Advertisement

Unravelling the Exposome: Conclusions and Thoughts for the Future

  • Sonia Dagnino
Chapter

Abstract

Since it was first defined by Christopher Wild, to today, the concept of the exposome has evolved into a valuable tool to evaluate human exposure and health. In the chapters of this book the definition of the exposome paradigm and concept is discussed. The most recent techniques based on OMICs, targeted and untargeted analysis for its characterization are described. The challenges arising from the amount of data that needs to be processed to understand the complex mechanism behind exposure and health outcome, as well as the latest statistical and data analysis methods have been discussed. Finally, multiple projects across the globe have or are currently tackling the application of the exposome concept to real studies, and these studies have been presented in this book. In this section, we will provide a chapter summary, and describe how the exposome paradigm has advanced since its definition. We will also explore question such as: what have we learned so far? Does the exposome paradigm provide valuable information? And what needs to be improved? Finally, we will discuss the possibility of future applications of the exposome in disease causality and personalized medicine.

Keywords

The exposome paradigm The future of exposomics 

Notes

Acknowledgement

This work was supported by Horizon 2020 Marie Skłodowska-Curie fellowship EXACT Identifying biomarkers of EXposure leading to Lung Cancer with AdduCTomics. MSCA Project # 708392.

References

  1. Bijlsma N, Cohen MM (2016) Environmental chemical assessment in clinical practice: unveiling the elephant in the room. Int J Environ Res Public Health 13(2):181.  https://doi.org/10.3390/ijerph13020181CrossRefGoogle Scholar
  2. Buck Louis GM, Sundaram R, Schisterman EF, Sweeney AM, Lynch CD, Gore-Langton RE, Maisog J, Kim S, Chen Z, Barr DB (2013) Persistent environmental pollutants and couple fecundity: the LIFE study. Environ Health Perspect 121(2):231–236.  https://doi.org/10.1289/ehp.1205301CrossRefGoogle Scholar
  3. Cao J, Yang C, Li J, Chen R, Chen B, Gu D, Kan H (2011) Association between long-term exposure to outdoor air pollution and mortality in China: a cohort study. J Hazard Mater 186(2–3):1594–1600.  https://doi.org/10.1016/j.jhazmat.2010.12.036CrossRefGoogle Scholar
  4. Chevalier N, Fenichel P (2015) Endocrine disruptors: new players in the pathophysiology of type 2 diabetes? Diabetes Metab 41(2):107–115.  https://doi.org/10.1016/j.diabet.2014.09.005CrossRefGoogle Scholar
  5. Collins FS, Varmus H (2015) A new initiative on precision medicine. N Engl J Med 372(9):793–795.  https://doi.org/10.1056/NEJMp1500523CrossRefGoogle Scholar
  6. Dennis KK, Auerbach SS, Balshaw DM, Cui Y, Fallin MD, Smith MT, Spira A, Sumner S, Miller GW (2016) The importance of the biological impact of exposure to the concept of the exposome. Environ Health Perspect 124(10):1504–1510.  https://doi.org/10.1289/ehp140CrossRefGoogle Scholar
  7. Genuis SJ, Kelln KL (2015) Toxicant exposure and bioaccumulation: a common and potentially reversible cause of cognitive dysfunction and dementia. Behav Neurol 2015:620143.  https://doi.org/10.1155/2015/620143CrossRefGoogle Scholar
  8. Gulliver J, Morley D, Dunster C, McCrea A, van Nunen E, Tsai MY, Probst-Hensch N, Eeftens M, Imboden M, Ducret-Stich R, Naccarati A, Galassi C, Ranzi A, Nieuwenhuijsen M, Curto A, Donaire-Gonzalez D, Cirach M, Vermeulen R, Vineis P, Hoek G, Kelly FJ (2017) Land use regression models for the oxidative potential of fine particles (PM2.5) in five European areas. Environ Res 160:247–255.  https://doi.org/10.1016/j.envres.2017.10.002CrossRefGoogle Scholar
  9. HEALS (2017) Health and environment-wide associations based on large population suverys. http://www.heals-eu.eu/. Accessed 10 Nov 2017
  10. HERCULES (2017) HERCULES exposome research center. https://emoryhercules.com/. Accessed 10 Nov 2017
  11. I3 Care Center (2017) International exposome center. http://exposome.iras.uu.nl/about/. Accessed 08 Nov 2017
  12. Kawamoto T, Nitta H, Murata K, Toda E, Tsukamoto N, Hasegawa M, Yamagata Z, Kayama F, Kishi R, Ohya Y, Saito H, Sago H, Okuyama M, Ogata T, Yokoya S, Koresawa Y, Shibata Y, Nakayama S, Michikawa T, Takeuchi A, Satoh H (2014) Rationale and study design of the Japan environment and children’s study (JECS). BMC Public Health 14:25.  https://doi.org/10.1186/1471-2458-14-25CrossRefGoogle Scholar
  13. Kim KH, Jahan SA, Kabir E, Brown RJ (2013) A review of airborne polycyclic aromatic hydrocarbons (PAHs) and their human health effects. Environ Int 60:71–80.  https://doi.org/10.1016/j.envint.2013.07.019CrossRefGoogle Scholar
  14. Lichtenstein P, Holm NV, Verkasalo PK, Iliadou A, Kaprio J, Koskenvuo M, Pukkala E, Skytthe A, Hemminki K (2000) Environmental and heritable factors in the causation of cancer—analyses of cohorts of twins from Sweden, Denmark, and Finland. N Engl J Med 343(2):78–85.  https://doi.org/10.1056/nejm200007133430201CrossRefGoogle Scholar
  15. Miller GW, Jones DP (2014) The nature of nurture: refining the definition of the exposome. Toxicol Sci 137(1):1–2.  https://doi.org/10.1093/toxsci/kft251CrossRefGoogle Scholar
  16. National Academy of Science (2010) The exposome: a powerful approach for evaluating environmental exposures and their influences on human disease. http://nas-sites.org/emergingscience/files/2011/05/03-exposome-newsletter-508.pdf. Accessed 11 May 2018
  17. NIEHS (2017) Children’s health exposure analysis resource (CHEAR). https://www.niehs.nih.gov/research/supported/exposure/chear/index.cfm. Accessed 08 Nov 2017
  18. O’Connell SG, Kincl LD, Anderson KA (2014) Silicone wristbands as personal passive samplers. Environ Sci Technol 48(6):3327–3335.  https://doi.org/10.1021/es405022fCrossRefGoogle Scholar
  19. Perrier F, Giorgis-Allemand L, Slama R, Philippat C (2016) Within-subject pooling of biological samples to reduce exposure misclassification in biomarker-based studies. Epidimiology 27(3):378–388.  https://doi.org/10.1097/ede.0000000000000460CrossRefGoogle Scholar
  20. Principles and Obstacles for Sharing Data from Environmental Health Research: Workshop Summary (2016) 2016 by the National Academy of Sciences, Washington DC.  https://doi.org/10.17226/21703Google Scholar
  21. Rappaport SM (2011) Implications of the exposome for exposure science. J Expo Sci Environ Epidemiol 21(1):5–9.  https://doi.org/10.1038/jes.2010.50CrossRefGoogle Scholar
  22. Rappaport SM (2016) Genetic factors are not the major causes of chronic diseases. PLoS One 11(4):e0154387.  https://doi.org/10.1371/journal.pone.0154387CrossRefGoogle Scholar
  23. Rappaport SM, Smith MT (2010) Epidemiology. Environment and disease risks. Science (New York, NY) 330(6003):460–461.  https://doi.org/10.1126/science.1192603CrossRefGoogle Scholar
  24. Rappaport SM, Li H, Grigoryan H, Funk WE, Williams ER (2012) Adductomics: characterizing exposures to reactive electrophiles. Toxicol Lett 213(1):83–90.  https://doi.org/10.1016/j.toxlet.2011.04.002CrossRefGoogle Scholar
  25. Saracci R, Vineis P (2007) Disease proportions attributable to environment. Environ Health 6:38.  https://doi.org/10.1186/1476-069x-6-38CrossRefGoogle Scholar
  26. Siroux V, Agier L, Slama R (2016) The exposome concept: a challenge and a potential driver for environmental health research. Eur Respir Rev 25(140):124–129.  https://doi.org/10.1183/16000617.0034-2016CrossRefGoogle Scholar
  27. Stingone JA, Buck Louis GM, Nakayama SF, Vermeulen RC, Kwok RK, Cui Y, Balshaw DM, Teitelbaum SL (2017) Toward greater implementation of the exposome research paradigm within environmental epidemiology. Annu Rev Public Health 38:315–327.  https://doi.org/10.1146/annurev-publhealth-082516-012750CrossRefGoogle Scholar
  28. Teitelbaum SL, Belpoggi F, Reinlib L (2015) Advancing research on endocrine disrupting chemicals in breast cancer: expert panel recommendations. Reprod Toxicol 54:141.  https://doi.org/10.1016/j.reprotox.2014.12.015CrossRefGoogle Scholar
  29. Vineis P, van Veldhoven K, Chadeau-Hyam M, Athersuch TJ (2013) Advancing the application of omics-based biomarkers in environmental epidemiology. Environ Mol Mutagen 54(7):461–467.  https://doi.org/10.1002/em.21764CrossRefGoogle Scholar
  30. Vineis P, Chadeau-Hyam M, Gmuender H, Gulliver J, Herceg Z, Kleinjans J, Kogevinas M, Kyrtopoulos S, Nieuwenhuijsen M, Phillips DH, Probst-Hensch N, Scalbert A, Vermeulen R, Wild CP (2017) The exposome in practice: design of the EXPOsOMICS project. Int J Hyg Environ Health 220(2 Pt A):142–151.  https://doi.org/10.1016/j.ijheh.2016.08.001CrossRefGoogle Scholar
  31. Vrijheid M, Slama R, Robinson O, Chatzi L, Coen M, van den Hazel P, Thomsen C, Wright J, Athersuch TJ, Avellana N, Basagana X, Brochot C, Bucchini L, Bustamante M, Carracedo A, Casas M, Estivill X, Fairley L, van Gent D, Gonzalez JR, Granum B, Grazuleviciene R, Gutzkow KB, Julvez J, Keun HC, Kogevinas M, McEachan RR, Meltzer HM, Sabido E, Schwarze PE, Siroux V, Sunyer J, Want EJ, Zeman F, Nieuwenhuijsen MJ (2014) The human early-life exposome (HELIX): project rationale and design. Environ Health Perspect 122(6):535–544.  https://doi.org/10.1289/ehp.1307204CrossRefGoogle Scholar
  32. WHO (2015) The 10 leading causes of death in the world, 2000 and 2012. http://www.who.int/mediacentre/factsheets/fs310/en/index2.html. Accessed 18 Jan 2015
  33. Wild CP (2005) Complementing the genome with an “exposome”: the outstanding challenge of environmental exposure measurement in molecular epidemiology. Cancer Epidemiol Biomark Prev 14(8):1847–1850.  https://doi.org/10.1158/1055-9965.epi-05-0456CrossRefGoogle Scholar
  34. Wild CP (2012) The exposome: from concept to utility. Int J Epidemiol 41(1):24–32.  https://doi.org/10.1093/ije/dyr236CrossRefGoogle Scholar
  35. Xu X, Freeman NC, Dailey AB, Ilacqua VA, Kearney GD, Talbott EO (2009) Association between exposure to alkylbenzenes and cardiovascular disease among National Health and Nutrition Examination Survey (NHANES) participants. Int J Occup Environ Health 15(4):385–391.  https://doi.org/10.1179/oeh.2009.15.4.385CrossRefGoogle Scholar
  36. Ziegelstein RC (2017) Personomics: the missing link in the evolution from precision medicine to personalized medicine. J Pers Med 7(4).  https://doi.org/10.3390/jpm7040011CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Epidemiology and Biostatistics, MRC-PHE Centre for Environment and HealthSchool of Public Health, Imperial CollegeLondonUK

Personalised recommendations