Advertisement

From the Outside In: Integrating External Exposures into the Exposome Concept

  • Yuxia Cui
  • David Balshaw
Chapter

Abstract

The exposome comprises exposures arising from both endogenous processes and the external environment, which include not only chemical compounds but also nutrients, drugs, infectious agents, the microbiome, physical stress, and psychosocial stress. But where do those exposures come from, and what can we do about them? This chapter will focus on two distinct but interrelated questions: (1) Why understanding the environment outside of the body is critical for unraveling the exposome; and (2) How to measure the exposome from the outside the body. The external environment is critical to unraveling the exposome for it provides a depth of context that analysis of biological samples cannot, it also informs data interpretation by providing linkage between external sources of exposure and the internal dose, and in some cases, external assessment is the only way to objectively evaluate an exposure such as social and built environment as well as behavioral factors. The grand challenge lies in how to provide a comprehensive and rigorous characterization of the external environment on the exposome scale. This chapter will discuss
  • Scientific advances, emerging technologies, and novel opportunities to unravel the exposome from the external environment

  • The importance of multi-scale data integration in assessing the temporal and spatial dynamics of the exposome

  • Strategies and the value of integrating external and internal environments in studies of the exposome

  • The opportunity of applying the exposome to inform citizen science and disease prevention

Keywords

Integrating external exposures with exposomics Multi-scale data integration 

References

  1. AirCasting (2017) The AirCasting Platform. http://www.aircasting.org/. Accessed 28 Feb 2017
  2. Almanza E, Jerrett M, Dunton G, Seto E, Pentz MA (2012) A study of community design, greenness, and physical activity in children using satellite, GPS and accelerometer data. Health Place 18(1):46–54.  https://doi.org/10.1016/j.healthplace.2011.09.003CrossRefGoogle Scholar
  3. Ananthakrishnan AN, Long MD, Martin CF, Sandler RS, Kappelman MD (2013) Sleep disturbance and risk of active disease in patients with crohn’s disease and ulcerative colitis. Clin Gastroenterol Hepatol 11(8):965–971.  https://doi.org/10.1016/j.cgh.2013.01.021CrossRefGoogle Scholar
  4. Anjum A, Ilyas MU (2013) Activity recognition using smartphone sensors. In: IEEE consumer communications and networking conference, IEEE, New YorkGoogle Scholar
  5. Athersuch T (2016) Metabolome analyses in exposome studies: profiling methods for a vast chemical space. Arch Biochem Biophys 589:177–186.  https://doi.org/10.1016/j.abb.2015.10.007CrossRefGoogle Scholar
  6. Beckerman BS, Jerrett M, Serre M, Martin RV, Lee SJ, van Donkelaar A, Ross Z, Su J, Burnett RT (2013) A hybrid approach to estimating national scale spatiotemporal variability of PM2.5 in the contiguous United States. Environ Sci Technol 47(13):7233–7241.  https://doi.org/10.1021/es400039uCrossRefGoogle Scholar
  7. Beelen R, Raaschou-Nielsen O, Stafoggia M, Andersen ZJ, Weinmayr G, Hoffmann B, Wolf K, Samoli E, Fischer P, Nieuwenhuijsen M, Vineis P, Xun WW, Katsouyanni K, Dimakopoulou K, Oudin A, Forsberg B, Modig L, Havulinna AS, Lanki T, Turunen A, Oftedal B, Nystad W, Nafstad P, De Faire U, Pedersen NL, Ostenson CG, Fratiglioni L, Penell J, Korek M, Pershagen G, Eriksen KT, Overvad K, Ellermann T, Eeftens M, Peeters PH, Meliefste K, Wang M, Bueno-de-Mesquita B, Sugiri D, Kramer U, Heinrich J, de Hoogh K, Key T, Peters A, Hampel R, Concin H, Nagel G, Ineichen A, Schaffner E, Probst-Hensch N, Kunzli N, Schindler C, Schikowski T, Adam M, Phuleria H, Vilier A, Clavel-Chapelon F, Declercq C, Grioni S, Krogh V, Tsai MY, Ricceri F, Sacerdote C, Galassi C, Migliore E, Ranzi A, Cesaroni G, Badaloni C, Forastiere F, Tamayo I, Amiano P, Dorronsoro M, Katsoulis M, Trichopoulou A, Brunekreef B, Hoek G (2014) Effects of long-term exposure to air pollution on natural-cause mortality: an analysis of 22 European cohorts within the multicentre ESCAPE project. Lancet 383(9919):785–795.  https://doi.org/10.1016/s0140-6736(13)62158-3CrossRefGoogle Scholar
  8. Boys BL, Martin RV, van Donkelaar A, MacDonell RJ, Hsu NC, Cooper MJ, Yantosca RM, Lu Z, Streets DG, Zhang Q, Wang SW (2014) Fifteen-year global time series of satellite-derived fine particulate matter. Environ Sci Technol 48(19):11109–11118.  https://doi.org/10.1021/es502113pCrossRefGoogle Scholar
  9. Brookfield K, Tilley S (2016) Using virtual street audits to understand the walkability of older adults’ route choices by gender and age. Int J Environ Res Public Health 13(11):12.  https://doi.org/10.3390/ijerph13111061CrossRefGoogle Scholar
  10. Brown A, Franken P, Bonner S, Dolezal N, Moross J (2016) Safecast: successful citizen-science for radiation measurement and communication after Fukushima. J Radiol Prot 36(2):S82–S101.  https://doi.org/10.1088/0952-4746/36/2/s82CrossRefGoogle Scholar
  11. Cella D, Yount S, Rothrock N, Gershon R, Cook K, Reeve B, Ader D, Fries JF, Bruce B, Rose M, Grp PC (2007) The patient-reported outcomes measurement information system (PROMIS). Progress of an NIH roadmap cooperative group during its first two years. Med Care 45(5):S3–S11.  https://doi.org/10.1097/01.mlr.0000258615.42478.55CrossRefGoogle Scholar
  12. Centers for Disease Control and Prevention (2015) The national health and nutrition examination survey. https://www.cdc.gov/nchs/nhanes/nhanes_questionnaires.htm. Accessed 28 Feb 2017
  13. Cequier E, Sakhi AK, Marce RM, Becher G, Thomsen C (2015) Human exposure pathways to organophosphate triesters—a biomonitoring study of mother-child pairs. Environ Int 75:159–165.  https://doi.org/10.1016/j.envint.2014.11.009CrossRefGoogle Scholar
  14. Chaix B, Meline J, Duncan S, Merrien C, Karusisi N, Perchoux C, Lewin A, Labadi K, Kestens Y (2013) GPS tracking in neighborhood and health studies: a step forward for environmental exposure assessment, a step backward for causal inference? Health Place 21:46–51.  https://doi.org/10.1016/j.healthplace.2013.01.003CrossRefGoogle Scholar
  15. Chan SH, Van Hee VC, Bergen S, Szpiro AA, DeRoo LA, London SJ, Marshall JD, Kaufman JD, Sandler DP (2015) Long-term air pollution exposure and blood pressure in the sister study. Environ Health Persp 123(10):951–958.  https://doi.org/10.1289/ehp.1408125CrossRefGoogle Scholar
  16. Charreire H, Mackenbach JD, Ouasti M, Lakerveld J, Compernolle S, Ben-Rebah M, McKee M, Brug J, Rutter H, Oppert JM (2014) Using remote sensing to define environmental characteristics related to physical activity and dietary behaviours: a systematic review (the SPOTLIGHT project). Health Place 25:1–9.  https://doi.org/10.1010/j.healthplace.2013.09.017CrossRefGoogle Scholar
  17. Chen C, Campbell KD, Negi I, Iglesias RA, Owens P, Tao NJ, Tsow F, Forzani ES (2012) A new sensor for the assessment of personal exposure to volatile organic compounds. Atmos Environ 54:679–687.  https://doi.org/10.1016/j.atmosenv.2012.01.048CrossRefGoogle Scholar
  18. Chen X, Yang XN (2014) Does food environment influence food choices? A geographical analysis through “tweets”. Appl Geogr 51:82–89.  https://doi.org/10.1016/j.apgeog.2014.04.003CrossRefGoogle Scholar
  19. Chiu M, Rezai MR, Maclagan LC, Austin PC, Shah BR, Redelmeier DA, Tu JV (2016) Moving to a highly walkable neighborhood and incidence of hypertension: a propensity-score matched cohort study. Environ Health Perspect 124(6):754–760.  https://doi.org/10.1289/ehp.1510425CrossRefGoogle Scholar
  20. Churchill GA, Gatti DM, Munger SC, Svenson KL (2012) The diversity outbred mouse population. Mamm Genome 23(9–10):713–718.  https://doi.org/10.1007/s00335-012-9414-2CrossRefGoogle Scholar
  21. Cohen-Cline H, Turkheimer E, Duncan GE (2015) Access to green space, physical activity and mental health: a twin study. J Epidemiol Community Health 69(6):523–529.  https://doi.org/10.1136/jech-2014-204667CrossRefGoogle Scholar
  22. Dadvand P, Nieuwenhuijsen MJ, Esnaola M, Forns J, Basagana X, Alvarez-Pedrerol M, Rivas I, Lopez-Vicente M, Pascual MD, Su J, Jerrett M, Querol X, Sunyer J (2015) Green spaces and cognitive development in primary schoolchildren. Proc Natl Acad Sci U S A 112(26):7937–7942.  https://doi.org/10.1073/pnas.1503402112CrossRefGoogle Scholar
  23. Daugherty BL, Schap TE, Ettienne-Gittens R, Zhu FQM, Bosch M, Delp EJ, Ebert DS, Kerr DA, Boushey CJ (2012) Novel technologies for assessing dietary intake: evaluating the usability of a mobile telephone food record among adults and adolescents. J Med Internet Res 14(2):12.  https://doi.org/10.2196/jmir.1967CrossRefGoogle Scholar
  24. Dennis KK, Marder E, Balshaw DM, Cui Y, Lynes MA, Patti GJ, Rappaport SM, Shaughnessy DT, Vrijheid M, Barr DB (2016) Biomonitoring in the era of the exposome. Environ Health Perspect 125(4):502–510.  https://doi.org/10.1289/EHP474CrossRefGoogle Scholar
  25. Donald CE, Scott RP, Blaustein KL, Halbleib ML, Sarr M, Jepson PC, Anderson KA (2016) Silicone wristbands detect individuals’ pesticide exposures in West Africa. R Soc Open Sci 3(8):160433.  https://doi.org/10.1098/rsos.160433CrossRefGoogle Scholar
  26. Dunton GF, Kawabata K, Intille S, Wolch J, Pentz MA (2012) Assessing the social and physical contexts of children’s leisure-time physical activity: an ecological momentary assessment study. Am J Health Promot 26(3):135–142.  https://doi.org/10.4278/ajhp.100211-QUAN-43CrossRefGoogle Scholar
  27. EPA (2017) Clean school bus. https://www.epa.gov/cleandiesel/clean-school-bus. Accessed 27 Feb 2017
  28. Gallagher LG, Webster TF, Aschengrau A, Vieira VM (2010) Using residential history and groundwater modeling to examine drinking water exposure and breast cancer. Environ Health Persp 118(6):749–755.  https://doi.org/10.1289/ehp.0901547CrossRefGoogle Scholar
  29. Grenard JL, Stacy AW, Shiffman S, Baraldi AN, MacKinnon DP, Lockhart G, Kishu-Sakarya Y, Boyle S, Beleva Y, Koprowski C, Ames SL, Reynolds KD (2013) Sweetened drink and snacking cues in adolescents. A study using ecological momentary assessment. Appetite 67:61–73.  https://doi.org/10.1016/j.appet.2013.03.016CrossRefGoogle Scholar
  30. Hamilton CM, Strader LC, Pratt JG, Maiese D, Hendershot T, Kwok RK, Hammond JA, Huggins W, Jackman D, Pan HQ, Nettles DS, Beaty TH, Farrer LA, Kraft P, Marazita ML, Ordovas JM, Pato CN, Spitz MR, Wagener D, Williams M, Junkins HA, Harlan WR, Ramos EM, Haines J (2011) The PhenX Toolkit: get the most from your measures. Am J Epidemiol 174(3):253–260.  https://doi.org/10.1093/aje/kwr193CrossRefGoogle Scholar
  31. Hannon A, Lu YJ, Li J, Meyyappan M (2016) A sensor array for the detection and discrimination of methane and other environmental pollutant gases. Sensors 16(8):11.  https://doi.org/10.3390/s16081163CrossRefGoogle Scholar
  32. Harari GM, Gosling SD, Wang R, Chen FL, Chen ZY, Campbell AT (2017) Patterns of behavior change in students over an academic term: a preliminary study of activity and sociability behaviors using smartphone sensing methods. Comput Hum Behav 67:129–138.  https://doi.org/10.1016/j.chb.2016.10.027CrossRefGoogle Scholar
  33. Heinemann AW, Lai JS, Wong A, Dashner J, Magasi S, Hahn EA, Carlozzi NE, Tulsky DS, Jerousek S, Semik P, Miskovic A, Gray DB (2016) Using the ICF’s environmental factors framework to develop an item bank measuring built and natural environmental features affecting persons with disabilities. Qual Life Res 25(11):2775–2786.  https://doi.org/10.1007/s11136-016-1314-6CrossRefGoogle Scholar
  34. Hochstetler HA, Yermakov M, Reponen T, Ryan PH, Grinshpun SA (2011) Aerosol particles generated by diesel-powered school buses at urban schools as a source of children’s exposure. Atmos Environ 45(7):1444–1453.  https://doi.org/10.1016/j.atmosenv.2010.12.018CrossRefGoogle Scholar
  35. Hoek G, Krishnan RM, Beelen R, Peters A, Ostro B, Brunekreef B, Kaufman JD (2013) Long-term air pollution exposure and cardio- respiratory mortality: a review. Environ Health 12(1):43CrossRefGoogle Scholar
  36. Jacquez GM, Slotnick MJ, Meliker JR, AvRuskin G, Copeland G, Nriagu J (2011) Accuracy of commercially available residential histories for epidemiologic studies. Am J Epidemiol 173(2):236–243.  https://doi.org/10.1093/aje/kwq350CrossRefGoogle Scholar
  37. Jones KK, Zenk SN, McDonald A, Corte C (2016) Experiences of African-American women with smartphone-based ecological momentary assessment. Public Health Nurs 33(4):371–380.  https://doi.org/10.1111/phn.12239CrossRefGoogle Scholar
  38. Just AC, Wright RO, Schwartz J, Coull BA, Baccarelli AA, Tellez-Rojo MM, Moody E, Wang YJ, Lyapustin A, Kloog I (2015) Using high-resolution satellite aerosol optical depth to estimate daily PM2.5 geographical distribution in Mexico City. Environ Sci Technol 49(14):8576–8584.  https://doi.org/10.1021/acs.est.5b00859CrossRefGoogle Scholar
  39. Krotkov NA, McLinden CA, Li C, Lamsal LN, Celarier EA, Marchenko SV, Swartz WH, Bucsela EJ, Joiner J, Duncan BN, Boersma KF, Veefkind JP, Levelt PF, Fioletov VE, Dickerson RR, He H, Lu ZF, Streets DG (2016) Aura OMI observations of regional SO2 and NO2 pollution changes from 2005 to 2015. Atmos Chem Phys 16(7):4605–4629.  https://doi.org/10.5194/acp-16-4605-2016CrossRefGoogle Scholar
  40. Kurka JM, Adams MA, Geremia C, Zhu WF, Cain KL, Conway TL, Sallis JF (2016) Comparison of field and online observations for measuring land uses using the microscale audit of pedestrian streetscapes (MAPS). J Transp Health 3(3):278–286.  https://doi.org/10.1016/j.jth.2016.05.001CrossRefGoogle Scholar
  41. Landreani F, Martin-Yebra A, Casellato C, Frigo C, Pavan E, Migeotte PF, Caiani EG (2016) Beat-to-beat heart rate detection by smartphone accelerometers. Eur Heart J 37:859–860CrossRefGoogle Scholar
  42. Le Cann P, Bonvallot N, Glorennec P, Deguen S, Goeury C, Le Bot B (2011) Indoor environment and children’s health: recent developments in chemical, biological, physical and social aspects. Int J Hyg Environ Health 215(1):1–18.  https://doi.org/10.1016/j.ijheh.2011.07.008CrossRefGoogle Scholar
  43. Li XJ, Zhang CR, Li WD, Ricard R, Meng QY, Zhang WX (2015) Assessing street-level urban greenery using Google Street View and a modified green view index. Urban For Urban Green 14(3):675–685.  https://doi.org/10.1016/j.ufug.2015.06.006CrossRefGoogle Scholar
  44. Lopresti AL, Hood SD, Drummond PD (2013) A review of lifestyle factors that contribute to important pathways associated with major depression: diet, sleep and exercise. J Affect Disord 148(1):12–27.  https://doi.org/10.1016/j.jad.2013.01.014CrossRefGoogle Scholar
  45. Lovinsky-Desir S, Jung KH, Rundle AG, Hoepner LA, Bautista JB, Perera FP, Chillrud SN, Perzanowski MS, Miller RL (2016) Physical activity, black carbon exposure and airway inflammation in an urban adolescent cohort. Environ Res 151:756–762.  https://doi.org/10.1016/j.envres.2016.09.005CrossRefGoogle Scholar
  46. Manrai AK, Cui Y, Bushel PR, Hall M, Karakitsios S, Mattingly CJ, Ritchie M, Schmitt C, Sarigiannis DA, Thomas DC, Wishart D, Balshaw DM, Patel CJ (2016) Informatics and data analytics to support exposome-based discovery for public health. Annu Rev Public Health.  https://doi.org/10.1146/annurev-publhealth-082516-012737CrossRefGoogle Scholar
  47. Martinez-Perez B, de la Torre-Diez I, Lopez-Coronado M (2013) Mobile health applications for the most prevalent conditions by the world health organization: review and analysis. J Med Internet Res 15(6):19.  https://doi.org/10.2196/jmir.2600CrossRefGoogle Scholar
  48. National Institutes of Health (2007) Genes, environment and health initiative invests in genetic studies, environmental monitoring technologies. https://www.nih.gov/news-events/news-releases/genes-environment-health-initiative-invests-genetic-studies-environmental-monitoring-technologies. Accessed 14 Mar 2017
  49. Neveu V, Moussy A, Rouaix H, Wedekind R, Pon A, Knox C, Wishart DS, Scalbert A (2017) Exposome-explorer: a manually-curated database on biomarkers of exposure to dietary and environmental factors. Nucleic Acids Res 45(D1):D979–D984.  https://doi.org/10.1093/nar/gkw980CrossRefGoogle Scholar
  50. Nguyen QC, Kath S, Meng HW, Li DP, Smith KR, VanDerslice JA, Wen M, Li FF (2016) Leveraging geotagged Twitter data to examine neighborhood happiness, diet, and physical activity. Appl Geogr 73:77–88.  https://doi.org/10.1016/j.apgeog.2016.06.003CrossRefGoogle Scholar
  51. Nieuwenhuijsen MJ (2016) Urban and transport planning, environmental exposures and health-new concepts, methods and tools to improve health in cities. Environ Health-Glob 15:11.  https://doi.org/10.1186/s12940-016-0108-1CrossRefGoogle Scholar
  52. Nieuwenhuijsen MJ, Donaire-Gonzalez D, Foraster M, Martinez D, Cisneros A (2014) Using personal sensors to assess the exposome and acute health effects. Int J Environ Res Public Health 11(8):7805–7819.  https://doi.org/10.3390/ijerph110807805CrossRefGoogle Scholar
  53. O’Connell SG, Kind LD, Anderson KA (2014) Silicone wristbands as personal passive samplers. Environ Sci Technol 48(6):3327–3335.  https://doi.org/10.1021/es405022fCrossRefGoogle Scholar
  54. O’Connell SG, Kerkvliet NI, Carozza S, Rohlman D, Pennington J, Anderson KA (2015) In vivo contaminant partitioning to silicone implants: implications for use in biomonitoring and body burden. Environ Int 85:182–188.  https://doi.org/10.1016/j.envint.2015.09.016CrossRefGoogle Scholar
  55. Perchoux C, Chaix B, Cummins S, Kestens Y (2013) Conceptualization and measurement of environmental exposure in epidemiology: accounting for activity space related to daily mobility. Health Place 21:86–93.  https://doi.org/10.1016/j.healthplace.2013.01.005CrossRefGoogle Scholar
  56. Peters A, Hoek G, Katsouyanni K (2012) Understanding the link between environmental exposures and health: does the exposome promise too much? J Epidemiol Community Health 66(2):103–105.  https://doi.org/10.1136/jech-2011-200643CrossRefGoogle Scholar
  57. Pew Reserch Center (2017) Record shares of Americans now own smartphones, have home broadband. http://www.pewresearch.org/fact-tank/2017/01/12/evolution-of-technology/. Accessed 28 Feb 2017
  58. Phillips CM, Dillon C, Harrington JM, McCarthy VJC, Kearney PM, Fitzgerald AP, Perry IJ (2013) Defining metabolically healthy obesity: role of dietary and lifestyle factors. PLoS One 8(10):13.  https://doi.org/10.1371/journal.pone.0076188CrossRefGoogle Scholar
  59. Posloncec-Petric V, Vukovic V, Franges S, Bacic Z (2016) Voluntary noise mapping for smart city. In: Zlatanova S, Laurini R, Baucic M, Rumor M, Ellul C, Coors V (eds) First international conference on smart data and smart cities, 30th Udms, vol 4–4. International Archives of the Photogrammetry Remote Sensing and Spatial Information Sciences, vol W1. Copernicus Gesellschaft Mbh, Gottingen, pp 131–137.  https://doi.org/10.5194/isprs-annals-IV-4-W1-131-2016CrossRefGoogle Scholar
  60. Ramanathan N, Lukac M, Ahmed T, Kar A, Praveen PS, Honles T, Leong I, Rehman IH, Schauer JJ, Ramanathan V (2011) A cellphone based system for large-scale monitoring of black carbon. Atmos Environ 45(26):4481–4487.  https://doi.org/10.1016/j.atmosenv.2011.05.030CrossRefGoogle Scholar
  61. Rappaport SM (2012) Biomarkers intersect with the exposome. Biomarkers 17(6):483–489.  https://doi.org/10.3109/1354750x.2012.691553CrossRefGoogle Scholar
  62. Rodes CE, Chillrud SN, Haskell WL, Intille SS, Albinali F, Rosenberger ME (2012) Predicting adult pulmonary ventilation volume and wearing compliance by on-board accelerometry during personal level exposure assessments. Atmos Environ 57:126–137.  https://doi.org/10.1016/j.atmosenv.2012.03.057CrossRefGoogle Scholar
  63. Schootman M, Nelson EJ, Werner K, Shacham E, Elliott M, Ratnapradipa K, Lian M, McVay A (2016) Emerging technologies to measure neighborhood conditions in public health: implications for interventions and next steps. Int J Health Geogr 15(1):20.  https://doi.org/10.1186/s12942-016-0050-zCrossRefGoogle Scholar
  64. Shah ASV, Langrish JP, Nair H, McAllister DA, Hunter AL, Donaldson K, Newby DE, Mills NL (2013) Global association of air pollution and heart failure: a systematic review and meta-analysis. Lancet 382(9897):1039–1048.  https://doi.org/10.1016/S0140-6736(13)60898-3CrossRefGoogle Scholar
  65. Sharp DB, Allman-Farinelli M (2014) Feasibility and validity of mobile phones to assess dietary intake. Nutrition 30(11–12):1257–1266.  https://doi.org/10.1016/j.nut.2014.02.020CrossRefGoogle Scholar
  66. Shiffman S, Stone AA, Hufford MR (2008) Ecological momentary assessment. Annu Rev Clin Psychol 4:1–32.  https://doi.org/10.1146/annurev.clinpsy.3.022806.091415CrossRefGoogle Scholar
  67. Shoaib M, Bosch S, Incel OD, Scholten H, Havinga PJM (2014) Fusion of smartphone motion sensors for physical activity recognition. Sensors 14(6):10146–10176.  https://doi.org/10.3390/s140610146CrossRefGoogle Scholar
  68. SocialMediaToday (2017) How much time do people spend on social media. http://www.socialmediatoday.com/marketing/how-much-time-do-people-spend-social-media-infographic. Accessed 28 Feb 2017
  69. Sorek-Hamer M, Just AC, Kloog I (2016) Satellite remote sensing in epidemiological studies. Curr Opin Pediatr 28(2):228–234.  https://doi.org/10.1097/mop.0000000000000326CrossRefGoogle Scholar
  70. Steinhubl SR, Muse ED, Topol EJ (2015) The emerging field of mobile health. Sci Transl Med 7(283):6.  https://doi.org/10.1126/scitranslmed.aaa3487CrossRefGoogle Scholar
  71. Streets DG, Canty T, Carmichael GR, de Foy B, Dickerson RR, Duncan BN, Edwards DP, Haynes JA, Henze DK, Houyoux MR, Jacobi DJ, Krotkov NA, Lamsal LN, Liu Y, Lu ZF, Martini RV, Pfister GG, Pinder RW, Salawitch RJ, Wechti KJ (2013) Emissions estimation from satellite retrievals: a review of current capability. Atmos Environ 77:1011–1042.  https://doi.org/10.1016/j.atmosenv.2013.05.051CrossRefGoogle Scholar
  72. Su JG, Jerrett M, Meng YY, Pickett M, Ritz B (2015) Integrating smart-phone based momentary location tracking with fixed site air quality monitoring for personal exposure assessment. Sci Total Environ 506:518–526.  https://doi.org/10.1016/j.scitotenv.2014.11.022CrossRefGoogle Scholar
  73. Svensson A, Larsson C (2015) A mobile phone app for dietary intake assessment in adolescents: an evaluation study. JMIR mHealth uHealth 3(4):15–35.  https://doi.org/10.2196/mhealth.4804CrossRefGoogle Scholar
  74. Thomas JG, Doshi S, Crosby RD, Lowe MR (2011) Ecological momentary assessment of obesogenic eating behavior: combining person-specific and environmental predictors. Obesity 19(8):1574–1579.  https://doi.org/10.1038/oby.2010.335CrossRefGoogle Scholar
  75. Thornton LE, Pearce JR, Kavanagh AM (2011) Using Geographic Information Systems (GIS) to assess the role of the built environment in influencing obesity: a glossary. Int J Behav Nutr Phys Act 8:9.  https://doi.org/10.1186/1479-5868-8-71CrossRefGoogle Scholar
  76. Tice RR, Austin CP, Kavlock RJ, Bucher JR (2013) Improving the human hazard characterization of chemicals: a Tox21 update. Environ Health Persp 121(7):756–765.  https://doi.org/10.1289/ehp.1205784CrossRefGoogle Scholar
  77. Tu ZC, Yang WL, Yan S, Guo XY, Li XJ (2015) CRISPR/Cas9: a powerful genetic engineering tool for establishing large animal models of neurodegenerative diseases. Mol Neurodegener 10:8.  https://doi.org/10.1186/s13024-015-0031-xCrossRefGoogle Scholar
  78. Turpin BJ, Weisel CP, Morandi M, Colome S, Stock T, Eisenreich S, Buckley B (2007) Relationships of Indoor, Outdoor, and Personal Air (RIOPA): part II. Analyses of concentrations of particulate matter species. Res Rep Health Eff Inst 130(Pt 2):1–77. discussion 79–92Google Scholar
  79. VoPham T, Wilson JP, Ruddell D, Rashed T, Brooks MM, Yuan JM, Talbott EO, Chang CCH, Weissfeld JL (2015) Linking pesticides and human health: a geographic information system (GIS) and Landsat remote sensing method to estimate agricultural pesticide exposure. Appl Geogr 62:171–181.  https://doi.org/10.1016/j.apgeog.2015.04.009CrossRefGoogle Scholar
  80. Vrijheid M, Slama R, Robinson O, Chatzi L, Coen M, van den Hazel P, Thomsen C, Wright J, Athersuch TJ, Avellana N, Basagana X, Brochot C, Bucchini L, Bustamante M, Carracedo A, Casas M, Estivill X, Fairley L, van Gent D, Gonzalez JR, Granum B, Grazuleviciene R, Gutzkow KB, Julvez J, Keun HC, Kogevinas M, McEachan RRC, Meltzer HM, Sabido E, Schwarze PE, Siroux V, Sunyer J, Want EJ, Zeman F, Nieuwenhuijsen MJ (2014) The human early-life exposome (HELIX): project rationale and design. Environ Health Persp 122(6):535–544.  https://doi.org/10.1289/ehp.1307204CrossRefGoogle Scholar
  81. Wambaugh JF, Wang A, Dionisio KL, Frame A, Egeghy P, Judson R, Setzer RW (2014) High throughput heuristics for prioritizing human exposure to environmental chemicals. Environ Sci Technol 48(21):12760–12767.  https://doi.org/10.1021/es503583jCrossRefGoogle Scholar
  82. Weisel CP, Zhang J, Turpin BJ, Morandi MT, Colome S, Stock TH, Spektor DM, Korn L, Winer AM, Kwon J, Meng QY, Zhang L, Harrington R, Liu W, Reff A, Lee JH, Alimokhtari S, Mohan K, Shendell D, Jones J, Farrar L, Maberti S, Fan T (2005) Relationships of Indoor, Outdoor, and Personal Air (RIOPA). Part I. Collection methods and descriptive analyses. Res Rep Health Eff Inst 130(Pt 1):1–107. discussion 109–127Google Scholar
  83. Welsh CE, Miller DR, Manly KF, Wang J, McMillan L, Morahan G, Mott R, Iraqi FA, Threadgill DW, de Villena FPM (2012) Status and access to the collaborative cross population. Mamm Genome 23(9–10):706–712.  https://doi.org/10.1007/s00335-012-9410-6CrossRefGoogle Scholar
  84. Weston KS, Wisloff U, Coombes JS (2014) High-intensity interval training in patients with lifestyle-induced cardiometabolic disease: a systematic review and meta-analysis. Br J Sports Med 48(16):1227–U1252.  https://doi.org/10.1136/bjsports-2013-092576CrossRefGoogle Scholar
  85. Wheeler DC, Wang AB (2015) Assessment of residential history generation using a public-record database. Int J Environ Res Public Health 12(9):11670–11682.  https://doi.org/10.3390/ijerph120911670CrossRefGoogle Scholar
  86. WHO (2016) Ambient air pollution: a global assessment of exposure and burden of disease. http://apps.who.int/iris/bitstream/10665/250141/1/9789241511353-eng.pdf?ua=1. Accessed 27 Feb 2017
  87. Widener MJ, Li WW (2014) Using geolocated Twitter data to monitor the prevalence of healthy and unhealthy food references across the US. Appl Geogr 54:189–197.  https://doi.org/10.1016/j.apgeog.2014.07.017CrossRefGoogle Scholar
  88. Wild CP (2005) Complementing the genome with an “exposome”: the outstanding challenge of environmental exposure measurement in molecular epidemiology. Cancer Epidemiol Biomark Prev 14(8):1847–1850.  https://doi.org/10.1158/1055-9965.epi-05-0456CrossRefGoogle Scholar
  89. Wild CP (2012) The exposome: from concept to utility. Int J Epidemiol 41(1):24–32.  https://doi.org/10.1093/ije/dyr236CrossRefGoogle Scholar
  90. Wishart D, Arndt D, Pon A, Sajed T, Guo AC, Djoumbou Y, Knox C, Wilson M, Liang Y, Grant J, Liu Y, Goldansaz SA, Rappaport SM (2015) T3DB: the toxic exposome database. Nucleic Acids Res 43(Database issue):D928–D934.  https://doi.org/10.1093/nar/gku1004CrossRefGoogle Scholar
  91. Ye XY, Li SW, Yang XN, Qin CL (2016) Use of social media for the detection and analysis of infectious diseases in China. ISPRS Int Geo-Inf 5(9):17.  https://doi.org/10.3390/ijgi5090156CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Exposure, Response, and Technology BranchNational Institute of Environmental Health SciencesDurhamUSA

Personalised recommendations