Identification of Fractional Chaotic Systems by Using the Locust Search Algorithm

  • Erik Cuevas
  • Daniel Zaldívar
  • Marco Pérez-Cisneros
Chapter
Part of the Studies in Computational Intelligence book series (SCI, volume 775)

Abstract

Parameter estimation of fractional chaotic models has drawn the interests of different research communities due to its multiple applications. In the estimation process, the task is converted into a multi-dimensional optimization problem.

References

  1. 1.
    Das, S.: Observation of Fractional Calculus in Physical System Description, pp. 101–156. Springer, New York (2011)Google Scholar
  2. 2.
    Arena, P., Caponetto, R., Fortuna, L., Porto, D.: Nonlinear Noninteger Order Circuits and Systems—An Introduction. World Scientific, Singapore (2000)CrossRefGoogle Scholar
  3. 3.
    Rivero, M., Rogosin, S.V., Tenreiro Machado, J.A., Trujillo, J.J.: Stability of fractional order systems. Math. Probl. Eng. (2013).  https://doi.org/10.1155/2013/356215
  4. 4.
    Diethelm, K.: An efficient parallel algorithm for the numerical solution of fractional differential equations. Fract. Calc. Appl. Anal. 14(3), 475–490 (2011)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Diethelm, K., Ford, N.J.: Analysis of fractional differential equations. J. Math. Anal. Appl. 265(2), 229–248 (2002)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Kilbas, A.A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. Elsevier Science, The Netherlands (2006)MATHGoogle Scholar
  7. 7.
    Podlubny, I.: Fractional Differential Equations. Academic Press, USA (1998)MATHGoogle Scholar
  8. 8.
    Miller, K.S., Ross, B.: An Introduction to the Fractional Calculus and Fractional Differential Equations. Wiley, New York (1993)MATHGoogle Scholar
  9. 9.
    Hu, W., Yu, Y., Zhang, S.: A hybrid artificial bee colony algorithm for parameter identification of uncertain fractional-order chaotic systems. Nonlinear Dyn.  https://doi.org/10.1007/s11071-015-2251-6
  10. 10.
    Yu, Y., Li, H.-X., Wang, S., Yu, J.: Dynamic analysis of a fractional-order Lorenz chaotic system. Chaos, Solitons Fractals 42, 1181–1189 (2009)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Petras, I.: Fractional-Order Nonlinear Systems, ISBN 978-3-642-18100-9, Springer-Verlag Berlin Heidelberg (2011)CrossRefGoogle Scholar
  12. 12.
    Poinot, T., Trigeassou, J.-C.: Identification of fractional systems using an output error technique. Nonlinear Dyn. 38, 133–154 (2004)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Nazarian, P., Haeri, M., Tavazoei, M.S.: Identifiability of fractional order systems using input output frequency contents. ISA Trans. 49, 207–214 (2010)CrossRefGoogle Scholar
  14. 14.
    Saha, R.S.: On Haar wavelet operational matrix of general order and its application for the numerical solution of fractional Bagley Torvik equation. Appl. Math. Comput. 218, 5239–5248 (2012)MathSciNetMATHGoogle Scholar
  15. 15.
    Kerschen, G., Worden, K., Vakakis, A.F., Golinval, J.C.: Past, present and future of nonlinear system identification in structural dynamics. Mech. Syst. Signal Process. 20(3), 505–592 (2006)CrossRefGoogle Scholar
  16. 16.
    Quaranta, G., Monti, G., Marano, G.C.: Parameters identification of Van der Pol–Duffing oscillators via particle swarm optimization and differential evolution. Mech. Syst. Signal Process. 24, 2076–2095 (2010)CrossRefGoogle Scholar
  17. 17.
    Zhou, S., Cao, J., Chen, Y.: Genetic algorithm-based identification of fractional-order systems. Entropy 15, 1624–1642 (2013)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Hu, W., Yu, Y., Wang, S.: Parameters estimation of uncertain fractional-order chaotic systems via a modified artificial bee colony algorithm. Entropy 17, 692–709 (2015).  https://doi.org/10.3390/e17020692CrossRefGoogle Scholar
  19. 19.
    Gao, F., Lee, X., Fei, F., Tong, H., Deng, Y., Zhao, H.: Identification time-delayed fractional order chaos with functional extrema model via differential evolution. Expert Syst. Appl. 41(4), 1601–1608 (2014)CrossRefGoogle Scholar
  20. 20.
    Wu, D., Ma, Z., Li, A., Zhu, Q.: Identification for fractional order rational models based on particle swarm optimization. Int. J. Comput. Appl. Technol. 41(1/2), 53–59 (2011)CrossRefGoogle Scholar
  21. 21.
    Tan, K.C., Chiam, S.C., Mamun, A.A., Goh, C.K.: Balancing exploration and exploitation with adaptive variation for evolutionary multi-objective optimization. Eur. J. Oper. Res. 197, 701–713 (2009)CrossRefGoogle Scholar
  22. 22.
    Chen, G., Low, C.P., Yang, Z.: Preserving and exploiting genetic diversity in evolutionary programming algorithms. IEEE Trans. Evol. Comput. 13(3), 661–673 (2009)CrossRefGoogle Scholar
  23. 23.
    Cuevas, E., González, A., Fausto, F., Zaldívar, D., Pérez-Cisneros, M.: Multithreshold segmentation by using an algorithm based on the behavior of locust swarms. Math. Probl. Eng. 2015, Article ID 805357, 25 pages (2015).  https://doi.org/10.1155/2015/805357
  24. 24.
    Cuevas, E., Zaldivar, D., Perez, M.: Automatic segmentation by using an algorithm based on the behavior of locust swarms. In: Applications of Evolutionary Computation in Image Processing and Pattern Recognition, Volume 100 of the series Intelligent Systems Reference Library, pp. 229–269 (2016)MATHGoogle Scholar
  25. 25.
    Cuevas, E., González, A., Zaldívar, D., Pérez-Cisneros, M.: An optimisation algorithm based on the behaviour of locust swarms. Int. J. Bio-Inspired Comput. 7(6), 402–407 (2015)CrossRefGoogle Scholar
  26. 26.
    Miller, K.S., Ross, B.: An Introduction to the Fractional Calculus and Fractional Differential Equations. Wiley, USA (1993)Google Scholar
  27. 27.
    Dorcak, L.: Numerical models for the simulation of the fractional-order control systems (1994)Google Scholar
  28. 28.
    Quaranta, G., Monti, G., Marano, G.C.: Parameters identification of Van der Pol–Duffing oscillators via particle swarm optimization and differential evolution. Mech. Syst. Signal Process. 24(7), 2076–2095 (2010)CrossRefGoogle Scholar
  29. 29.
    Barbosa, R.S., Machado, J.A.T., Vinagre, B.M., Calderon, A.J.: Analysis of the Van der Pol oscillator containing derivatives of fractional order. J. Vib. Control 13 (9–10), 1291–1301 (2007)CrossRefGoogle Scholar
  30. 30.
    Cartwright, J., Eguiluz, V., Hernandez-Garcia, E., Piro, O.: Dynamics of elastic excitable media. Int. J. Bifurcat. Chaos 9(11), 2197–2202 (1999)CrossRefGoogle Scholar
  31. 31.
    Cuevas, E., Zaldivar, D., Pérez-Cisneros, M., Ramírez-Ortegón, M.: Circle detection using discrete differential evolution optimization. Pattern Anal. Appl. 14(1), 93–107 (2011)MathSciNetCrossRefGoogle Scholar
  32. 32.
    Wilcoxon, F.: Individual comparisons by ranking methods. Biometrics 1, 80–83 (1945)MathSciNetCrossRefGoogle Scholar
  33. 33.
    Garcia, S., Molina, D., Lozano, M., Herrera, F.: A study on the use of non-parametric tests for analyzing the evolutionary algorithms’ behaviour: a case study on the CEC ’2005, Special session on real parameter optimization. J. Heurist (2008).  https://doi.org/10.1007/s10732-008-9080-4CrossRefMATHGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Erik Cuevas
    • 1
  • Daniel Zaldívar
    • 1
  • Marco Pérez-Cisneros
    • 1
  1. 1.CUCEIUniversidad de GuadalajaraGuadalajaraMexico

Personalised recommendations