Advertisement

Metabonomics

  • Toby Athersuch
Chapter

Abstract

The exposome concept places substantial weight on the internal chemical milieu of individuals, as this is the primary integrator of the human genome and the wider external environment. Small molecule metabolites of both endogenous and exogenous origin are involved in a plethora of cellular and systemic functions, and collectively contribute to the mechanistic linkage of exposures, responses, and associated adverse outcomes. Temporal and spatial responses of metabolic phenotypes to various environmental stimuli provide a direct report on multiple interacting and conditional processes that are modulated by numerous factors including diet, lifestyle, pharmaceutical use, microbial activity, age, sex, and many others. Measuring and integrating information about the human metabolome represents a critical part of the path toward understanding the environmental determinants of chronic disease.

The size and diversity of the chemical space that metabolites occupy means that measuring the human metabolome via serum, urine, or other biofluids or tissues represents a huge analytical challenge, addressed by the application of high-resolution platforms, typically incorporating liquid- and/or gas-chromatography for separation, and nuclear magnetic resonance spectroscopy and/or mass spectrometry for detection. Advances in the performance of these platforms now permit the measurement of many hundreds or thousands of metabolites, in either targeted or untargeted assays. The focus of this chapter is on the utility of the different analytical platforms, their complementarity, and application to large-scale sample set analysis. Considerations for data analysis and integration with other omics, exposure, and outcome data are discussed, alongside approaches for interpreting findings in the context of the human exposome.

Keywords

Metabonomics Analytical platforms to measure the exposome NMR Mass spectrometry 

Notes

Conflict of Interest

The author confirms no conflict of interest.

Acknowledgments

TJA is supported by the EU FP7 EXPOsOMICS (grant agreement: 308610) and HELIX (grant agreement: 308333) projects.

References

  1. Abbiss H, Rawlinson C, Maker GL, Trengove R (2015) Assessment of automated trimethylsilyl derivatization protocols for GC–MS-based untargeted metabolomic analysis of urine. Metabolomics 11:1908–1921CrossRefGoogle Scholar
  2. Anton G, Wilson R, Yu Z-H, Prehn C, Zukunft S, Adamski J et al (2015) Pre-analytical sample quality: metabolite ratios as an intrinsic marker for prolonged room temperature exposure of serum samples. Kim KH, editor. PLoS One e0121495:10Google Scholar
  3. Athersuch T (2016) Metabolome analyses in exposome studies: profiling methods for a vast chemical space. Arch Biochem Biophys 589:177–186CrossRefGoogle Scholar
  4. Balog J, Szaniszlo T, Schaefer K-C, Dénes J, Lopata A, Godorhazy L et al (2010) Identification of biological tissues by rapid evaporative ionization mass spectrometry. Anal Chem 82:7343–7350CrossRefGoogle Scholar
  5. Bamba T, Shimonishi N, Matsubara A, Hirata K, Nakazawa Y, Kobayashi A et al (2008) High throughput and exhaustive analysis of diverse lipids by using supercritical fluid chromatography-mass spectrometry for metabolomics. J Biosci Bioeng 105:460–469CrossRefGoogle Scholar
  6. Bamba T, Lee JW, Matsubara A, Fukusaki E (2012) Metabolic profiling of lipids by supercritical fluid chromatography/mass spectrometry. J Chromatogr A 1250:212–219CrossRefGoogle Scholar
  7. Bartel J, Krumsiek J, Schramm K, Adamski J, Gieger C, Herder C et al (2015) The human blood metabolome-transcriptome interface. Inouye M, editor. PLoS Genet e1005274:11Google Scholar
  8. Beckett AH (2008) Metabolic oxidation of aliphatic basic nitrogen atoms and their α-carbon atoms. Xenobiotica 1:365–384CrossRefGoogle Scholar
  9. Beckonert O, Keun HC, Ebbels TMD, Bundy J, Holmes E, Lindon JC et al (2007) Metabolic profiling, metabolomic and metabonomic procedures for NMR spectroscopy of urine, plasma, serum and tissue extracts. Nat Protoc 2:2692–2703CrossRefGoogle Scholar
  10. Beckonert O, Coen M, Keun HC, Wang Y (2010) High-resolution magic-angle-spinning NMR spectroscopy for metabolic profiling of intact tissues. Nat Protoc 5(6):1019–1032CrossRefGoogle Scholar
  11. Benton HP, Want E, Keun HC, Amberg A, Plumb RS, Goldfain-Blanc F et al (2012) Intra- and interlaboratory reproducibility of ultra performance liquid chromatography-time-of-flight mass spectrometry for urinary metabolic profiling. Anal Chem 84:2424–2432CrossRefGoogle Scholar
  12. Blaise BJ, Correia G, Tin A, Young JH, Vergnaud A-C, Lewis M et al (2016) Power analysis and sample size determination in metabolic phenotyping. Anal Chem 88:5179–5188CrossRefGoogle Scholar
  13. Bouatra S, Aziat F, Mandal R, Guo AC, Wilson MR, Knox C et al (2013) The human urine metabolome. Dzeja P, editor. PLoS One e73076:8Google Scholar
  14. Budde K, Gök Ö-N, Pietzner M, Meisinger C, Leitzmann M, Nauck M et al (2016) Quality assurance in the pre-analytical phase of human urine samples by 1H NMR spectroscopy. Arch Biochem Biophys 589:10–17CrossRefGoogle Scholar
  15. Caspi R, Altman T, Billington R, Dreher K, Foerster H, Fulcher CA et al (2014) The MetaCyc database of metabolic pathways and enzymes and the BioCyc collection of Pathway/Genome Databases. Nucleic Acids Res 42:D459–D471CrossRefGoogle Scholar
  16. Chan ECY, Pasikanti KK, Nicholson JK (2011) Global urinary metabolic profiling procedures using gas chromatography-mass spectrometry. Nat Protoc 6:1483–1499CrossRefGoogle Scholar
  17. Cherney DP, Ekman DR, Dix DJ, Collette TW (2007) Raman spectroscopy-based metabolomics for differentiating exposures to triazole fungicides using rat urine. Anal Chem 79:7324–7332CrossRefGoogle Scholar
  18. Contrepois K, Jiang L, Snyder M (2015) Optimized analytical procedures for the untargeted metabolomic profiling of human urine and plasma by combining hydrophilic interaction (HILIC) and reverse-phase liquid chromatography (RPLC)-mass spectrometry. Mol Cell Proteomics 14:1684–1695CrossRefGoogle Scholar
  19. Creek DJ (2013) Stable isotope labeled metabolomics improves identification of novel metabolites and pathways. Bioanalysis 5:1807–1810.  https://doi.org/10.4155/bio.13.131CrossRefGoogle Scholar
  20. Creek DJ, Chokkathukalam A, Jankevics A, Burgess KEV, Breitling R, Barrett MP (2012) Stable isotope-assisted metabolomics for network-wide metabolic pathway elucidation. Anal Chem 84:8442–8447CrossRefGoogle Scholar
  21. Cui Q, Lewis IA, Hegeman AD, Anderson ME, Li J, Schulte CF et al (2008) Metabolite identification via the Madison Metabolomics Consortium Database. Nat Biotechnol 26:162–164CrossRefGoogle Scholar
  22. Cumeras R, Figueras E, Davis CE, Baumbach JI, Gràcia I (2015a) Review on Ion Mobility Spectrometry. Part 1: current instrumentation. Analyst 140:1376–1390CrossRefGoogle Scholar
  23. Cumeras R, Figueras E, Davis CE, Baumbach JI, Gràcia I (2015b) Review on Ion Mobility Spectrometry. Part 2: hyphenated methods and effects of experimental parameters. Analyst 140:1391–1410CrossRefGoogle Scholar
  24. Damjanovich L, Darzi A, Nicholson JK (2013) Intraoperative tissue identification using rapid evaporative ionization mass spectrometry. Sci Transl Med 5(194):194ra93Google Scholar
  25. Damsten MC, Commandeur JNM, Fidder A, Hulst AG, Touw D, Noort D et al (2007) Liquid chromatography/tandem mass spectrometry detection of covalent binding of acetaminophen to human serum albumin. Drug Metab Dispos 35:1408–1417CrossRefGoogle Scholar
  26. Davidson RL, Weber RJM, Liu H, Sharma-Oates A, Viant MR (2016) Galaxy-M: a Galaxy workflow for processing and analyzing direct infusion and liquid chromatography mass spectrometry-based metabolomics data. Gigascience 5:10CrossRefGoogle Scholar
  27. Davies SK, Ang JE, Revell VL, Holmes B, Mann A, Robertson FP et al (2014) Effect of sleep deprivation on the human metabolome. PNAS 111:10761–10766CrossRefGoogle Scholar
  28. Dénes J, Katona M, Hosszú Á, Czuczy N, Takáts Z (2009) Analysis of biological fluids by direct combination of solid phase extraction and desorption electrospray ionization mass spectrometry. Anal Chem 81:1669–1675CrossRefGoogle Scholar
  29. Dénes J, Szabó E, Robinette SL, Szatmári I, Szőnyi L, Kreuder JG et al (2012) Metabonomics of newborn screening dried blood spot samples: a novel approach in the screening and diagnostics of inborn errors of metabolism. Anal Chem 84:10113–10120CrossRefGoogle Scholar
  30. Dona AC, Jiménez B, Schäfer H, Humpfer E, Spraul M, Lewis MR et al (2014) Precision high-throughput proton NMR spectroscopy of human urine, serum, and plasma for large-scale metabolic phenotyping. Anal Chem 86:9887–9894CrossRefGoogle Scholar
  31. Duarte NC, Becker SA, Jamshidi N, Thiele I, Mo ML, Vo TD et al (2007) Global reconstruction of the human metabolic network based on genomic and bibliomic data. PNAS 104:1777–1782CrossRefGoogle Scholar
  32. Dunn WB, Broadhurst D, Begley P, Zelena E, Francis-McIntyre S, Anderson N et al (2011) Procedures for large-scale metabolic profiling of serum and plasma using gas chromatography and liquid chromatography coupled to mass spectrometry. Nat Protoc 6:1060–1083CrossRefGoogle Scholar
  33. Dunn WB, Lin W, Broadhurst D, Begley P, Brown M, Zelena E et al (2014) Molecular phenotyping of a UK population: defining the human serum metabolome. Metabolomics 11:9–26CrossRefGoogle Scholar
  34. Ellis DI, Goodacre R (2006) Metabolic fingerprinting in disease diagnosis: biomedical applications of infrared and Raman spectroscopy. Analyst 131:875–885CrossRefGoogle Scholar
  35. Ellis JK, Athersuch TJ, Thomas LD, Teichert F, Pérez-Trujillo M, Svendsen C et al (2012) Metabolic profiling detects early effects of environmental and lifestyle exposure to cadmium in a human population. BMC Med 10:61CrossRefGoogle Scholar
  36. Fiehn O (2001) Combining genomics, metabolome analysis, and biochemical modelling to understand metabolic networks. Comp Funct Genomics 2:155–168CrossRefGoogle Scholar
  37. Fiehn O, Robertson D, Griffin J, van der Werf M, Nikolau B, Morrison N et al (2007) The metabolomics standards initiative (MSI). Metabolomics 3:175–178CrossRefGoogle Scholar
  38. Fink T, Reymond J-L (2007) Virtual exploration of the chemical universe up to 11 atoms of C, N, O, F: assembly of 26.4 million structures (110.9 million stereoisomers) and analysis for new ring systems, stereochemistry, physicochemical properties, compound classes, and drug discovery. J Chem Inf Model 47:342–353CrossRefGoogle Scholar
  39. García A, Barbas C (2010) Gas chromatography-mass spectrometry (GC-MS)-based metabolomics. In: Fan J-B (ed) Metabolic profiling. Humana Press, Totowa, NJ, pp 191–204Google Scholar
  40. Ghaste M, Mistrik R, Shulaev V (2016) Applications of fourier transform ion cyclotron resonance (FT-ICR) and orbitrap based high resolution mass spectrometry in metabolomics and lipidomics. Int J Mol Sci 17(6):pii: E816CrossRefGoogle Scholar
  41. Gieger C, Geistlinger L, Altmaier E, Hrabé de Angelis M, Kronenberg F, Meitinger T et al (2008) Genetics meets metabolomics: a genome-wide association study of metabolite profiles in human serum. PLoS Genet 4:e1000282CrossRefGoogle Scholar
  42. Gika HG, Theodoridis GA, Wilson ID (2008) Liquid chromatography and ultra-performance liquid chromatography–mass spectrometry fingerprinting of human urine. J Chromatogr A 1189:314–322CrossRefGoogle Scholar
  43. Gika HG, Theodoridis GA, Earll M, Wilson ID (2012) A QC approach to the determination of day-to-day reproducibility and robustness of LC–MS methods for global metabolite profiling in metabonomics/metabolomics. Bioanalysis 4:2239–2247.  https://doi.org/10.4155/bio.12.212CrossRefGoogle Scholar
  44. Giskeødegård GF, Davies SK, Revell VL, Keun H, Skene DJ (2015) Diurnal rhythms in the human urine metabolome during sleep and total sleep deprivation. Sci Rep 5:14843CrossRefGoogle Scholar
  45. Gray N, Zia R, King A, Patel VC, Wendon J, McPhail MJW et al (2017) High-speed quantitative UPLC-MS analysis of multiple amines in human plasma and serum via precolumn derivatization with 6-aminoquinolyl-N-hydroxysuccinimidyl carbamate: application to acetaminophen-induced liver failure. Anal Chem 89:2478–2487CrossRefGoogle Scholar
  46. Guthrie R, Susi A (1963) A simple phenylalanine method for detecting phenylketonuria in large populations of newborn infants. Pediatrics 32:338–343Google Scholar
  47. Hastings J, de Matos P, Dekker A, Ennis M, Harsha B, Kale N et al (2013) The ChEBI reference database and ontology for biologically relevant chemistry: enhancements for 2013. Nucleic Acids Res 41:D456–D463CrossRefGoogle Scholar
  48. Haug K, Salek RM, Conesa P, Hastings J (2013) MetaboLights—an open-access general-purpose repository for metabolomics studies and associated meta-data. Nucleic Acids Res 41:D781–D786CrossRefGoogle Scholar
  49. Haug K, Salek RM, Steinbeck C (2017) Global open data management in metabolomics. Curr Opin Chem Biol 36:58–63CrossRefGoogle Scholar
  50. Hebels DGAJ, Georgiadis P, Keun HC, Athersuch TJ, Vineis P, Vermeulen R et al (2013) Performance in omics analyses of blood samples in long-term storage: opportunities for the exploitation of existing biobanks in environmental health research. Environ Health Perspect 121(4):480–487CrossRefGoogle Scholar
  51. Hernandes VV, Barbas C, Dudzik D (2017) A review of blood sample handling and pre-processing for metabolomics studies. Electrophoresis 38(18):2232–2241CrossRefGoogle Scholar
  52. Hicks AA, Pramstaller PP, Johansson Å, Vitart V, Rudan I, Ugocsai P et al (2009) Genetic determinants of circulating sphingolipid concentrations in European populations. Gibson G, editor. PLoS Genet e1000672:5Google Scholar
  53. Holmes E, Nicholson JK (2008) Human metabolic phenotyping and metabolome wide association studies. Oncogenes meet metabolism. Springer, Berlin, Heidelberg, pp 227–249Google Scholar
  54. Holmes E, Loo RL, Cloarec O, Coen M, Tang H, Maibaum E et al (2007) Detection of urinary drug metabolite (xenometabolome) signatures in molecular epidemiology studies via statistical total correlation (NMR) spectroscopy. Anal Chem 79:2629–2640CrossRefGoogle Scholar
  55. Holmes E, Wilson ID, Nicholson JK (2008) Metabolic phenotyping in health and disease. Cell 134:714–717CrossRefGoogle Scholar
  56. Holmes E, Stamler J, Nicholson JK (2010) Opening up the “Black Box”: metabolic phenotyping and metabolome-wide association studies in epidemiology. J Clin Epidemiol 63(9):970–979CrossRefGoogle Scholar
  57. Horai H, Arita M, Kanaya S, Nihei Y, Ikeda T, Suwa K et al (2010) MassBank: a public repository for sharing mass spectral data for life sciences. J Mass Spectrom 45:703–714CrossRefGoogle Scholar
  58. Hu Q, Noll RJ, Li H, Makarov A, Hardman M, Graham CR (2005) The Orbitrap: a new mass spectrometer. J Mass Spectrom 40:430–443CrossRefGoogle Scholar
  59. Huan T, Forsberg EM, Rinehart D, Johnson CH (2017) Systems biology guided by XCMS Online metabolomics. Nat Methods 14(5):461–462CrossRefGoogle Scholar
  60. IARC (2012) Chemical agents and related occupations. Benzo[α]pyrene. IARC Monogr Eval Carcinog Risk Chem Man 100F:111–144Google Scholar
  61. Illig T, Gieger C, Zhai G, Römisch-Margl W, Wang Sattler R, Prehn C et al (2010) A genome-wide perspective of genetic variation in human metabolism. Nat Genet 42:137–141CrossRefGoogle Scholar
  62. Jansen RJ, Argos M, Tong L, Li J, Rakibuz-Zaman M, Islam MT et al (2016) Determinants and consequences of arsenic metabolism efficiency among 4,794 individuals: demographics, lifestyle, genetics, and toxicity. Cancer Epidemiol Biomark Prev 25(2):381–390CrossRefGoogle Scholar
  63. Jenkins H, Hardy N, Beckmann M, Draper J, Smith AR, Taylor J et al (2004) A proposed framework for the description of plant metabolomics experiments and their results. Nat Biotechnol 22:1601–1606CrossRefGoogle Scholar
  64. Jones DP (2016) Sequencing the exposome: a call to action. Toxicol Rep 3:29–45CrossRefGoogle Scholar
  65. Jones DR, Wu Z, Chauhan D, Anderson KC, Peng J (2014) A nano ultra-performance liquid chromatography–high resolution mass spectrometry approach for global metabolomic profiling and case study on drug-resistant multiple myeloma. Anal Chem 86:3667–3675CrossRefGoogle Scholar
  66. Kamlage B, Maldonado SG, Bethan B, Peter E, Schmitz O, Liebenberg V et al (2014) Quality markers addressing preanalytical variations of blood and plasma processing identified by broad and targeted metabolite profiling. Clin Chem 60:399–412CrossRefGoogle Scholar
  67. Karagas MR, Gossai A, Pierce B, Ahsan H (2015) Drinking water arsenic contamination, skin lesions, and malignancies: a systematic review of the global evidence. Curr Envir Health Rep 2:52–68CrossRefGoogle Scholar
  68. Kassner MK, Charney R, Fernandez FM (2008) Novel approach to employing SFC for metabolomics research. In: Aiche annual meeting, conference proceedingGoogle Scholar
  69. Kastenmüller G, Raffler J, Gieger C, Suhre K (2015) Genetics of human metabolism: an update. Hum Mol Genet 24(R1):R93–R101CrossRefGoogle Scholar
  70. Keun HC, Athersuch TJ (2010) Nuclear magnetic resonance (NMR)-based metabolomics. In: Fan J-B (ed) Metabolic profiling. Humana Press, Totowa, NJ, pp 321–334Google Scholar
  71. Keun HC, Beckonert O, Griffin JL, Richter C, Moskau D, Lindon JC, Nicholson JK et al (2002) Cryogenic probe 13C NMR spectroscopy of urine for metabonomic studies. Anal Chem 74:4588–4593CrossRefGoogle Scholar
  72. Kim K, Mall C, Taylor SL, Hitchcock S, Zhang C, Wettersten HI et al (2014) Mealtime, temporal, and daily variability of the human urinary and plasma metabolomes in a tightly controlled environment. Brennan L, editor. PLoS One e86223:9Google Scholar
  73. Kim S, Thiessen PA, Bolton EE, Chen J (2016) PubChem substance and compound databases. Nucleic Acids Res 44:D1202–D1213CrossRefGoogle Scholar
  74. Kind T, Wohlgemuth G, Lee DY, Lu Y, Palazoglu M, Shahbaz S et al (2009) FiehnLib: mass spectral and retention index libraries for metabolomics based on quadrupole and time-of-flight gas chromatography/mass spectrometry. Anal Chem 81:10038–10048CrossRefGoogle Scholar
  75. Lewis MR, Pearce JTM, Spagou K, Green M, Dona AC, Yuen AHY et al (2016) Development and application of ultra-performance liquid chromatography-TOF MS for precision large scale urinary metabolic phenotyping. Anal Chem 88:9004–9013CrossRefGoogle Scholar
  76. Li N, Song YP, Tang H, Wang Y (2016) Recent developments in sample preparation and data pre-treatment in metabonomics research. Arch Biochem Biophys 589:4–9CrossRefGoogle Scholar
  77. Lindon JC, Nicholson JK, Holmes E, Everett JR (2000) Metabonomics: metabolic processes studied by NMR spectroscopy of biofluids. Concepts Magn Reson 12:289–320CrossRefGoogle Scholar
  78. Lindon JC, Nicholson JK, Holmes E, Keun HC (2005) Summary recommendations for standardization and reporting of metabolic analyses. Nat Biotechnol 23(7):833–838CrossRefGoogle Scholar
  79. Loo RL, Coen M, Ebbels T, Cloarec O, Maibaum E, Bictash M et al (2009) Metabolic profiling and population screening of analgesic usage in nuclear magnetic resonance spectroscopy-based large-scale epidemiologic studies. Anal Chem 81:5119–5129CrossRefGoogle Scholar
  80. Ma H, Sorokin A, Mazein A, Selkov A, Selkov E, Demin O et al (2007) The Edinburgh human metabolic network reconstruction and its functional analysis. Molecular Systems Biology. EMBO Press 3:135Google Scholar
  81. Maier TV, Schmitt-Kopplin P (2016) Capillary electrophoresis in metabolomics. Methods Mol Biol 1483:437–470CrossRefGoogle Scholar
  82. Maitre L, Lau C-HE, Vizcaino E, Robinson O, Casas M, Siskos AP et al (2017) Assessment of metabolic phenotypic variability in children’s urine using (1)H NMR spectroscopy. Sci Rep 7:46082CrossRefGoogle Scholar
  83. Marchand J, Martineau E, Guitton Y, Dervilly-Pinel G, Giraudeau P (2017) Multidimensional NMR approaches towards highly resolved, sensitive and high-throughput quantitative metabolomics. Curr Opin Biotechnol 43:49–55CrossRefGoogle Scholar
  84. Martin J-C, Maillot M, Mazerolles G, Verdu A, Lyan B, Migné C et al (2015) Can we trust untargeted metabolomics? Results of the metabo-ring initiative, a large-scale, multi-instrument inter-laboratory study. Metabolomics 11:807–821CrossRefGoogle Scholar
  85. McShane LM, Cavenagh MM, Lively TG, Eberhard DA, Bigbee WL, Williams PM et al (2013) Criteria for the use of omics-based predictors in clinical trials. Nature 502:317–320CrossRefGoogle Scholar
  86. Melkonian S, Argos M, Hall MN, Chen Y, Parvez F, Pierce B et al (2013) Urinary and dietary analysis of 18,470 bangladeshis reveal a correlation of rice consumption with arsenic exposure and toxicity. States JC, editor. PLoS One e80691:8Google Scholar
  87. Miller GW, Jones DP (2014) The nature of nurture: refining the definition of the exposome. Toxicol Sci 137(1):1–2CrossRefGoogle Scholar
  88. Moros G, Chatziioannou AC, Gika HG, Raikos N, Theodoridis G (2017) Investigation of the derivatization conditions for GC-MS metabolomics of biological samples. Bioanalysis 9:53–65CrossRefGoogle Scholar
  89. Nakamura Y, Afendi FM, Parvin AK, Ono N, Tanaka K, Hirai Morita A et al (2014) KNApSAcK Metabolite Activity Database for retrieving the relationships between metabolites and biological activities. Plant Cell Physiol 55:e7CrossRefGoogle Scholar
  90. Nicholson G, Rantalainen M, Maher AD, Li JV, Malmodin D, Ahmadi KR et al (2011) Human metabolic profiles are stably controlled by genetic and environmental variation. Mol Syst Biol 7:525–525CrossRefGoogle Scholar
  91. Nicholson JK, Wilson ID (2003) Understanding “global” systems biology: metabonomics and the continuum of metabolism. Nat Rev Drug Discov 2:668–676CrossRefGoogle Scholar
  92. Nicholson JK, Lindon JC, Holmes E (1999) “Metabonomics”: understanding the metabolic responses of living systems to pathophysiological stimuli via multivariate statistical analysis of biological NMR spectroscopic data. Xenobiotica 29:1181–1189CrossRefGoogle Scholar
  93. Oliver S (1998) Systematic functional analysis of the yeast genome. Trends Biotechnol 16:373–378CrossRefGoogle Scholar
  94. Paglia G, Angel P, Williams JP, Richardson K, Olivos HJ, Thompson JW et al (2014a) Ion mobility-derived collision cross section as an additional measure for lipid fingerprinting and identification. Anal Chem 87:1137–1144CrossRefGoogle Scholar
  95. Paglia G, Williams JP, Menikarachchi L, Thompson JW, Tyldesley-Worster R, Halldórsson S et al (2014b) Ion mobility derived collision cross sections to support metabolomics applications. Anal Chem 86:3985–3993CrossRefGoogle Scholar
  96. Peter Guengerich F, Shimada T (1998) Activation of procarcinogens by human cytochrome P450 enzymes. Mutat Res 400:201–213CrossRefGoogle Scholar
  97. Petersen A-K, Zeilinger S, Kastenmüller G, Römisch-Margl W, Brugger M, Peters A et al (2014) Epigenetics meets metabolomics: an epigenome-wide association study with blood serum metabolic traits. Hum Mol Genet 23:534–545CrossRefGoogle Scholar
  98. Pierce BL, Tong L, Argos M, Gao J, Jasmine F (2013) Arsenic metabolism efficiency has a causal role in arsenic toxicity: Mendelian randomization and gene-environment interaction. Int J Epidemiol 42(6):1862–1871CrossRefGoogle Scholar
  99. Pitt JJ (2010) Newborn screening. Clin Biochem Rev 31(2):57–68Google Scholar
  100. Plumb RS, Shockcor J, Holmes E, Nicholson JK (2010) Global metabolic profiling procedures for urine using UPLC–MS. Nat Protoc 5(6):1005–1018CrossRefGoogle Scholar
  101. Posma JM, Robinette SL, Holmes E, Nicholson JK (2014) MetaboNetworks, an interactive Matlab-based toolbox for creating, customizing and exploring sub-networks from KEGG. Bioinformatics 30:893–895CrossRefGoogle Scholar
  102. Posma JM, Garcia-Perez I, Heaton JC, Burdisso P, Mathers JC, Draper J et al (2017) Integrated analytical and statistical two-dimensional spectroscopy strategy for metabolite identification: application to dietary biomarkers. Anal Chem 89:3300–3309CrossRefGoogle Scholar
  103. Psychogios N, Hau DD, Peng J, Guo AC, Mandal R (2011) The human serum metabolome. PLoS One 6(2):e16957CrossRefGoogle Scholar
  104. Qi Y, Song Y, Gu H, Fan G, Chai Y (2014) Global metabolic profiling using ultra-performance liquid chromatography/quadrupole time-of-flight mass spectrometry. Methods Mol Biol 1198:15–27CrossRefGoogle Scholar
  105. Ramautar R, Somsen GW, de Jong GJ (2017) CE-MS for metabolomics: developments and applications in the period 2014-2016. Rassi El Z, editor. Electrophoresis 38:190–202CrossRefGoogle Scholar
  106. Rappaport SM, Barupal DK, Wishart D, Vineis P, Scalbert A (2014) The blood exposome and its role in discovering causes of disease. Environ Health Perspect 122:769CrossRefGoogle Scholar
  107. Reymond J-L, van Deursen R, Blum LC, Ruddigkeit L (2010) Chemical space as a source for new drugs. Med Chem Commun 1:30–38CrossRefGoogle Scholar
  108. Reymond J-L, Ruddigkeit L, Blum L, van Deursen R (2012) The enumeration of chemical space. Wiley Interdiscip Rev Comput Mol Sci 2:717–733CrossRefGoogle Scholar
  109. Robinette SL, Lindon JC, Nicholson JK (2013) Statistical spectroscopic tools for biomarker discovery and systems medicine. Anal Chem 85:5297–5303CrossRefGoogle Scholar
  110. Rocca-Serra P, Salek RM, Arita M, Correa E, Dayalan S, Gonzalez-Beltran A et al (2016) Data standards can boost metabolomics research, and if there is a will, there is a way. Metabolomics 12:14CrossRefGoogle Scholar
  111. Ruddigkeit L, van Deursen R, Blum LC, Reymond J-L (2012) Enumeration of 166 billion organic small molecules in the chemical universe database GDB-17. J Chem Inf Model 52:2864–2875CrossRefGoogle Scholar
  112. Salek RM, Neumann S, Schober D, Hummel J, Billiau K, Kopka J et al (2015) COordination of standards in MetabOlomicS (COSMOS): facilitating integrated metabolomics data access. Metabolomics 11:1587–1597CrossRefGoogle Scholar
  113. Sampson JN, Boca SM, Shu XO, Stolzenberg-Solomon RZ, Matthews CE, Hsing AW et al (2013) Metabolomics in epidemiology: sources of variability in metabolite measurements and implications. Cancer Epidemiol Biomark Prev 22:631–640CrossRefGoogle Scholar
  114. Sansone S-A, Fan T, Goodacre R, Griffin JL, Hardy NW, Kaddurah-Daouk R et al (2007) The metabolomics standards initiative. Nat Biotechnol 25:846–848Google Scholar
  115. Scalbert A, Brennan L, Manach C, Andres-Lacueva C, Dragsted LO, Draper J et al (2014) The food metabolome: a window over dietary exposure. Am J Clin Nutr 99:1286–1308CrossRefGoogle Scholar
  116. Schmelzer K, Fahy E, Subramaniam S, Dennis EA (2007) The lipid maps initiative in lipidomics. Methods Enzymol 432:171–183CrossRefGoogle Scholar
  117. Shimada T, Oda Y, Gillam EMJ, Guengerich FP, Inoue K (2001) Metabolic activation of polycyclic aromatic hydrocarbons and other procarcinogens by cytochromes P450 1A1 and P450 1B1 allelic variants and other human cytochromes P450 in Salmonella typhimurium NM2009. Drug Metab Dispos 29:1176–1182Google Scholar
  118. Siskos AP, Jain P, Römisch-Margl W, Bennett M, Achaintre D, Asad Y et al (2017) Interlaboratory reproducibility of a targeted metabolomics platform for analysis of human serum and plasma. Anal Chem 89:656–665CrossRefGoogle Scholar
  119. Smith CA, O’Maille G, Want EJ, Qin C, Trauger SA, Brandon TR et al (2005) METLIN: a metabolite mass spectral database. Ther Drug Monit 27:747–751CrossRefGoogle Scholar
  120. Spagou K, Wilson ID, Masson P, Theodoridis G, Raikos N, Coen M et al (2010) HILIC-UPLC-MS for exploratory urinary metabolic profiling in toxicological studies. Anal Chem 83:382–390CrossRefGoogle Scholar
  121. Strittmatter N, Rebec M, Jones EA, Golf O, Abdolrasouli A, Balog J et al (2014) Characterization and identification of clinically relevant microorganisms using rapid evaporative ionization mass spectrometry. Anal Chem 86:6555–6562CrossRefGoogle Scholar
  122. Sud M, Fahy E, Cotter D, Azam K, Vadivelu I, Burant C et al (2016) Metabolomics Workbench: an international repository for metabolomics data and metadata, metabolite standards, protocols, tutorials and training, and analysis tools. Nucleic Acids Res 44:D463–D470CrossRefGoogle Scholar
  123. Suhre K, Meisinger C, Döring A, Altmaier E, Belcredi P, Gieger C et al (2010) Metabolic footprint of diabetes: a multiplatform metabolomics study in an epidemiological setting. Breant B, editor. PLoS One e13953:5Google Scholar
  124. Suhre K, Wallaschofski H, Raffler J, Friedrich N (2011) A genome-wide association study of metabolic traits in human urine. Nature 43(6):565–569Google Scholar
  125. Suhre K, Raffler J, Kastenmüller G (2016) Biochemical insights from population studies with genetics and metabolomics. Arch Biochem Biophys 589:168–176CrossRefGoogle Scholar
  126. Swainston N, Smallbone K, Hefzi H, Dobson PD, Brewer J, Hanscho M et al (2016) Recon 2.2: from reconstruction to model of human metabolism. Metabolomics 12:109CrossRefGoogle Scholar
  127. Takáts Z, Wiseman JM, Gologan B, Cooks RG (2004) Mass spectrometry sampling under ambient conditions with desorption electrospray ionization. Science 306:471–473CrossRefGoogle Scholar
  128. Takáts Z, Wiseman JM, Cooks RG (2005) Ambient mass spectrometry using desorption electrospray ionization (DESI): instrumentation, mechanisms and applications in forensics, chemistry, and biology. J Mass Spectrom 40:1261–1275CrossRefGoogle Scholar
  129. Tanabe M, Sato Y, Morishima K (2017) KEGG: new perspectives on genomes, pathways, diseases and drugs. Nucleic Acids Res 45(D1):D353–D361CrossRefGoogle Scholar
  130. Tautenhahn R, Patti GJ, Rinehart D, Siuzdak G (2012) XCMS online: a web-based platform to process untargeted metabolomic data. Anal Chem 84:5035–5039CrossRefGoogle Scholar
  131. Teahan O, Gamble S, Holmes E, Waxman J, Nicholson JK, Bevan C et al (2006) Impact of analytical bias in metabonomic studies of human blood serum and plasma. Anal Chem 78:4307–4318CrossRefGoogle Scholar
  132. Thévenot EA, Roux A, Xu Y, Ezan E, Junot C (2015) Analysis of the human adult urinary metabolome variations with age, body mass index, and gender by implementing a comprehensive workflow for univariate and OPLS statistical analyses. J Proteome Res 14(8):3322–3335CrossRefGoogle Scholar
  133. Thiele I, Swainston N, Fleming RMT, Hoppe A, Sahoo S, Aurich MK et al (2013) A community-driven global reconstruction of human metabolism. Nat Biotechnol 31:419–425CrossRefGoogle Scholar
  134. Thomas L, Hodgson S, Nieuwenhuijsen M, Jarup L (2007) Early renal damage in a population environmentally exposed to cadmium—the Avonmouth Pilot Study. Epidemiology 18:S123CrossRefGoogle Scholar
  135. Ulrich EL, Akutsu H, Doreleijers JF, Harano Y, Ioannidis YE, Lin J et al (2008) BioMagResBank. Nucleic Acids Res 36:D402–D408CrossRefGoogle Scholar
  136. Uppal K, Walker DI, Liu K, Li S, Go Y-M, Jones DP (2016) Computational metabolomics: a framework for the million metabolome. Chem Res Toxicol 29:1956–1975CrossRefGoogle Scholar
  137. Van Deemter JJ, Zuiderweg FJ, Klinkenberg A (1956) Longitudinal diffusion and resistance to mass transfer as causes of nonideality in chromatography. Chem Eng Sci 5:271–289CrossRefGoogle Scholar
  138. Vineis P, Veldhoven K, Chadeau-Hyam M, Athersuch TJ (2013) Advancing the application of omics-based biomarkers in environmental epidemiology. Environ Mol Mutagen 54(7):461CrossRefGoogle Scholar
  139. Vineis P, Chadeau-Hyam M, Gmuender H, Gulliver J, Herceg Z, KLEINJANS J et al (2017) The exposome in practice: design of the EXPOsOMICS project. Int J Hyg Environ Health 220:142–151CrossRefGoogle Scholar
  140. Vlaanderen JJ, Janssen NA, Hoek G, Keski-Rahkonen P, Barupal DK, Cassee FR et al (2017) The impact of ambient air pollution on the human blood metabolome. Environ Res 156:341–348CrossRefGoogle Scholar
  141. Vrijheid M, Slama R, Robinson O, Chatzi L, Coen M, van den Hazel P et al (2014) The human early-life exposome (HELIX): project rationale and design. Environ Health Perspect 122(6):535–544CrossRefGoogle Scholar
  142. Want EJ, Wilson ID, Gika H, Theodoridis G, Plumb RS, Shockcor J et al (2010) Global metabolic profiling procedures for urine using UPLC|[ndash]|MS. Nat Protoc 5:1005–1018CrossRefGoogle Scholar
  143. Warth B, Levin N, Rinehart D, Teijaro J, Benton HP, Siuzdak G (2017) Metabolizing data in the cloud. Trends Biotechnol 35:481–483CrossRefGoogle Scholar
  144. Wild CP (2005) Complementing the genome with an “exposome”: the outstanding challenge of environmental exposure measurement in molecular epidemiology. Cancer Epidemiol Biomark Prev 14:1847–1850CrossRefGoogle Scholar
  145. Wild CP (2012) The exposome: from concept to utility. Int J Epidemiol 41:24–32CrossRefGoogle Scholar
  146. Wild CP, Scalbert A, Herceg Z (2013) Measuring the exposome: a powerful basis for evaluating environmental exposures and cancer risk. Environ Mol Mutagen 54:480–499CrossRefGoogle Scholar
  147. WILSON I, Plumb R, Granger J, Major H, WILLIAMS R, LENZ E (2005a) HPLC-MS-based methods for the study of metabonomics. J Chromatogr B 817:67–76CrossRefGoogle Scholar
  148. Wilson ID, Nicholson JK, Castro-Perez J, Granger JH, Johnson KA, Smith BW et al (2005b) High resolution “ultra performance” liquid chromatography coupled to oa-tof mass spectrometry as a tool for differential metabolic pathway profiling in functional genomic studies. J Proteome Res 4:591–598CrossRefGoogle Scholar
  149. Wishart DS, Lewis MJ, Morrissey JA, Flegel MD, Jeroncic K, Xiong Y et al (2008) The human cerebrospinal fluid metabolome. J Chromatogr B 871:164–173CrossRefGoogle Scholar
  150. Wishart DS, Jewison T, Guo AC, Wilson M, Knox C, Liu Y et al (2012) HMDB 3.0—the human metabolome database in 2013. Nucleic Acids Res 41:D801–D807CrossRefGoogle Scholar
  151. Wist J (2017) Complex mixtures by NMR and complex NMR for mixtures: experimental and publication challenges. A special issue of the associate ed, editor. Magn Reson Chem 55:22–28CrossRefGoogle Scholar
  152. Xia J, Sinelnikov IV, Han B, Wishart DS (2015) MetaboAnalyst 3.0—making metabolomics more meaningful. Nucl Acids Res 43(W1):W251–W257CrossRefGoogle Scholar
  153. Xiao R, Zhang X, Rong Z, Xiu B, Yang X, Wang C et al (2016) Non-invasive detection of hepatocellular carcinoma serum metabolic profile through surface-enhanced Raman spectroscopy. Nanomedicine 12:2475–2484CrossRefGoogle Scholar
  154. Xu X, Veenstra TD, Fox SD, Roman JM, Issaq HJ, Falk R et al (2005) Measuring fifteen endogenous estrogens simultaneously in human urine by high-performance liquid chromatography-mass spectrometry. Anal Chem 77:6646–6654CrossRefGoogle Scholar
  155. Yin P, Lehmann R, Xu G (2015) Effects of pre-analytical processes on blood samples used in metabolomics studies. Anal Bioanal Chem 407:4879–4892CrossRefGoogle Scholar
  156. Zhao L, Pickering G (2011) Paracetamol metabolism and related genetic differences. Drug Metab Rev 43:41–52CrossRefGoogle Scholar
  157. Zheng X, Zhao A, Xie G, Chi Y, Zhao L (2013) Melamine-induced renal toxicity is mediated by the gut microbiota. Sci Transl Med 5(172):172ra22CrossRefGoogle Scholar
  158. Zubarev RA, Makarov A (2013) Orbitrap mass spectrometry. Anal Chem 85:5288–5296CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Computational and Systems Medicine, Department of Surgery and Cancer, Faculty of MedicineImperial College LondonLondonUK

Personalised recommendations