Advertisement

Sperm DNA Fragmentation Testing and Varicocele

  • Chak-Lam Cho
  • Ashok Agarwal
  • Sandro C. Esteves
  • Ahmad Majzoub
Chapter

Abstract

The role of sperm DNA fragmentation (SDF) in the pathophysiology of varicocele-associated male infertility has been increasingly recognized. The expanding utilization of SDF testing among andrology laboratories worldwide is made possible by the development of various SDF assays which allows the important genetic content of male gametes to be assessed. The application of SDF testing in patients with varicocele has been explored in an attempt to better select patients who will benefit from varicocele treatment. Current evidence supports the potential value of the test based on the association between clinical varicocele and high SDF and the reduction of SDF in the majority of patients after varicocelectomy. Recent guidelines have provided indications of SDF testing in patients with varicocele to whom the results may guide management decision.

Keywords

Sperm DNA damage Sperm DNA fragmentation Varicocele Varicocelectomy Varicocele treatment 

References

  1. 1.
    Witt MA, Lipshultz LI. Varicocele: a progressive or static lesion? Urology. 1993;42:541–3.CrossRefGoogle Scholar
  2. 2.
    Schlesinger MH, Wilets IF, Nagler HM. Treatment outcome after varicocelectomy: a critical analysis. Urol Clin North Am. 1994;21:517–29.Google Scholar
  3. 3.
    Guzick DS, Overstreet JW, Factor-Litvak P, et al. Sperm morphology, motility, and concentration in fertile and infertile men. N Engl J Med. 2001;345:1388–93.CrossRefGoogle Scholar
  4. 4.
    Cho CL, Esteves SC, Agarwal A. Novel insights into the pathophysiology of varicocele and its association with reactive oxygen species and sperm DNA fragmentation. Asian J Androl. 2016;18:186–93.CrossRefGoogle Scholar
  5. 5.
    Evenson DP, Darzynkiewicz Z, Melamed MR. Relation of mammalian sperm chromatin heterogeneity to fertility. Science. 1980;210:1131–3.CrossRefGoogle Scholar
  6. 6.
    Jarow J, Sigman M, Kolettis PN, et al. The optimal evaluation of the infertile male: best practice statement reviewed and validity confirmed 2011. Available online: https://www.auanet.org/education/guidelines/male-infertility-d.cfm.
  7. 7.
    Jungwirth A, Dieser T, Dohle GR, et al. Guidelines on male infertility. Available online: https://uroweb.org/guideline/male-infertility/.
  8. 8.
    Agarwal A, Cho CL, Majzoub A, Esteves SC. The Society for Translational Medicine: clinical practice guidelines for sperm DNA fragmentation testing in male infertility. Transl Androl Urol. 2017;6(Suppl 4):S720–33.CrossRefGoogle Scholar
  9. 9.
    Sakamoto Y, Ishikawa T, Kondo Y, Yamaguchi K, Fujisawa M. The assessment of oxidative stress in infertile patients with varicocele. BJU Int. 2008;101:1547–52.CrossRefGoogle Scholar
  10. 10.
    Mostafa T, Anis T, Imam H, El-Nashar AR, Osman IA. Seminal reactive oxygen species-antioxidant relationship in fertile males with and without varicocele. Andrologia. 2009;41:125–9.CrossRefGoogle Scholar
  11. 11.
    Aitken RJ, De Iuliis GN, McLachlan RI. Biological and clinical significance of DNA damage in the male germ line. Int J Androl. 2009;32:46–56.CrossRefGoogle Scholar
  12. 12.
    Henkel R, Kierspel E, Stalf T, et al. Effect of reactive oxygen species produced by spermatozoa and leukocytes on sperm functions in non-leukocytospermic patients. Fertil Steril. 2005;83:635–42.CrossRefGoogle Scholar
  13. 13.
    De Iuliis GN, Thomson LK, Mitchell LA, et al. DNA damage in human spermatozoa is highly correlated with the efficiency of chromatin remodelling and the formation of 8-hydroxy-2′-deoxyguanosine, a marker of oxidative stress. Biol Reprod. 2009;81:517–24.CrossRefGoogle Scholar
  14. 14.
    Zini A. Are sperm chromatin and DNA defects relevant in the clinic? Syst Biol Reprod Med. 2011;57:78–85.CrossRefGoogle Scholar
  15. 15.
    Spano M, Bonde JP, Hjollund HI, et al. The Danish First Pregnancy Planner Study Team. Sperm chromatin damage impairs human fertility. Fertil Steril. 2000;73:43–50.CrossRefGoogle Scholar
  16. 16.
    Bungum M, Humaidan P, Axmon A, et al. Sperm DNA integrity assessment in prediction of assisted reproduction technology outcome. Hum Reprod. 2007;22:174–9.CrossRefGoogle Scholar
  17. 17.
    Saleh RA, Agarwal A, Sharma RK, et al. Evaluation of nuclear DNA damage in spermatozoa from infertile men with varicocele. Fertil Steril. 2003;80:1431–6.CrossRefGoogle Scholar
  18. 18.
    Smith R, Kaune H, Parodi D, et al. Increased sperm DNA damage in patients with varicocele: relationship with seminal oxidative stress. Hum Reprod. 2006;21:986–93.CrossRefGoogle Scholar
  19. 19.
    Zini A, Dohle G. Are varicoceles associated with increased deoxyribonucleic acid fragmentation? Fertil Steril. 2011;96:1283–7.CrossRefGoogle Scholar
  20. 20.
    Wang YJ, Zhang RQ, Lin YJ, et al. Relationship between varicocele and sperm DNA damage and the effect of varicocele repair: a meta-analysis. Reprod Biomed Online. 2012;25:307–14.CrossRefGoogle Scholar
  21. 21.
    Vivas-Acevedo G, Lozano-Hernandez R, Camejo MI. Varicocele decreases epididymal neutral α-glucosidase and is associated with alteration of nuclear DNA and plasma membrane in spermatozoa. BJU Int. 2014;113:642–9.CrossRefGoogle Scholar
  22. 22.
    Esteves SC, Gosalvez J, Lopez-Fernandez C, et al. Diagnostic accuracy of sperm DNA degradation index (DDSi) as a potential noninvasive biomarker to identify men with varicocele-associated infertility. Int Urol Nephrol. 2015;47:1471–7.CrossRefGoogle Scholar
  23. 23.
    Janghorban-Laricheh E, Ghazavi-Khorasgani N, Tavalaee M, et al. An association between sperm PLCζ levels and varicocele? J Assist Reprod Genet. 2016;33:1649–55.CrossRefGoogle Scholar
  24. 24.
    Bertolla RP, Cadenha AP, Hassun Filho PA, et al. Sperm nuclear DNA fragmentation in adolescents with varicocele. Fertil Steril. 2006;85:625–8.CrossRefGoogle Scholar
  25. 25.
    WHO Task Force on the Diagnosis and Treatment of Infertility. The influence of varicocele on parameters of fertility in a large group of men presenting to infertility clinics. World Health Organization. Fertil Steril. 1992;57:1289–93.CrossRefGoogle Scholar
  26. 26.
    Schauer I, Madersbacher S, Jost R, Hubner WA, Imhof M. The impact of varicocelectomy on sperm parameters: a meta-analysis. J Urol. 2012;187:1540–7.CrossRefGoogle Scholar
  27. 27.
    Kim KH, Lee JY, Kang DH, Lee H, Seo JT, et al. Impact of surgical varicocele repair on pregnancy rate in subfertile men with clinical varicocele and impaired semen quality: a meta-analysis of randomized controlled trials. Korean J Urol. 2013;54:703–9.CrossRefGoogle Scholar
  28. 28.
    Zini A, Blumenfeld A, Libman J, et al. Beneficial effect of microsurgical subinguinal varicocelectomy on human sperm DNA integrity. Hum Reprod. 2005;20:1018–21.CrossRefGoogle Scholar
  29. 29.
    Werthman P, Wixon R, Kasperson K, Evenzo DP. Significant decrease in sperm deoxyribonucleic acid fragmentation after varicocelectomy. Fertil Steril. 2008;90:1800–4.CrossRefGoogle Scholar
  30. 30.
    Moskovtsev SI, Lecker I, Mullen JB, et al. Cause-specific treatment in patients with high sperm DNA damage resulted in significant DNA improvement. Syst Biol Reprod Med. 2009;55:109–15.CrossRefGoogle Scholar
  31. 31.
    Smit M, Romijin JC, Wildhagen MF, et al. Decreased sperm DNA fragmentation after surgical varicocelectomy is associated with increased pregnancy rate. J Urol. 2010;183:270–4.CrossRefGoogle Scholar
  32. 32.
    Lacerda JI, Del Giudice PT, da Silva BF, et al. Adolescent varicocele: improved sperm function after varicocelectomy. Fertil Steril. 2011;95:994–9.CrossRefGoogle Scholar
  33. 33.
    Roque M, Esteves SC. Effect of varicocele repair on sperm DNA fragmentation: a review. Int Urol Nephrol. 2018;50:583–603.CrossRefGoogle Scholar
  34. 34.
    La Vignera S, Condorelli R, Vicari E, et al. Effects of varicocelectomy on sperm DNA fragmentation, mitochondrial function, chromatin condensation, and apoptosis. J Androl. 2012;33:389–96.CrossRefGoogle Scholar
  35. 35.
    Li F, Yamaguchi K, Okada K, et al. Significant improvement of sperm DNA quality after microsurgical repair of varicocele. Syst Biol Reprod Med. 2012;58:274–7.CrossRefGoogle Scholar
  36. 36.
    Baker K, McGill J, Sharma R, et al. Pregnancy after varicocelectomy: impact of postoperative motility and DFI. Urology. 2013;81:760–6.CrossRefGoogle Scholar
  37. 37.
    Kadioglu TC, Aliyev E, Celtik M. Microscopic varicocelectomy significantly decreases the sperm DNA fragmentation index in patients with infertility. Biomed Res Int. 2014;2014:695713.CrossRefGoogle Scholar
  38. 38.
    Ni K, Steger K, Yang H, et al. Sperm protamine mRNA ratio and DNA fragmentation index represent reliable clinical biomarkers for men with varicocele after microsurgical varicocele ligation. J Urol. 2014;192:170–6.CrossRefGoogle Scholar
  39. 39.
    Pourmand G, Movahedin M, Dehghani S, et al. Does L-carnitine therapy add any extra benefit to standard inguinal varicocelectomy in terms of deoxyribonucleic acid damage or sperm quality factor indices: a randomized study. Urology. 2014;84:821–5.CrossRefGoogle Scholar
  40. 40.
    Telli O, Sarici H, Kabar M, et al. Does varicocelectomy affect DNA fragmentation in infertile patients? Indian J Urol. 2015;31:116–9.CrossRefGoogle Scholar
  41. 41.
    Tavalaee M, Bahreinian M, Barekat F, et al. Effect of varicocelectomy on sperm functional characteristics and DNA methylation. Andrologia. 2015;47:904–9.PubMedGoogle Scholar
  42. 42.
    Mohammed EE, Mosad E, Zahran AM, et al. Acridine orange and flow cytometry: which is better to measure the effect of varicocele on sperm DNA integrity? Adv Urol. 2015:814150.Google Scholar
  43. 43.
    Alhathal N, San Gabriel M, Zini A. Beneficial effects of microsurgical varicocelectomy on sperm maturation, DNA fragmentation, and nuclear sulfhydryl groups: a prospective trial. Andrology. 2016;4:1204–8.CrossRefGoogle Scholar
  44. 44.
    Ni K, Steger K, Yang H, et al. A comprehensive investigation of sperm DNA damage and oxidative stress injury in infertile patients with subclinical, normozoospermic and astheno/oligozoospermic clinical varicocele. Andrology. 2016;4:816–24.CrossRefGoogle Scholar
  45. 45.
    Abdelbaki SA, Sabry JH, Al-Adl AM, Sabry HH. The impact of coexisting sperm DNA fragmentation and seminal oxidative stress on the outcome of varicocelectomy in infertile patients: a prospective controlled study. Arab J Urol. 2017;15:131–9.CrossRefGoogle Scholar
  46. 46.
    Zaazaa A, Adel A, Fahmy I, et al. Effect of varicocelectomy and/or mast cell stablizer on sperm DNA fragmentation in infertile patients with varicocele. Andrology. 2018;6:146–50.CrossRefGoogle Scholar
  47. 47.
    Sun XL, Wang JL, Peng YP, et al. Bilateral is superior to unilateral varicocelectomy in infertile males with left clinical and right subclinical varicocele: a prospective randomized controlled trial. Int Urol Nephrol. 2018;50:205–10.CrossRefGoogle Scholar
  48. 48.
    Garcia-Peiro A, Ribas-Maynou J, Oliver-Bonet M, et al. Multiple determinations of sperm DNA fragmentation show that varicocelectomy is not indicated for infertile patients with subclinical varicocele. Biomed Res Int. 2014:181396.Google Scholar
  49. 49.
    Gual-Frau J, Abad C, Amengual MJ, et al. Oral antioxidant treatment partly improves integrity of human sperm DNA in infertile grade I varicocele patients. Hum Fertil (Camb). 2015;18:225–9.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Chak-Lam Cho
    • 1
  • Ashok Agarwal
    • 2
  • Sandro C. Esteves
    • 3
  • Ahmad Majzoub
    • 4
  1. 1.S.H. Ho Urology Centre, Department of Surgery, Prince of Wales Hospital, The Chinese University of Hong KongShatinHong Kong
  2. 2.American Center for Reproductive Medicine, Department of UrologyCleveland ClinicClevelandUSA
  3. 3.ANDROFERT, Andrology & Human Reproduction ClinicCampinasBrazil
  4. 4.Department of UrologyHamad Medical Corporation, Weill Cornell Medicine QatarDohaQatar

Personalised recommendations