of a bivariate integer equation; factoring with high bits known. In: Maurer, U. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 178–189. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-68339-9_16CrossRefGoogle Scholar
- 9.Coppersmith, D.: Finding a small root of a univariate modular equation. In: Maurer, U. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 155–165. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-68339-9_14CrossRefGoogle Scholar
- 10.Coppersmith, D.: Small solutions to polynomial equations, and low exponent RSA vulnerabilities. J. Cryptol. 10(4), 233–260 (1997)MathSciNetCrossRefMATHGoogle Scholar
- 11.Coron, J.-S.: Finding small roots of bivariate integer polynomial equations revisited. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 492–505. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24676-3_29CrossRefGoogle Scholar
- 12.Coron, J.-S.: Finding small roots of bivariate integer polynomial equations: a direct approach. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 379–394. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74143-5_21CrossRefGoogle Scholar
- 13.Elkamchouchi, H., Elshenawy, K., Shaban, H.: Extended RSA cryptosystem and digital signature schemes in the domain of Gaussian integers. In: ICCS 2002, vol. 1, pp. 91–95. IEEE (2002)Google Scholar
- 14.Ernst, M., Jochemsz, E., May, A., de Weger, B.: Partial key exposure attacks on RSA up to full size exponents. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 371–386. Springer, Heidelberg (2005). https://doi.org/10.1007/11426639_22CrossRefGoogle Scholar
- 15.Fiat, A.: Batch RSA. In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 175–185. Springer, New York (1990). https://doi.org/10.1007/0-387-34805-0_17CrossRefGoogle Scholar
- 16.Halderman, J.A., Schoen, S.D., Heninger, N., Clarkson, W., Paul, W., Calandrino, J.A., Feldman, A.J., Appelbaum, J., Felten, E.W.: Lest we remember: cold-boot attacks on encryption keys. Commun. ACM 52(5), 91–98 (2009)CrossRefGoogle Scholar
- 17.Herrmann, M., May, A.: Maximizing small root bounds by linearization and applications to small secret exponent RSA. In: Nguyen, P.Q., Pointcheval, D. (eds.) PKC 2010. LNCS, vol. 6056, pp. 53–69. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13013-7_4CrossRefGoogle Scholar
- 18.Howgrave-Graham, N.: Finding small roots of univariate modular equations revisited. In: Darnell, M. (ed.) Cryptography and Coding 1997. LNCS, vol. 1355, pp. 131–142. Springer, Heidelberg (1997). https://doi.org/10.1007/BFb0024458CrossRefGoogle Scholar
- 19.Howgrave-Graham, N., Seifert, J.-P.: Extending Wiener’s attack in the presence of many decrypting exponents. CQRE 1999. LNCS, vol. 1740, pp. 153–166. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-46701-7_14CrossRefGoogle Scholar
- 20.Jochemsz, E., May, A.: A strategy for finding roots of multivariate polynomials with new applications in attacking RSA variants. In: Lai, X., Chen, K. (eds.) ASIACRYPT 2006. LNCS, vol. 4284, pp. 267–282. Springer, Heidelberg (2006). https://doi.org/10.1007/11935230_18CrossRefGoogle Scholar
- 21.Jochemsz, E., May, A.: A polynomial time attack on RSA with private CRT-exponents smaller than N0.073. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 395–411. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74143-5_22CrossRefGoogle Scholar
- 22.Kocher, P.C.: Timing attacks on implementations of Diffie-Hellman, RSA, DSS, and other systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 104–113. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-68697-5_9Google Scholar
- 23.Kuwakado, H., Koyama, K., Tsuruoka, Y.: New RSA-type scheme based on singular cubic curves \({y^2\equiv x^3+bx^2}\) (mod \({n}\)). IEICE Trans. Fundam. Electron. Commun. Comput. Sci. E78–A(1), 27–33 (1995)Google Scholar
- 24.Lenstra, A.K., Lenstra, H.W., Lovász, L.: Factoring polynomials with rational coefficients. Math. Ann. 261(4), 515–534 (1982)MathSciNetCrossRefMATHGoogle Scholar
- 25.May, A.: Using LLL-reduction for solving RSA and factorization problems. In: Nguyen, P.Q., Vallée, B. (eds.) The LLL Algorithm - Survey and Applications. ISC, pp. 315–348. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-02295-1_10Google Scholar
- 26.Peng, L., Hu, L., Lu, Y., Sarkar, S., Xu, J., Huang, Z.: Cryptanalysis of variants of RSA with multiple small secret exponents. In: Biryukov, A., Goyal, V. (eds.) INDOCRYPT 2015. LNCS, vol. 9462, pp. 105–123. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-26617-6_6CrossRefGoogle Scholar
- 27.Peng, L., Hu, L., Lu, Y., Wei, H.: An improved analysis on three variants of the RSA cryptosystem. In: Chen, K., Lin, D., Yung, M. (eds.) Inscrypt 2016. LNCS, vol. 10143, pp. 140–149. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-54705-3_9CrossRefGoogle Scholar
- 28.Quisquater, J.J., Couvreur, C.: Fast decipherment algorithm for RSA public-key cryptosystem. Electron. Lett. 18(21), 905–907 (1982)CrossRefGoogle Scholar
- 29.Ristenpart, T., Tromer, E., Shacham, H., Savage, S.: Hey, you, get off of my cloud: exploring information leakage in third-party compute clouds. In: Al-Shaer, E., Jha, S., Keromytis, A.D. (eds.) ACM CCS 2009, pp. 199–212. ACM Press, Chicago (2009)Google Scholar
- 30.Rivest, R.L., Shamir, A., Adleman, L.: A method for obtaining digital signatures and public-key cryptosystems. Commun. ACM 21(2), 120–126 (1978)MathSciNetCrossRefMATHGoogle Scholar
- 31.Sarkar, S.: Small secret exponent attack on RSA variant with modulus \(N=p^r q\). Des. Codes Cryptogr. 73(2), 383–392 (2014)MathSciNetCrossRefMATHGoogle Scholar
- 32.Sarkar, S.: Revisiting prime power RSA. Discrete Appl. Math. 203, 127–133 (2016)MathSciNetCrossRefMATHGoogle Scholar
- 33.Sarkar, S., Maitra, S.: Cryptanalytic results on ‘Dual CRT’ and ‘Common Prime’ RSA. Des. Codes Cryptogr. 66(1–3), 157–174 (2013)MathSciNetCrossRefMATHGoogle Scholar
- 34.Sarkar, S., Venkateswarlu, A.: Partial key exposure attack on CRT-RSA. In: Meier, W., Mukhopadhyay, D. (eds.) INDOCRYPT 2014. LNCS, vol. 8885, pp. 255–264. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-13039-2_15Google Scholar
- 35.Takagi, T.: Fast RSA-type cryptosystem modulo pkq. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, pp. 318–326. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0055738CrossRefGoogle Scholar
- 36.Takayasu, A., Kunihiro, N.: Cryptanalysis of RSA with multiple small secret exponents. In: Susilo, W., Mu, Y. (eds.) ACISP 2014. LNCS, vol. 8544, pp. 176–191. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08344-5_12Google Scholar
- 37.Takayasu, A., Kunihiro, N.: Partial key exposure attacks on RSA: achieving the Boneh-Durfee bound. In: Joux, A., Youssef, A. (eds.) SAC 2014. LNCS, vol. 8781, pp. 345–362. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-13051-4_21CrossRefGoogle Scholar
- 38.Takayasu, A., Kunihiro, N.: Partial key exposure attacks on RSA with multiple exponent pairs. In: Liu, J.K., Steinfeld, R. (eds.) ACISP 2016. LNCS, vol. 9723, pp. 243–257. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-40367-0_15CrossRefGoogle Scholar
- 39.Takayasu, A., Kunihiro, N.: A tool kit for partial key exposure attacks on RSA. In: Handschuh, H. (ed.) CT-RSA 2017. LNCS, vol. 10159, pp. 58–73. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-52153-4_4CrossRefGoogle Scholar
- 40.Wiener, M.J.: Cryptanalysis of short RSA secret exponents. IEEE Trans. Inf. Theory 36(3), 553–558 (1990)MathSciNetCrossRefMATHGoogle Scholar
- 41.Zheng, M., Hu, H.: Cryptanalysis of prime power RSA with two private exponents. Sci. China Inf. Sci. 58(11), 1–8 (2015)MathSciNetCrossRefGoogle Scholar