Advertisement

The Food Exposome

  • Augustin Scalbert
  • Inge Huybrechts
  • Marc J. Gunter
Chapter

Abstract

Estimating the food exposome, that is, the totality of dietary exposures, represents a substantial challenge because of the wide nature of foods consumed and the variability of the amount and frequency of intake according to food preference, season, and other individual characteristics. Classical approaches to estimating dietary intake have used dietary assessment instruments such as questionnaires and food composition tables. However, these are subject to a number of biases and errors, including misreporting and recall bias. The use of dietary biomarkers provides a more objective approach to assess exposures to dietary compounds and their food sources. Approximately 150 dietary biomarkers have been measured so far in cohort or biomonitoring studies and many new candidate biomarkers are now regularly proposed following the rapid development of mass spectrometry techniques and metabolomics. Several 100 food-derived compounds can be simultaneously measured as part of the human exposome in very small human biospecimens collected in large populations. These approaches and their implementation in dietary-wide association studies are reviewed. This could significantly advance nutritional epidemiology and its utility in linking dietary exposures with disease outcomes.

Keywords

Food Foodome Diet-disease associations Dietary biomarkers 

Notes

Conflict of Interest

Authors have no conflict of interest.

Acknowledgments

Support from the FoodBAll project funded by the BIO-NH call under the Joint Programming Initiative, “a Healthy Diet for a Healthy Life” (grant number 529051002), is acknowledged.

References

  1. Achaintre D, Bulete A, Cren-Olive C, Li L, Rinaldi S, Scalbert A (2016) Differential isotope labeling of 38 dietary polyphenols and their quantification in urine by liquid chromatography electrospray ionization tandem mass spectrometry. Anal Chem 88(5):2637–2644CrossRefGoogle Scholar
  2. Al-Delaimy WK, van Kappel AL, Ferrari P, Slimani N, Steghens JP, Bingham S, Johansson I, Wallstrom P, Overvad K, Tjonneland A, Key TJ, Welch AA, Bueno-de-Mesquita HB, Peeters PH, Boeing H, Linseisen J, Clavel-Chapelon F, Guibout C, Navarro C, Quiros JR, Palli D, Celentano E, Trichopoulou A, Benetou V, Kaaks R, Riboli E (2004) Plasma levels of six carotenoids in nine European countries: report from the European Prospective Investigation into Cancer and Nutrition (EPIC). Public Health Nutr 7(6):713–722CrossRefGoogle Scholar
  3. Al-Delaimy WK, Ferrari P, Slimani N, Pala V, Johansson I, Nilsson S, Mattisson I, Wirfalt E, Galasso R, Palli D, Vineis P, Tumino R, Dorronsoro M, Pera G, Ocke MC, Bueno-de-Mesquita HB, Overvad K, Chirlaque MAD, Trichopoulou A, Naska A, Tjonneland A, Olsen A, Lund E, Alsaker EHR, Barricarte A, Kesse E, Boutron-Ruault MC, Clavel-Chapelon F, Key TJ, Spencer E, Bingham S, Welch AA, Sanchez-Perez MJ, Nagel G, Linseisen J, Quiros JR, Peeters PHM, van Gils CH, Boeing H, van Kappel AL, Steghens JP, Riboli E (2005) Plasma carotenoids as biomarkers of intake of fruits and vegetables: individual-level correlations in the European Prospective Investigation into Cancer and Nutrition (EPIC). Eur J Clin Nutr 59(12):1387–1396CrossRefGoogle Scholar
  4. Allen NE, Grace PB, Ginn A, Travis RC, Roddam AW, Appleby PN, Key T (2008) Phytanic acid: measurement of plasma concentrations by gas-liquid chromatography-mass spectrometry analysis and associations with diet and other plasma fatty acids. Br J Nutr 99(3):653–659CrossRefGoogle Scholar
  5. Arab L (2003) Biomarkers of fat and fatty acid intake. J Nutr 133(3):925S–932SCrossRefGoogle Scholar
  6. Aune D, Chan DSM, Vieira AR, Rosenblatt DAN, Vieira R, Greenwood DC, Norat T (2012) Dietary compared with blood concentrations of carotenoids and breast cancer risk: a systematic review and meta-analysis of prospective studies. Am J Clin Nutr 96(2):356–373.  https://doi.org/10.3945/ajcn.112.034165CrossRefGoogle Scholar
  7. Axel C, Zannini E, Arendt EK, Waters DM, Czerny M (2014) Quantification of cyclic dipeptides from cultures of Lactobacillus brevis R2Delta by HRGC/MS using stable isotope dilution assay. Anal Bioanal Chem 406(9–10):2433–2444.  https://doi.org/10.1007/s00216-014-7620-3CrossRefGoogle Scholar
  8. Bailey LB, Stover PJ, McNulty H, Fenech MF, Gregory JF 3rd, Mills JL, Pfeiffer CM, Fazili Z, Zhang M, Ueland PM, Molloy AM, Caudill MA, Shane B, Berry RJ, Bailey RL, Hausman DB, Raghavan R, Raiten DJ (2015) Biomarkers of nutrition for development-folate review. J Nutr 145(7):1636S–1680S.  https://doi.org/10.3945/jn.114.206599CrossRefGoogle Scholar
  9. Baldrick FR, Woodside JV, Elborn JS, Young IS, McKinley MC (2011) Biomarkers of fruit and vegetable intake in human intervention studies: a systematic review. Crit Rev Food Sci Nutr 51(9):795–815.  https://doi.org/10.1080/10408398.2010.482217CrossRefGoogle Scholar
  10. Bingham SA (2002) Biomarkers in nutritional epidemiology. Public Health Nutr 5(6A):821–827CrossRefGoogle Scholar
  11. Biskup I, Kyro C, Marklund M, Olsen A, van Dam RM, Tjonneland A, Overvad K, Lindahl B, Johansson I, Landberg R (2016) Plasma alkylresorcinols, biomarkers of whole-grain wheat and rye intake, and risk of type 2 diabetes in Scandinavian men and women. Am J Clin Nutr 104(1):88–96.  https://doi.org/10.3945/ajcn.116.133496CrossRefGoogle Scholar
  12. Block G, Hartman AM, Dresser CM, Carroll MD, Gannon J, Gardner L (1986) A data-based approach to diet questionnaire design and testing. Am J Epidemiol 124(3):453–469CrossRefGoogle Scholar
  13. Bradman A, Kogut K, Eisen EA, Jewell NP, Quiros-Alcala L, Castorina R, Chevrier J, Holland NT, Barr DB, Kavanagh-Baird G, Eskenazi B (2013) Variability of organophosphorous pesticide metabolite levels in spot and 24-hr urine samples collected from young children during 1 week. Environ Health Perspect 121(1):118–124CrossRefGoogle Scholar
  14. Brantsaeter AL, Haugen M, Thomassen Y, Ellingsen DG, Ydersbond TA, Hagve TA, Alexander J, Meltzer HM (2010) Exploration of biomarkers for total fish intake in pregnant Norwegian women. Public Health Nutr 13(1):54–62.  https://doi.org/10.1017/s1368980009005904CrossRefGoogle Scholar
  15. Brevik A, Veierød MB, Drevon CA, Andersen LF (2005) Evaluation of the odd fatty acids 15:0 and 17:0 in serum and adipose tissue as markers of intake of milk and dairy fat. Eur J Clin Nutr 59(12):1417–1422CrossRefGoogle Scholar
  16. Chadeau-Hyam M, Ebbels TMD, Brown IJ, Chan Q, Stemler J, Huang CC, Daviglus ML, Ueshima H, Zhao LC, Holmes E, Nicholson JK, Elliott P, De Iorio M (2010) Metabolic profiling and the metabolome-wide association study: significance level for biomarker identification. J Proteome Res 9(9):4620–4627CrossRefGoogle Scholar
  17. Chajes V, Biessy C, Byrnes G, Deharveng G, Saadatian-Elahi M, Jenab M, Peeters PHM, Ocke M, Bueno-de-Mesquita HB, Johansson I, Hallmans G, Manjer J, Wirfalt E, Jakszyn P, Gonzalez CA, Huerta J-M, Martinez C, Amiano P, Rodriguez Suarez L, Ardanaz E, Tjonneland A, Halkjaer J, Overvad K, Jakobsen MU, Berrino F, Pala V, Palli D, Tumino R, Vineis P, de Magistris MS, Spencer EA, Crowe FL, Bingham S, Khaw K-T, Linseisen J, Rohrmann S, Boeing H, Noeethlings U, Olsen KS, Skeie G, Lund E, Trichopoulou A, Zilis D, Oustoglou E, Clavel-Chapelon F, Riboli E, Slimani N (2011a) Ecological-level associations between highly processed food intakes and plasma phospholipid elaidic acid concentrations: results from a cross-sectional study within the European prospective investigation into cancer and nutrition (EPIC). Nutr Cancer 63(8):1235–1250.  https://doi.org/10.1080/01635581.2011.617530CrossRefGoogle Scholar
  18. Chajes V, Jenab M, Romieu I, Ferrari P, Dahm CC, Overvad K, Egeberg R, Tjonneland A, Clavel-Chapelon F, Boutron-Ruault M-C, Engel P, Teucher B, Kaaks R, Floegel A, Boeing H, Trichopoulou A, Dilis V, Karapetyan T, Mattiello A, Tumino R, Grioni S, Palli D, Vineis P, Bueno-de-Mesquita HB, Numans ME, Peeters PHM, Lund E, Navarro C, Ramon Quiros J, Sanchez-Cantalejo E, Barricarte Gurrea A, Dorronsoro M, Regner S, Sonestedt E, Wirfaelt E, Khaw K-T, Wareham N, Allen NE, Crowe FL, Rinaldi S, Slimani N, Carneiro F, Riboli E, Gonzalez CA (2011b) Plasma phospholipid fatty acid concentrations and risk of gastric adenocarcinomas in the European Prospective Investigation into Cancer and Nutrition (EPIC-EURGAST). Am J Clin Nutr 94(5):1304–1313.  https://doi.org/10.3945/ajcn.110.005892CrossRefGoogle Scholar
  19. Cheung W, Keski-Rahkonen P, Assi N, Ferrari P, Freisling H, Rinaldi S, Slimani N, Zamora-Ros R, Rundle M, Frost G, Gibbons H, Carr E, Brennan L, Cross AJ, Pala V, Panico S, Sacerdote C, Palli D, Tumino R, Kühn T, Kaaks R, Boeing H, Floegel A, Mancini F, Boutron-Ruault M-C, Baglietto L, Trichopoulou A, Naska A, Orfanos P, Scalbert A (2017) A metabolomic study of biomarkers of meat and fish intake. Am J Clin Nutr 105(3):600–608.  https://doi.org/10.3945/ajcn.116.146639CrossRefGoogle Scholar
  20. Chung H, Nettleton JA, Lemaitre RN, Barr RG, Tsai MY, Tracy RP, Siscovick DS (2008) Frequency and type of seafood consumed influence plasma (n-3) fatty acid concentrations. J Nutr 138(12):2422–2427CrossRefGoogle Scholar
  21. Crews H, Alink G, Andersen R, Braesco V, Holst B, Maiani G, Ovesen L, Scotter M, Solfrizzo M, van den Berg R, Verhagen H, Williamson G (2001a) A critical assessment of some biomarker approaches linked with dietary intake. Br J Nutr 86(Suppl 1):S5–S35CrossRefGoogle Scholar
  22. Crews HM, Olivier L, Wilson LA (2001b) Urinary biomarkers for assessing dietary exposure to caffeine. Food Addit Contam 18(12):1075–1087.  https://doi.org/10.1080/02652030110056630CrossRefGoogle Scholar
  23. Curl CL, Beresford SA, Fenske RA, Fitzpatrick AL, Lu C, Nettleton JA, Kaufman JD (2015) Estimating pesticide exposure from dietary intake and organic food choices: the Multi-Ethnic Study of Atherosclerosis (MESA). Environ Health Perspect 123(5):475–483.  https://doi.org/10.1289/ehp.1408197CrossRefGoogle Scholar
  24. Dahl H, Carlsson AV, Hillgren K, Helander A (2011) Urinary ethyl glucuronide and ethyl sulfate testing for detection of recent drinking in an outpatient treatment program for alcohol and drug dependence. Alcohol Alcohol 46(3):278–282.  https://doi.org/10.1093/alcalc/agr009CrossRefGoogle Scholar
  25. Davis MA, Gilbert-Diamond D, Karagas MR, Li Z, Moore JH, Williams SM, Frost HR (2014) A dietary-wide association study (DWAS) of environmental metal exposure in US children and adults. PLoS One 9(9):e104768.  https://doi.org/10.1371/journal.pone.0104768CrossRefGoogle Scholar
  26. de Batlle J, Matejcic M, Chajes V, Moreno-Macias H, Amadou A, Slimani N, Cox DG, Clavel-Chapelon F, Fagherazzi G, Romieu I (2016) Determinants of folate and vitamin B12 plasma levels in the French E3N-EPIC cohort. Eur J Nutr 57(2):751–760.  https://doi.org/10.1007/s00394-016-1365-zCrossRefGoogle Scholar
  27. de Nijs M, Mengelers MJB, Boon PE, Heyndrickx E, Hoogenboom LAP, Lopez P, Mol HGJ (2016) Strategies for estimating human exposure to mycotoxins via food. World Mycotoxin J 9(5):831–845.  https://doi.org/10.3920/WMJ2016.2045CrossRefGoogle Scholar
  28. Dehghan M, Akhtar-Danesh N, McMillan CR, Thabane L (2007) Is plasma vitamin C an appropriate biomarker of vitamin C intake? A systematic review and meta-analysis. Nutr J 6:41.  https://doi.org/10.1186/1475-2891-6-41CrossRefGoogle Scholar
  29. Dragsted LO (2010) Biomarkers of meat intake and the application of nutrigenomics. Meat Sci 84(2):301–307CrossRefGoogle Scholar
  30. Edmands WM, Ferrari P, Rothwell JA, Rinaldi S, Slimani N, Barupal DK, Biessy C, Jenab M, Clavel-Chapelon F, Fagherazzi G, Boutron-Ruault MC, Katzke VA, Kuhn T, Boeing H, Trichopoulou A, Lagiou P, Trichopoulos D, Palli D, Grioni S, Tumino R, Vineis P, Mattiello A, Romieu I, Scalbert A (2015) Polyphenol metabolome in human urine and its association with intake of polyphenol-rich foods across European countries. Am J Clin Nutr 102(4):905–913.  https://doi.org/10.3945/ajcn.114.101881CrossRefGoogle Scholar
  31. Edmands WMB, Beckonert OP, Stella C, Campbell A, Lake BG, Lindon JC, Holmes E, Gooderham NJ (2011) Identification of human urinary biomarkers of cruciferous vegetable consumption by metabonomic profiling. J Proteome Res 10(10):4513–4521.  https://doi.org/10.1021/pr200326kCrossRefGoogle Scholar
  32. Edmands WMB, Petrick L, Barupal DK, Scalbert A, Rappaport SM (2017) compMS2Miner: an automatable metabolite identification, visualization and data-sharing R package for high-resolution LC-MS datasets. Anal Chem 89(7):3919–3928CrossRefGoogle Scholar
  33. Forouhi NG, Imamura F, Sharp SJ, Koulman A, Schulze MB, Zheng J, Ye Z, Sluijs I, Guevara M, Huerta JM, Kroger J, Wang LY, Summerhill K, Griffin JL, Feskens EJ, Affret A, Amiano P, Boeing H, Dow C, Fagherazzi G, Franks PW, Gonzalez C, Kaaks R, Key TJ, Khaw KT, Kuhn T, Mortensen LM, Nilsson PM, Overvad K, Pala V, Palli D, Panico S, Quiros JR, Rodriguez-Barranco M, Rolandsson O, Sacerdote C, Scalbert A, Slimani N, Spijkerman AM, Tjonneland A, Tormo MJ, Tumino R, van der AD, van der Schouw YT, Langenberg C, Riboli E, Wareham NJ (2016) Association of plasma phospholipid n-3 and n-6 polyunsaturated fatty acids with Type 2 diabetes: the EPIC-InterAct case-cohort study. PLoS Med 13(7):e1002094.  https://doi.org/10.1371/journal.pmed.1002094CrossRefGoogle Scholar
  34. Garcia-Aloy M, Llorach R, Urpi-Sarda M, Tulipani S, Estruch R, Martinez-Gonzalez MA, Corella D, Fito M, Ros E, Salas-Salvado J, Andres-Lacueva C (2014) Novel multimetabolite prediction of walnut consumption by a urinary biomarker model in a free-living population: the PREDIMED study. J Proteome Res 13(7):3476–3483CrossRefGoogle Scholar
  35. Garcia-Perez I, Posma JM, Gibson R, Chambers ES, Hansen TH, Vestergaard H, Hansen T, Beckmann M, Pedersen O, Elliott P, Stamler J, Nicholson JK, Draper J, Mathers JC, Holmes E, Frost G (2017) Objective assessment of dietary patterns by use of metabolic phenotyping: a randomised, controlled, crossover trial. Lancet Diabetes Endocrinol 5(3):184–195.  https://doi.org/10.1016/s2213-8587(16)30419-3CrossRefGoogle Scholar
  36. Gregory JF, Quinlivan EP (2002) In vivo kinetics of folate metabolism. Annu Rev Nutr 22:199–220.  https://doi.org/10.1046/annurev.nutr.22.120701.083554CrossRefGoogle Scholar
  37. Guertin KA, Moore SC, Sampson JN, Huang W-Y, Xiao Q, Stolzenberg-Solomon RZ, Sinha R, Cross AJ (2014) Metabolomics in nutritional epidemiology: identifying metabolites associated with diet and quantifying their potential to uncover diet-disease relations in populations. Am J Clin Nutr 100:208–217.  https://doi.org/10.3945/ajcn.113.078758CrossRefGoogle Scholar
  38. Guertin KA, Loftfield E, Boca SM, Sampson JN, Moore SC, Xiao Q, Huang W-Y, Xiong X, Freedman ND, Cross AJ, Sinha R (2015) Serum biomarkers of habitual coffee consumption may provide insight into the mechanism underlying the association between coffee consumption and colorectal cancer. Am J Clin Nutr 101:1000–1011.  https://doi.org/10.3945/ajcn.114.096099CrossRefGoogle Scholar
  39. Gurdeniz G, Jensen MG, Meier S, Bech L, Lund E, Dragsted LO (2016) Detecting beer intake by unique metabolite patterns. J Proteome Res 15(12):4544–4556.  https://doi.org/10.1021/acs.jproteome.6b00635CrossRefGoogle Scholar
  40. Hedrick VE, Dietrich AM, Estabrooks PA, Savla J, Serrano E, Davy BM (2012) Dietary biomarkers: advances, limitations and future directions. Nutr J 11:109.  https://doi.org/10.1186/1475-2891-11-109CrossRefGoogle Scholar
  41. Heinzmann SS, Brown IJ, Chan Q, Bictash M, Dumas M-E, Kochhar S, Stamler J, Holmes E, Elliott P, Nicholson JK (2010) Metabolic profiling strategy for discovery of nutritional biomarkers: proline betaine as a marker of citrus consumption. Am J Clin Nutr 92(2):436–443CrossRefGoogle Scholar
  42. Hodson L, Skeaff CM, Fielding BA (2008) Fatty acid composition of adipose tissue and blood in humans and its use as a biomarker of dietary intake. Prog Lipid Res 47(5):348–380CrossRefGoogle Scholar
  43. Hunter D (1998) Biochemical indicators of dietary intake. In: Willett WC (ed) Nutritional epidemiology, 2nd edn. Oxford University Press, Oxford, pp 174–243Google Scholar
  44. Illner A-K, Freisling H, Boeing H, Huybrechts I, Crispim S, Slimani N (2012) Review and evaluation of innovative technologies for measuring diet in nutritional epidemiology. Int J Epidemiol 41(4):1187–1203.  https://doi.org/10.1093/ije/dys105CrossRefGoogle Scholar
  45. Isaksson A, Walther L, Hansson T, Andersson A, Alling C (2011) Phosphatidylethanol in blood (B-PEth): a marker for alcohol use and abuse. Drug Test Anal 3(4):195–200.  https://doi.org/10.1002/dta.278CrossRefGoogle Scholar
  46. Jenab M, Slimani N, Bictash M, Ferrari P, Bingham SA (2009) Biomarkers in nutritional epidemiology: applications, needs and new horizons. Hum Genet 125(5–6):507–525CrossRefGoogle Scholar
  47. Kaaks R, Riboli E, Vanstaveren W (1995) Calibration of dietary intake measurements in prospective cohort studies. Am J Epidemiol 142(5):548–556CrossRefGoogle Scholar
  48. Kaaks R, Riboli E, Sinha R (1997) Biochemical markers of dietary intake. IARC Sci Publ 142:103–126Google Scholar
  49. Kaaks RJ (1997) Biochemical markers as additional measurements in studies of the accuracy of dietary questionnaire measurements: conceptual issues. Am J Clin Nutr 65(4 Suppl):1232S–1239SCrossRefGoogle Scholar
  50. Keski-Rahkonen P, Rothwell JA, Scalbert A (2017) Metabolomic techniques to discover food biomarkers. In: Schoeller DA, Westerterp-Plantenga M (eds) Advances for in the assessment of dietary intake. CRC Press, Boca RatonGoogle Scholar
  51. Khakimov B, Poulsen SK, Savorani F, Acar E, Gurdeniz G, Larsen TM, Astrup A, Dragsted LO, Engelsen SB (2016) New Nordic diet versus average Danish diet: a randomized controlled trial revealed healthy long-term effects of the new Nordic Diet by GC-MS blood plasma metabolomics. J Proteome Res 15(6):1939–1954CrossRefGoogle Scholar
  52. Kirkpatrick SI, Subar AF, Douglass D, Zimmerman TP, Thompson FE, Kahle LL, George SM, Dodd KW, Potischman N (2014) Performance of the Automated Self-Administered 24-hour Recall relative to a measure of true intakes and to an interviewer-administered 24-h recall. Am J Clin Nutr 100(1):233–240CrossRefGoogle Scholar
  53. Kristal AR, Peters U, Potter JD (2005) Is it time to abandon the food frequency questionnaire? Cancer Epidemiol Biomark Prev 14(12):2826–2828.  https://doi.org/10.1158/1055-9965.epi-12-ed1CrossRefGoogle Scholar
  54. Kyro C, Olsen A, Landberg R, Skeie G, Loft S, Aman P, Leenders M, Dik VK, Siersema PD, Pischon T, Christensen J, Overvad K, Boutron-Ruault M-C, Fagherazzi G, Cottet V, Kuehn T, Chang-Claude J, Boeing H, Trichopoulou A, Bamia C, Trichopoulos D, Palli D, Krogh V, Tumino R, Vineis P, Panico S, Peeters PH, Weiderpass E, Bakken T, Asli LA, Argueelles M, Jakszyn P, Sanchez M-J, Amiano P, Huerta JM, Barricarte A, Ljuslinder I, Palmqvist R, Khaw K-T, Wareham N, Key TJ, Travis RC, Ferrari P, Freisling H, Jenab M, Gunter MJ, Murphy N, Riboli E, Tjonneland A, Bueno-de-Mesquita HB (2014) Plasma alkylresorcinols, biomarkers of whole-grain wheat and rye intake, and incidence of colorectal cancer. J Natl Cancer Inst 106(1):djt352.  https://doi.org/10.1093/jnci/djt352CrossRefGoogle Scholar
  55. Landberg R, Aman P, Friberg LE, Vessby B, Adlercreutz H, Kamal-Eldin A (2009) Dose response of whole-grain biomarkers: alkylresorcinols in human plasma and their metabolites in urine in relation to intake. Am J Clin Nutr 89(1):290–296CrossRefGoogle Scholar
  56. Leech RM, Worsley A, Timperio A, McNaughton SA (2015) Understanding meal patterns: definitions, methodology and impact on nutrient intake and diet quality. Nutr Res Rev 28(1):1–21.  https://doi.org/10.1017/S0954422414000262CrossRefGoogle Scholar
  57. Levine M, Conry-Cantilena C, Wang Y, Welch RW, Washko PW, Dhariwal KR, Park JB, Lazarev A, Graumlich JF, King J, Cantilena LR (1996) Vitamin C pharmacokinetics in healthy volunteers: evidence for a recommended dietary allowance. Proc Natl Acad Sci U S A 93(8):3704–3709CrossRefGoogle Scholar
  58. Lloyd AJ, Beckmann M, Fave G, Mathers JC, Draper J (2011) Proline betaine and its biotransformation products in fasting urine samples are potential biomarkers of habitual citrus fruit consumption. Br J Nutr 106(6):812–824.  https://doi.org/10.1017/s0007114511001164CrossRefGoogle Scholar
  59. Lu QY, Hung JC, Heber D, Go VLW, Reuter VE, Cordon-Cardo C, Scher HI, Marshall JR, Zhang ZF (2001) Inverse associations between plasma lycopene and other carotenoids and prostate cancer. Cancer Epidemiol Biomark Prev 10(7):749–756Google Scholar
  60. MacDonald L, Thumser AE, Sharp P (2002) Decreased expression of the vitamin C transporter SVCT1 by ascorbic acid in a human intestinal epithelial cell line. Br J Nutr 87(2):97–100CrossRefGoogle Scholar
  61. Mendonça N, Mathers JC, Adamson AJ, Martin-Ruiz C, Seal CJ, Jagger C, Hill TR (2016) Intakes of folate and vitamin B12 and biomarkers of status in the very old: the Newcastle 85+ Study. Nutrients 8(10):pii: E604.  https://doi.org/10.3390/nu8100604CrossRefGoogle Scholar
  62. Mennen L, Sapinho D, Ito H, Galan P, Hercberg S, Scalbert A (2006) Urinary flavonoids and phenolic acids as biomarkers of intake for polyphenol-rich foods. Br J Nutr 96:191–198CrossRefGoogle Scholar
  63. Merritt MA, Tzoulaki I, Tworoger SS, De Vivo I, Hankinson SE, Fernandes J, Tsilidis KK, Weiderpass E, Tjonneland A, Petersen KE, Dahm CC, Overvad K, Dossus L, Boutron-Ruault MC, Fagherazzi G, Fortner RT, Kaaks R, Aleksandrova K, Boeing H, Trichopoulou A, Bamia C, Trichopoulos D, Palli D, Grioni S, Tumino R, Sacerdote C, Mattiello A, Bueno-de-Mesquita HB, Onland-Moret NC, Peeters PH, Gram IT, Skeie G, Quiros JR, Duell EJ, Sanchez MJ, Salmeron D, Barricarte A, Chamosa S, Ericson U, Sonestedt E, Nilsson LM, Idahl A, Khaw KT, Wareham N, Travis RC, Rinaldi S, Romieu I, Patel CJ, Riboli E, Gunter MJ (2015) Investigation of dietary factors and endometrial cancer risk using a nutrient-wide association study approach in the EPIC and Nurses’ Health Study (NHS) and NHSII. Cancer Epidemiol Biomark Prev 24(2):466–471CrossRefGoogle Scholar
  64. Mondul AM, Moore SC, Weinstein SJ, Karoly ED, Sampson JN, Albanes D (2015) Metabolomic analysis of prostate cancer risk in a prospective cohort: the alpha-tocolpherol, beta-carotene cancer prevention (ATBC) study. Int J Cancer 137(9):2124–2132.  https://doi.org/10.1002/ijc.29576CrossRefGoogle Scholar
  65. Murphy N, Achaintre D, Zamora-Ros R, Jenab M, Boutron-Ruault MC, Carbonnel F, Savoye I, Kaaks R, Kühn T, Boeing H, Aleksandrova K, Tjønneland A, Kyrø C, Overvad K, Quirós JR, Sánchez MJ, Altzibar JM, María Huerta J, Barricarte A, Khaw KT, Bradbury KE, Perez-Cornago A, Trichopoulou A, Karakatsani A, Peppa E, Palli D, Grioni S, Tumino R, Sacerdote C, Panico S, Bueno-de-Mesquita B, Peeters PH, Rutegård M, Johansson I, Freisling H, Noh H, Cross AJ, Vineis P, Tsilidis K, Gunter MJ, Scalbert A (2018) A prospective evaluation of plasma polyphenol levels and colon cancer risk. Int J Cancer: in press. https://https://doi:10.1002/ijc.31563CrossRefGoogle Scholar
  66. Neveu V, Moussy A, Rouaix H, Wedekind R, Pon A, Knox C, Wishart DS, Scalbert A (2017) Exposome-explorer: a manually-curated database on biomarkers of exposure to dietary and environmental factors. Nucleic Acids Res 45(D1):D979–D984.  https://doi.org/10.1093/nar/gkw980CrossRefGoogle Scholar
  67. Ovesen L, Boeing H, EFCOSUM Group (2002) The use of biomarkers in multicentric studies with particular consideration of iodine, sodium, iron, folate and vitamin D. Eur J Clin Nutr 56(Suppl 2):S12–S17.  https://doi.org/10.1038/sj.ejcn.1601424CrossRefGoogle Scholar
  68. Pallister T, Haller T, Thorand B, Altmaier E, Cassidy A, Martin T, Jennings A, Mohney RP, Gieger C, MacGregor A, Kastenmüller G, Metspalu A, Spector TD, Menni C (2016a) Metabolites of milk intake: a metabolomic approach in UK twins with findings replicated in two European cohorts. Eur J Nutr 56(7):2379–2391.  https://doi.org/10.1007/s00394-016-1278-xCrossRefGoogle Scholar
  69. Pallister T, Jennings A, Mohney RP, Yarand D, Mangino M, Cassidy A, MacGregor A, Spector TD, Menni C (2016b) Characterizing blood metabolomics profiles associated with self-reported food intakes in female twins. PLoS One 11(6):e0158568CrossRefGoogle Scholar
  70. Patel CJ, Bhattacharya J, Butte AJ (2010) An environment-wide association study (EWAS) on type 2 diabetes mellitus. PLoS One 5(5):e10746CrossRefGoogle Scholar
  71. Personne V, Partouche H, Souberbielle JC (2013) Vitamin D insufficiency and deficiency: epidemiology, measurement, prevention and treatment. Presse Med 42(10):1334–1342.  https://doi.org/10.1016/j.lpm.2013.06.013CrossRefGoogle Scholar
  72. Playdon MC, Sampson JN, Cross AJ, Sinha R, Guertin KA, Moy KA, Rothman N, Irwin ML, Mayne ST, Stolzenberg-Solomon R, Moore SC (2016) Comparing metabolite profiles of habitual diet in serum and urine. Am J Clin Nutr 104(3):776–789.  https://doi.org/10.3945/ajcn.116.135301CrossRefGoogle Scholar
  73. Pujos-Guillot E, Hubert J, Martin J-F, Lyan B, Quintana M, Claude S, Chabanas B, Rothwell JA, Bennetau-Pelissero C, Scalbert A, Comte B, Hercberg S, Morand C, Galan P, Manach C (2013) Mass spectrometry-based metabolomics for the discovery of biomarkers of fruit and vegetable intake: citrus fruit as a case study. J Proteome Res 12(4):1645–1659.  https://doi.org/10.1021/pr300997cCrossRefGoogle Scholar
  74. Quifer-Rada P, Martinez-Huelamo M, Chiva-Blanch G, Jauregui O, Estruch R, Lamuela-Raventos RM (2014) Urinary isoxanthohumol is a specific and accurate biomarker of beer consumption. J Nutr 144(4):484–488.  https://doi.org/10.3945/jn.113.185199CrossRefGoogle Scholar
  75. Rappaport SM, Barupal DK, Wishart D, Vineis P, Scalbert A (2014) The blood exposome and its role in discovering causes of disease. Environ Health Perspect 122(8):769–774.  https://doi.org/10.1289/ehp.1308015CrossRefGoogle Scholar
  76. Reboul E, Richelle M, Perrot E, Desmoulins-Malezet C, Pirisi V, Borel P (2006) Bioaccessibility of carotenoids and vitamin E from their main dietary sources. J Agric Food Chem 54(23):8749–8755.  https://doi.org/10.1021/jf061818sCrossRefGoogle Scholar
  77. Regueiro J, Vallverdu-Queralt A, Simal-Gandara J, Estruch R, Lamuela-Raventos RM (2014) Urinary tartaric acid as a potential biomarker for the dietary assessment of moderate wine consumption: a randomised controlled trial. Br J Nutr 111(9):1680–1685.  https://doi.org/10.1017/s0007114513004108CrossRefGoogle Scholar
  78. Rimm EB, Giovannucci EL, Stampfer MJ, Colditz GA, Litin LB, Willett WC (1992) Reproducibility and validity of an expanded self-administered semiquantitative food frequency questionnaire among male health professionals. Am J Epidemiol 135(10):1114–1126CrossRefGoogle Scholar
  79. Ross AB, Svelander C, Undeland I, Pinto R, Sandberg AS (2015) Herring and beef meals lead to differences in plasma 2-aminoadipic acid, beta-alanine, 4-hydroxyproline, cetoleic acid, and docosahexaenoic acid concentrations in overweight men. J Nutr 145(11):2456–2463CrossRefGoogle Scholar
  80. Rothwell J, Madrid-Gambin F, Garcia-Aloy M, Gao Q, Andres-Lacueva C, Logue C, Gallagher AM, Mack C, Kulling S, Dragsted L, Scalbert A (2018) Biomarkers of intake for coffee, tea and sweetened beverages. Genes Nutr, In RevisionGoogle Scholar
  81. Rothwell JA, Fillâtre Y, Martin J-F, Lyan B, Pujos-Guillot E, Fezeu L, Hercberg S, Comte B, Galan P, Touvier M, Manach C (2014) New biomarkers of coffee consumption identified by the non-targeted metabolomic profiling of cohort study subjects. PLoS One 9(4):e93474.  https://doi.org/10.1371/journal.pone.0093474CrossRefGoogle Scholar
  82. Rothwell JR, Urpi-Sarda M, Boto-Ordonez M, Knox C, Llorach R, Eisner R, Cruz J, Neveu V, Wishart D, Manach C, Andres-Lacueva C, Scalbert A (2012) Phenol-Explorer 2.0: a major update of the Phenol-Explorer database integrating data on polyphenol metabolism and pharmacokinetics in humans and experimental animals. Database 2012:bas031CrossRefGoogle Scholar
  83. Sanz ML, Villamiel M, Martınez-Castro I (2004) Inositols and carbohydrates in different fresh fruit juices. Food Chem 87(3):325–328.  https://doi.org/10.1016/j.foodchem.2003.12.001CrossRefGoogle Scholar
  84. Saraff V, Shaw N (2016) Sunshine and vitamin D. Arch Dis Child 101(2):190–192.  https://doi.org/10.1136/archdischild-2014-307214CrossRefGoogle Scholar
  85. Scalbert A, Brennan L, Manach C, Andres-Lacueva C, Dragsted LO, Draper J, Rappaport SM, van der Hooft JJJ, Wishart DS (2014) The food metabolome—a window over dietary exposure. Am J Clin Nutr 99:1286–1308CrossRefGoogle Scholar
  86. Scalbert A, Rothwell JA, Keski-Rahkonen P, Neveu V (2017) The food metabolome and dietary biomarkers. In: Schoeller DA, Westerterp-Plantenga M (eds) Advances in the assessment of dietary intake. CRC Press, Boca RatonGoogle Scholar
  87. Scheline R (1978) Mammalian metabolism of plant xenobiotics. Academic Press, New YorkGoogle Scholar
  88. Schoeller DA, Westerterp-Plantenga M (eds) (2017) Advances in the assessment of dietary intake. CRC Press, Boca RatonGoogle Scholar
  89. Schroeder H, de la Torre R, Estruch R, Corella D, Angel Martinez-Gonzalez M, Salas-Salvado J, Ros E, Aros F, Flores G, Civit E, Farre M, Fiol M, Vila J, Fernandez-Crehuet J, Ruiz-Gutierrez V, Lapetra J, Saez G, Covas M-I, Investigators PS (2009) Alcohol consumption is associated with high concentrations of urinary hydroxytyrosol. Am J Clin Nutr 90(5):1329–1335CrossRefGoogle Scholar
  90. Slimani N, Freisling H, Illner AK, Huybrechts I (2015) Methods to determine dietary intake. In: Lovegrove JA, Hodson L, Sharma S, Lanham-New SA (eds) Nutrition research methodologies. Wiley, HobokenGoogle Scholar
  91. Soininen P, Kangas AJ, Würtz P, Suna T, Ala-Korpela M (2015) Quantitative serum nuclear magnetic resonance metabolomics in cardiovascular epidemiology and genetics. Circ Cardiovasc Genet 8(1):192–206.  https://doi.org/10.1161/circgenetics.114.000216CrossRefGoogle Scholar
  92. Steingrimsdottir L, Ovesen L, Moreiras O, Jacob S (2002) Selection of relevant dietary indicators for health. Eur J Clin Nutr 56(Suppl 2):S8–S11.  https://doi.org/10.1038/sj.ejcn.1601423CrossRefGoogle Scholar
  93. Sun Q, Bertrand KA, Franke AA, Rosner B, Curhan GC, Willett WC (2017) Reproducibility of urinary biomarkers in multiple 24-h urine samples. Am J Clin Nutr 105(1):159–168.  https://doi.org/10.3945/ajcn.116.139758CrossRefGoogle Scholar
  94. The_Joint_FAO/WHO_Expert_Committee_on_Food_Additives_(JECFA) (2017) Chemical risks and JECFA. Food and Agriculature Organisation (FAO), http://www.fao.org/food/food-safety-quality/scientific-advice/jecfa/en/. Accessed 15 Feb 2017
  95. Thompson FE, Subar AF (2013) Dietary assessment methodology. In: Coulston AM, Boushey CJ, Ferruzzi MG (eds) Nutrition in the prevention and treatment of disease, 3rd edn. Elsevier, San Diego, CA, pp 5–46CrossRefGoogle Scholar
  96. Troche JR, Mayne ST, Freedman ND, Shebl FM, Guertin KA, Cross AJ, Abnet CC (2016) Alcohol consumption-related metabolites in relation to colorectal cancer and adenoma: two case-control studies using serum biomarkers. PLoS One 11:e0150962.  https://doi.org/10.1371/journal.pone.0150962CrossRefGoogle Scholar
  97. Turner PC, Hopton RP, Lecluse Y, White KL, Fisher J, Lebailly P (2010) Determinants of urinary deoxynivalenol and de-epoxy deoxynivalenol in male farmers from Normandy, France. J Agric Food Chem 58(8):5206–5212.  https://doi.org/10.1021/jf100892vCrossRefGoogle Scholar
  98. Tzoulaki I, Patel CJ, Okamura T, Chan Q, Brown IJ, Miura K, Ueshima H, Zhao L, Van Horn L, Daviglus ML, Stamler J, Butte AJ, Ioannidis JPA, Elliott P (2012) A nutrient-wide association study on blood pressure. Circulation 126(21):2456–2464.  https://doi.org/10.1161/circulationaha.112.114058CrossRefGoogle Scholar
  99. University_of_Alberta (2016) FooDB—the food component database. http://www.foodb.ca/. Accessed 11 Dec 2016
  100. van der Hooft JJ, Wandy J, Barrett MP, Burgess KE, Rogers S (2016) Topic modeling for untargeted substructure exploration in metabolomics. Proc Natl Acad Sci U S A 113(48):13738–13743.  https://doi.org/10.1073/pnas.1608041113CrossRefGoogle Scholar
  101. Verkleij-Hagoort AC, de Vries JHM, Stegers MPG, Lindemans J, Ursem NTC, Steegers-Theunissen RPM (2007) Validation of the assessment of folate and vitamin B-12 intake in women of reproductive age: the method of triads. Eur J Clin Nutr 61(5):610–615CrossRefGoogle Scholar
  102. Vioque J, Weinbrenner T, Asensio L, Castello A, Young IS, Fletcher A (2007) Plasma concentrations of carotenoids and vitamin C are better correlated with dietary intake in normal weight than overweight and obese elderly subjects. Br J Nutr 97(5):977–986CrossRefGoogle Scholar
  103. Wang Z, Klipfell E, Bennett BJ, Koeth R, Levison BS, DuGar B, Feldstein AE, Britt EB, Xiaoming F, Yoon-Mi C, Yuping W, Schauer P, Smith JD, Hooman A, Wilson Tang WH, DiDonato JA, Lusis AJ, Hazen SL (2011) Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature 472(7341):57–63CrossRefGoogle Scholar
  104. Willett WC (ed) (1998) Nutritional epidemiology, 2nd edn. Oxford University Press, OxfordGoogle Scholar
  105. Wittenbecher C, Muehlenbruch K, Kroeger J, Jacobs S, Kuxhaus O, Gel AF, Fritsche A, Pischon T, Prehn C, Adamski J, Joost H-G, Boeing H, Schulze MB (2015) Amino acids, lipid metabolites, and ferritin as potential mediators linking red meat consumption to type 2 diabetes. Am J Clin Nutr 101(6):1241–1250.  https://doi.org/10.3945/ajcn.114.099150CrossRefGoogle Scholar
  106. Wurtz P, Cook S, Wang Q, Tiainen M, Tynkkynen T, Kangas AJ, Soininen P, Laitinen J, Viikari J, Kahonen M, Lehtimaki T, Perola M, Blankenberg S, Zeller T, Mannisto S, Salomaa V, Jarvelin MR, Raitakari OT, Ala-Korpela M, Leon DA (2016) Metabolic profiling of alcohol consumption in 9778 young adults. Int J Epidemiol 45(5):1493–1506.  https://doi.org/10.1093/ije/dyw175CrossRefGoogle Scholar
  107. Yao YY, Wang PG, Shao G, Del Toro LVA, Codero J, Giese RW (2016) Nontargeted analysis of the urine nonpolar sulfateome: a pathway to the nonpolar xenobiotic exposome. Rapid Commun Mass Spectrom 30(21):2341–2350.  https://doi.org/10.1002/rcm.7726CrossRefGoogle Scholar
  108. Zain ME (2011) Impact of mycotoxins on humans and animals. J Saudi Chem Soc 15(2):129–144.  https://doi.org/10.1016/j.jscs.2010.06.006CrossRefGoogle Scholar
  109. Zamora-Ros R, Urpi-Sarda M, Lamuela-Raventos RM, Estruch R, Martinez-Gonzalez MA, Bullo M, Aros F, Cherubini A, Andres-Lacueva C (2009) Resveratrol metabolites in urine as a biomarker of wine intake in free-living subjects: the PREDIMED Study. Free Radic Biol Med 46(12):1562–1566CrossRefGoogle Scholar
  110. Zamora-Ros R, Achaintre D, Rothwell JA, Rinaldi S, Assi N, Ferrari P, Leitzmann M, Boutron-Ruault M-C, Fagherazzi G, Auffret A, Kühn T, Katzke V, Boeing H, Trichopoulou A, Naska A, Vasilopoulou E, Palli D, Grioni S, Mattiello A, Tumino R, Ricceri F, Slimani N, Romieu I, Scalbert A (2016) Urinary excretions of 34 dietary polyphenols and their associations with lifestyle factors in the EPIC cohort study. Sci Rep 6:26905.  https://doi.org/10.1038/srep26905CrossRefGoogle Scholar
  111. Zheng Y, Yu B, Alexander D, Steffen LM, Boerwinkle E (2014a) Human metabolome associates with dietary intake habits among African Americans in the atherosclerosis risk in communities study. Am J Epidemiol 179(12):1424–1433.  https://doi.org/10.1093/aje/kwu073CrossRefGoogle Scholar
  112. Zheng Y, Yu B, Alexander D, Steffen LM, Nettleton JA, Boerwinkle E (2014b) Metabolomic patterns and alcohol consumption in African Americans in the Atherosclerosis Risk in Communities Study. Am J Clin Nutr 99(6):1470–1478.  https://doi.org/10.3945/ajcn.113.074070CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  • Augustin Scalbert
    • 1
  • Inge Huybrechts
    • 1
  • Marc J. Gunter
    • 1
  1. 1.Nutrition and Metabolism SectionInternational Agency for Research on Cancer (IARC)LyonFrance

Personalised recommendations