Conventional Semen Analysis and Specialized Sperm Function Tests in Patients with Varicocele

  • Ahmad Majzoub
  • Chak-Lam Cho
  • Ashok Agarwal
  • Sandro C. Esteves


Varicocele is a clinical diagnosis commonly encountered during the evaluation of men presenting with infertility. Much controversy still surrounds the diagnosis and treatment of men with varicocele. Although its detrimental effect on conventional semen parameters and male fertility potential has been recognized in literature, its prevalence in fertile men is perhaps the main reason for the never-ending varicocele debate. Current evidence does recognize an improvement in pregnancy rate following varicocelectomy; however, this effect is mainly observed in correctly selected patients. Several tests of sperm function have been utilized in conjunction with conventional semen analysis in varicocele patients to help understand the implications of this disease on human reproduction and to better select surgical candidates. Among all tests of sperm function, tests of oxidative stress and sperm DNA fragmentation proved to be independent measures of infertility in varicocele patients. This chapter explores the influence of varicocele on male fertility measured through conventional semen analysis and advanced tests of sperm function. It also explores emerging technologies that serve to increase our understanding of male infertility and varicocele.


Varicocele Conventional semen analysis Oxidative stress Sperm DNA fragmentation 


  1. 1.
    Pryor JL, Howards SS. Varicocele. Urol Clin North Am. 1987;14:499–513.PubMedGoogle Scholar
  2. 2.
    MacLeod J, Gold RZ. The male factor in fertility and infertility. II. Spermatozoon counts in 1000 men of known fertility and in 1000 cases of infertile marriage. J Urol. 1951;66:436–49.PubMedCrossRefGoogle Scholar
  3. 3.
    MacLeod J, Gold RZ. The male factor in fertility and infertility. VI. Semen quality and other factors in relation to ease of conception. Fertil Steril. 1953;4:10–33.PubMedCrossRefGoogle Scholar
  4. 4.
    Baker HWG, Burger HG, De Kretser DM, et al. Factors affecting the variability of semen analysis results in infertile men. Int J Androl. 1981;4:609–22.PubMedCrossRefGoogle Scholar
  5. 5.
    Baker HWG, Kovacs GT. Spontaneous improvement in semen quality: regression towards the mean. Int J Androl. 1985;8:421–6.PubMedCrossRefGoogle Scholar
  6. 6.
    Fuse H, Akashi T, Fujishiro Y, Kazama T, Katayama T. Effect of varicocele on fertility potential: comparison between impregnating and nonimpregnating groups. Arch Androl. 1995;35:143–8.PubMedCrossRefGoogle Scholar
  7. 7.
    Franken D, Oehninger S. Semen analysis and sperm function testing. Asian J Androl. 2011;14(1):6–13.PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    World Health Organization. WHO Laboratory manual for the examination of human semen and sperm-cervical mucus interaction. 2nd ed. Cambridge: Cambridge University Press; 1987.Google Scholar
  9. 9.
    World Health Organization. WHO Laboratory manual for the examination of human semen and sperm-cervical mucus interaction. 3rd ed. Cambridge: Cambridge University Press; 1992.Google Scholar
  10. 10.
    World Health Organization. WHO Laboratory manual for the examination of human semen and sperm-cervical mucus interaction. 4th ed. Cambridge: Cambridge University Press; 1999.Google Scholar
  11. 11.
    Riddell D, Pacey A, Whittington K. Lack of compliance by UK andrology laboratories with World Health Organization recommendations for sperm morphology assessment. Hum Reprod. 2005;20:3441–5.PubMedCrossRefGoogle Scholar
  12. 12.
    World Health Organization. WHO Laboratory manual for the examination and processing of human semen. 5th ed. Geneva: World Health Organization; 2010.Google Scholar
  13. 13.
    Holt WV. Is quality assurance in semen analysis still really necessary? A spermatologist’s viewpoint. Hum Reprod. 2005;20:2983–6.PubMedCrossRefGoogle Scholar
  14. 14.
    Franken DR, Dada OA. Does training assist medical laboratory scientists with better evaluation of sperm morphology. Afr J Reprod Health. 2007;11:3–8.CrossRefGoogle Scholar
  15. 15.
    Keel BA, Stembridge TW, Pineda G, Serafy NT Sr. Lack of standardization in performance of the semen analysis among laboratories in the United States. Fertil Steril. 2002;78:603–8.PubMedCrossRefGoogle Scholar
  16. 16.
    Masson P, Brannigan RE. The varicocele. Urol Clin North Am. 2014;41:129–44.PubMedCrossRefGoogle Scholar
  17. 17.
    Naughton CK, Nangia AK, Agarwal A. Pathophysiology of varicoceles in male infertility. Hum Reprod Update. 2001;7:473–81.PubMedCrossRefGoogle Scholar
  18. 18.
    Kantartzi PD, Goulis CD, Goulis GD, Papadimas I. Male infertility and varicocele: myths and reality. Hippokratia. 2007;11(3):99–104.PubMedPubMedCentralGoogle Scholar
  19. 19.
    Williams RS, Benjamin IJ. Protective responses in the ischemic myocardium. J Clin Invest. 2000;106:813–8.PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Powell JD, Elshtein R, Forest DJ, Palladino MA. Stimulation of hypoxia-inducible factor-1 alpha (HIF-1alpha) protein in the adult rat testis following ischemic injury occurs without an increase in HIF-1alpha messenger RNA expression. Biol Reprod. 2002;67:995–1002.PubMedCrossRefGoogle Scholar
  21. 21.
    Lysiak JJ, Bang HJ, Nguyen QA, Turner TT. Activation of the nuclear factor kappa B pathway following ischemia-reperfusion of the murine testis. J Androl. 2005;26:129–35.PubMedGoogle Scholar
  22. 22.
    Gorelick JI, Goldstein M. Loss of fertility in men with varicocele. Fertil Steril. 1993;59:613–6.PubMedCrossRefGoogle Scholar
  23. 23.
    Agarwal A, Sharma R, Harlev A, Esteves S. Effect of varicocele on semen characteristics according to the new 2010 World Health Organization criteria: a systematic review and meta-analysis. Asian J Androl. 2016;18(2):163.PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Agarwal A, Sharma RK, Sharma R, Assidi M, Abuzenadah AM, et al. Characterizing semen parameters and their association with reactive oxygen species in infertile men. Reprod Biol Endocrinol. 2014;12:33.PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    World Health Organization. The influence of varicocele on parameters of fertility in a large group of men presenting to infertility clinics. Fertil Steril. 1992;57:1289–93.CrossRefGoogle Scholar
  26. 26.
    Zhang Y, Ma T, Su Z, et al. Varicoceles affect semen quality of infertile men in Southern China. Medicine. 2017;96(31):e7707.PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Ariyati I, Mulyadi R, Birowo P, Wiweko B, Prihartono J. Association between varicocele grade and semen analysis parameter. Med J Indones. 2018;26(4):270.CrossRefGoogle Scholar
  28. 28.
    Vahidi S, Moein M, Nabi A, Narimani N. Effects of microsurgical varicocelectomy on semen analysis and sperm function tests in patients with different grades of varicocele: role of sperm functional tests in evaluation of treatments outcome. Andrologia. 2018;50:e13069.PubMedCrossRefGoogle Scholar
  29. 29.
    Krause W, Muller HH, Schafer H, Weidner W. Does treatment of varicocele improve male fertility? Results of the ‘Deutsche Varikozelenstudie’, a multicentre study of 14 collaborating centres. Andrologia. 2002;34:164–71.PubMedCrossRefGoogle Scholar
  30. 30.
    Johnson D, Sandlow J. Treatment of varicoceles: techniques and outcomes. Fertil Steril. 2017;108(3):378.PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Schlesinger MH, Wilets IF, Nagler HM. Treatment outcome after varicocelectomy. A critical analysis. Urol Clin North Am. 1994;21:517–29.PubMedGoogle Scholar
  32. 32.
    Nilsson S, Edvinsson A, Nilsson B. Improvement of semen and pregnancy rate after ligation and division of the internal spermatic vein: fact or fiction? Br J Urol. 1979;51(6):591–6.PubMedCrossRefGoogle Scholar
  33. 33.
    Breznik R, Vlaisavljević V, Borko E. Treatment of varicocele and male fertility. Arch Androl. 1993;30(3):157–60.PubMedCrossRefGoogle Scholar
  34. 34.
    Krause W, Müller HH, Schäfer H, Weidner W. Does treatment of varicocele improve male fertility? Results of the ‘Deutsche Varikozelenstudie’, a multicentre study of 14 collaborating centres. Andrologia. 2002;34(3):164–71.PubMedCrossRefGoogle Scholar
  35. 35.
    Agarwal A, Deepinder F, Cocuzza M, Agarwal R, Short RA, et al. Efficacy of varicocelectomy in improving semen parameters: new meta-analytical approach. Urology. 2007;70:532–8.PubMedCrossRefGoogle Scholar
  36. 36.
    Baazeem A, Belzile E, Ciampi A, Dohle G, Jarvi K, et al. Varicocele and male factor infertility treatment: a new meta-analysis and review of the role of varicocele repair. Eur Urol. 2011;60:796–808.PubMedCrossRefGoogle Scholar
  37. 37.
    Agarwal A, Deepinder F, Cocuzza M, et al. Efficacy of varicocelectomy in improving semen parameters: new meta-analytical approach. Urology. 2007;70(3):532–8.PubMedCrossRefGoogle Scholar
  38. 38.
    Madgar I, Weissenberg R, Lunenfeld B, Karasik A, Goldwasser B. Controlled trial of high spermatic vein ligation for varicocele in infertile men. Fertil Steril. 1995;63:120–4.PubMedCrossRefGoogle Scholar
  39. 39.
    Yuan R, Zhuo H, Cao D, Wei Q. Efficacy and safety of varicocelectomies: a meta-analysis. Syst Biol Reprod Med. 2017;63:120–9.PubMedCrossRefGoogle Scholar
  40. 40.
    Chan P. Management options of varicoceles. Indian J Urol. 2011;27:65–73.PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Al-Ghazo M, Ghalayini I, Al-Azab R, Bani-Hani I, Daradkeh M. Does the duration of infertility affect semen parameters and pregnancy rate after varicocelectomy?: a retrospective study. Int Braz J Urol. 2011;37(6):745–50.PubMedCrossRefGoogle Scholar
  42. 42.
    Kim K, Lee J, Kang D, Lee H, Seo J, Cho K. Impact of surgical varicocele repair on pregnancy rate in subfertile men with clinical varicocele and impaired semen quality: a meta-analysis of randomized clinical trials. Korean J Urol. 2013;54(10):703.PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Okuyama A, Fujisue H, Matsui T, Doi Y, Takeyama M, et al. Surgical repair of varicocele: effective treatment for subfertile men in a controlled study. Eur Urol. 1988;14:298–300.PubMedCrossRefGoogle Scholar
  44. 44.
    Castilla JA, Alvarez C, Aguilar J, Gonzalez-Varea C, Gonzalvo MC, et al. Influence of analytical and biological variation on the clinical interpretation of seminal parameters. Hum Reprod. 2006;21:847–51.PubMedCrossRefGoogle Scholar
  45. 45.
    Alvarez C, Castilla JA, Martinez L, Ramirez JP, Vergara F, et al. Biological variation of seminal parameters in healthy subjects. Hum Reprod. 2003;18:2082–8.PubMedCrossRefGoogle Scholar
  46. 46.
    Aitken J, Fisher H. Reactive oxygen species generation and human spermatozoa: the balance of benefit and risk. BioEssays. 1994;16:259–67.PubMedCrossRefGoogle Scholar
  47. 47.
    Aitken RJ. The role of free oxygen radicals and sperm function. Int J Androl. 1989;12:95–7.PubMedCrossRefGoogle Scholar
  48. 48.
    Mancini A, Milardi D, Conte G, Festa R, De Marinis L, et al. Seminal antioxidants in humans: preoperative and postoperative evaluation of coenzyme Q10 in varicocele patients. Horm Metab Res. 2005;37:428–32.PubMedCrossRefGoogle Scholar
  49. 49.
    Agarwal A, Cho C, Esteves S. Novel insights into the pathophysiology of varicocele and its association with reactive oxygen species and sperm DNA fragmentation. Asian J Androl. 2016;18(2):186.PubMedCrossRefGoogle Scholar
  50. 50.
    Hamada A, Esteves SC, Agarwal A. Insight into oxidative stress in varicocele-associated male infertility: part 2. Nat Rev Urol. 2013;10:26–37.PubMedCrossRefGoogle Scholar
  51. 51.
    Hendin BN, Kolettis PN, Sharma RK, Thomas AJ Jr, Agarwal A. Varicocele is associated with elevated spermatozoal reactive oxygen species production and diminished seminal plasma antioxidant capacity. J Urol. 1999;161:1831–4.PubMedCrossRefGoogle Scholar
  52. 52.
    Agarwal A, Cho C, Esteves S. Novel insights into the pathophysiology of varicocele and its association with reactive oxygen species and sperm DNA fragmentation. Asian J Androl. 2016;18(2):186.PubMedCrossRefGoogle Scholar
  53. 53.
    Gil-Guzman E, Ollero M, Lopez MC, Sharma RK, Alvarez JG, et al. Differential production of reactive oxygen species by subsets of human spermatozoa at different stages of maturation. Hum Reprod. 2001;16:1922–30.PubMedCrossRefGoogle Scholar
  54. 54.
    Ochsendorf FR. Infections in the male genital tract and reactive oxygen species. Hum Reprod Update. 1999;5:399–420.PubMedCrossRefGoogle Scholar
  55. 55.
    Benoff S, Hurley IR, Barcia M, Mandel FS, Cooper GW, et al. A potential role for cadmium in the etiology of varicocele-associated infertility. Fertil Steril. 1997;67:336–47.PubMedCrossRefGoogle Scholar
  56. 56.
    Gat Y, Zukerman Z, Chakraborty J, Gornish M. Varicocele, hypoxia and male infertility. Fluid mechanics analysis of the impaired testicular venous drainage system. Hum Reprod. 2005;20:2614–9.PubMedCrossRefGoogle Scholar
  57. 57.
    Lee JD, Jeng SY, Lee TH. Increased expression of hypoxia-inducible factor-1alpha in the internal spermatic vein of patients with varicocele. J Urol. 2006;175:1045–8.PubMedCrossRefGoogle Scholar
  58. 58.
    Zorgniotti AW, MacLeod J. Studies in the temperature, human semen quality and varicocele. Fertil Steril. 1973;24:295–301.CrossRefGoogle Scholar
  59. 59.
    Gosalvez J, Lopez-Fernandez C, Fernandez JL, Esteves SC, Johnston S. Unpacking the mysteries of sperm DNA fragmentation: ten frequently asked questions. J Reprod Biotechnol Fertil. 2015;4:1–16.CrossRefGoogle Scholar
  60. 60.
    Majzoub A, Esteves S, Gosálvez J, Agarwal A. Specialized sperm function tests in varicocele and the future of andrology laboratory. Asian J Androl. 2016;18(2):205.PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Samplaski M, Agarwal A, Sharma R, Sabanegh E. New generation of diagnostic tests for infertility: review of specialized semen tests. Int J Urol. 2010;17(10):839–47.PubMedCrossRefGoogle Scholar
  62. 62.
    Djaladat H, Mehrsai A, Rezazade M, Djaladat Y, Pourmand G. Varicocele and antisperm antibody: fact or fiction? South Med J. 2006;99:44–7.PubMedCrossRefGoogle Scholar
  63. 63.
    Turner T, Jones C, Roddy M. Experimental varicocele does not affect the blood-testis barrier, epididymal electrolyte concentrations, or testicular blood gas concentrations1. Biol Reprod. 1987;36(4):926–32.PubMedCrossRefGoogle Scholar
  64. 64.
    Wei X, Han Z, Ren B, et al. Quantification of anti-sperm antibody and soluble MICA/MICB levels in the serum of infertile people of the Li ethnic group in China. Int J Clin Exp Med. 2015;8(10):19274–81.PubMedPubMedCentralGoogle Scholar
  65. 65.
    Esteves SC, Schneider DT, Verza S Jr. Influence of antisperm antibodies in the semen on intracytoplasmic sperm injection outcome. Int Braz J Urol. 2007;33:795–802.PubMedCrossRefGoogle Scholar
  66. 66.
    Talwar P, Hayatnagarkar S. Sperm function test. J Hum Reprod Sci. 2015;8(2):61.PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Bozhedomov VA, Lipatova NA, Alexeev RA, Alexandrova LM, Nikolaeva MA, et al. The role of the antisperm antibodies in male infertility assessment after microsurgical varicocelectomy. Andrology. 2014;2:847–55.PubMedCrossRefGoogle Scholar
  68. 68.
    Bozhedomov V, Lipatova N, Alexeev R, Alexandrova L, Nikolaeva M, Sukhikh G. The role of the antisperm antibodies in male infertility assessment after microsurgical varicocelectomy. Andrology. 2014;2(6):847–55.PubMedCrossRefGoogle Scholar
  69. 69.
    Björndahl L, Söderlund I, Kvist U. Evaluation of the one step eosin-nigrosin staining technique for human sperm vitality assessment. Hum Reprod. 2003;18:813–6.PubMedCrossRefGoogle Scholar
  70. 70.
    Bjorndahl L. Evaluation of the one-step eosin-nigrosin staining technique for human sperm vitality assessment. Hum Reprod. 2003;18(4):813–6.PubMedCrossRefGoogle Scholar
  71. 71.
    Jeyendran RS, Van der ven HH, Perez-Pelaez M, Crabo BG, Zaneveld LJD. Development of an assay to assess the functional integrity of the human sperm membrane and its relationship to other semen characterktics. J Reprod Fertil. 1984;70:219–28.PubMedCrossRefGoogle Scholar
  72. 72.
    Fuse H, Kazama T, Katayama T. Hypoosmotic swelling test in patients with varicocele. Arch Androl. 1991;27:149–54.PubMedCrossRefGoogle Scholar
  73. 73.
    Ito H, Yanagi S, Kawamura K, Kataumi Z, Igarashi T, Sumiya H, Fuse H, Miyauchi T, Shimazaki J. Varicocele and pathogenesis of male infertility : is varicocele a cause of male infertility? Nishinihon J Urol. 1986;48:1105–11.Google Scholar
  74. 74.
    Goericke-Pesch S, Failing K. Retrospective analysis of canine semen evaluations with special emphasis on the use of the hypoosmotic swelling (HOS) test and acrosomal evaluation using Spermac®. Reprod Domest Anim. 2013;48:213–7.PubMedCrossRefPubMedCentralGoogle Scholar
  75. 75.
    Tartagni M, Schonauer MM, Selman H, et al. Usefulness of the hypo-osmotic swelling test in predicting pregnancy rate and outcome in couples undergoing intrauterine insemination. J Androl. 2002;23:498–502.PubMedGoogle Scholar
  76. 76.
    Bhattacharya S. Hypo-osmotic swelling test and unexplained repeat early pregnancy loss. J Obstet Gynaecol Res. 2010;36(1):119–22.PubMedCrossRefGoogle Scholar
  77. 77.
    Bailey JL. Factors regulating sperm capacitation. Syst Biol Reprod Med. 2010;56(5):334–48.PubMedCrossRefGoogle Scholar
  78. 78.
    Spizziri BE, Kaula N, Squires EL, Graham JK. In vitro capacitation of stallion spermatozoa. Anim Reprod Sci. 2010;121(1–2):181–3.Google Scholar
  79. 79.
    Ravnik S, Albers J, Muller C. A novel view of albumin-supported sperm capacitation: role of Lipid Transfer Protein-I. Fertil Steril. 1993;59(3):629–38.PubMedCrossRefGoogle Scholar
  80. 80.
    Peedicayil J, Deendayal M, Sadasivan G, Shivaji S. Assessment of hyperactivation, acrosome reaction and motility characteristics of spermatozoa from semen of men of proven fertility and unexplained infertility. Andrologia. 2009;29(4):209–18.CrossRefGoogle Scholar
  81. 81.
    DasGupta S, Mills C, Fraser L. Ca2+−related changes in the capacitation state of human spermatozoa assessed by a chlortetracycline fluorescence assay. Reproduction. 1993;99(1):135–43.CrossRefGoogle Scholar
  82. 82.
    Buffone M, Calamera J, Verstraeten S, Doncel G, De Vincentiis S, Brugo Olmedo S. Capacitation-associated changes in spermatozoa from varicocele patients. Fertil Steril. 2005;84:S77.CrossRefGoogle Scholar
  83. 83.
    Esteves SC. Relationship of in vitro acrosome reaction to sperm function: an update. Open Reprod Sci J. 2011;3(1):72–84.CrossRefGoogle Scholar
  84. 84.
    Esteves SC, Sharma RK, Thomas AJ Jr, Agarwal A. Effect of in vitro incubation on spontaneous acrosome reaction in fresh and cryopreserved human spermatozoa. Int J Fertil Womens Med. 1998;43:235–42.PubMedGoogle Scholar
  85. 85.
    Kizilay F, Altay B. Sperm function tests in clinical practice. Turk J Urol. 2017;43(4):393–400.PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    El Mulla KF, Kohn FM, El Beheiry AH, Schill WB. The effect of smoking and varicocele on human sperm acrosin activity and acrosome reaction. Hum Reprod. 1995;10:3190–4.PubMedCrossRefGoogle Scholar
  87. 87.
    El Mulla KF, Kohn FM, El Beheiry AH, Schill WB. The effect of smoking and varicocele on human sperm acrosin activity and acrosome reaction. Hum Reprod. 1995;10:3190–4.PubMedCrossRefGoogle Scholar
  88. 88.
    Vigil P, Wohler C, Bustos-Obregon E, Comhaire F, Morales P. Assessment of sperm function in fertile and infertile men. Andrologia. 1994;26:55–60.PubMedCrossRefGoogle Scholar
  89. 89.
    Oehninger S, Franken D, Alexander N, Hodgen GD. Hemizona assay and its impact on the identification and treatment of human sperm dysfunctions. Andrologia. 1992;24:307–21.PubMedCrossRefGoogle Scholar
  90. 90.
    Burkman L, Coddington C, Franken D. The hemizona assay (HZA): development of a diagnostic test for the binding of human spermatozoa to the human hemizona pellucida to predict fertilization potential. Int J Gynecol Obstet. 1989;28(2):200.CrossRefGoogle Scholar
  91. 91.
    ARSLAN M, MORSHEDI M, OZTURKARSLAN E, et al. Predictive value of the hemizona assay for pregnancy outcome in patients undergoing controlled ovarian hyperstimulation with intrauterine insemination. Fertil Steril. 2006;85(6):1697–707.PubMedCrossRefGoogle Scholar
  92. 92.
    Morales P, Vigil P, Franken D, Kaskar K, Coetzee K, Kruger T. Sperm-oocyte interaction: studies on the kinetics of zona pellucida binding and acrosome reaction of human spermatozoa. Andrologia. 2009;26(3):131–7.CrossRefGoogle Scholar
  93. 93.
    Hauser R, Yogev L, Greif M, Hirshenbein A, Botchan A, et al. Sperm binding and ultrasound changes after operative repair of varicocele: correlation with fecundity. Andrologia. 1997;29:145–7.PubMedCrossRefGoogle Scholar
  94. 94.
    Plymate SR, Nagao RR, Muller CH, Paulsen CA. The use of sperm penetration assay in evaluation of men with varicocele. Fertil Steril. 1987;47:680–3.PubMedCrossRefGoogle Scholar
  95. 95.
    Rogers BJ. The sperm penetration assay: its usefulness reevaluated. Fertil Steril. 1985;43:821–40.PubMedCrossRefGoogle Scholar
  96. 96.
    Oehninger S, Franken DR, Sayed E, Barroso G, Kolm P. Sperm function assays and their predictive value for fertilization outcome in IVF therapy: a meta-analysis. Hum Reprod Update. 2000;6:160–8.PubMedCrossRefGoogle Scholar
  97. 97.
    Yanagimachi R, Yanagimachi H, Rogers BJ. (1976): The use of zona-free animal ova as a test system for the assessment of the fertilizing capacity of human spermatozoa. Biol Reprod. 1976;15:471–6.PubMedCrossRefGoogle Scholar
  98. 98.
    Johnson A, Bassham B, Lipshultz LI, Lamb DJ. A quality control system for the optimized sperm penetration assay. Fertil Steril. 1995;64:832–7.PubMedCrossRefGoogle Scholar
  99. 99.
    Plymate SR, Nagao RR, Muller CH, Paulsen CA. The use of sperm penetration assay in evaluation of men with varicocele. Fertil Steril. 1987;47:680–3.PubMedCrossRefGoogle Scholar
  100. 100.
    Agarwal A, Ahmad G, Sharma R. Reference values of reactive oxygen species in seminal ejaculates using chemiluminescence assay. J Assist Reprod Genet. 2015;32(12):1721–9.PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Esfandiari N, Sharma R, Saleh R, Thomas A, Agarwal A. Utility of the nitroblue tetrazolium reduction test for assessment of reactive oxygen species production by seminal leukocytes and spermatozoa. J Androl. 2003;24(6):862–70.PubMedCrossRefGoogle Scholar
  102. 102.
    Sikka S, Hellstrom W. Current updates on laboratory techniques for the diagnosis of male reproductive failure. Asian J Androl. 2016;18(3):392.PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Kohno M. Applications of electron spin resonance spectrometry for reactive oxygen species and reactive nitrogen species research. J Clin Biochem Nutr. 2010;47(1):1–11.PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Saleh R, Agarwal A, Nada E, et al. Negative effects of increased sperm DNA damage in relation to seminal oxidative stress in men with idiopathic and male factor infertility. Fertil Steril. 2003;79:1597–605.PubMedCrossRefGoogle Scholar
  105. 105.
    Sharma RK, Pasqualotto FF, Nelson DR, Thomas AJ Jr, Agarwal A. The reactive oxygen species-total antioxidant capacity score is a new measure of oxidative stress to predict male infertility. Hum Reprod. 1999;14:2801–7.PubMedCrossRefGoogle Scholar
  106. 106.
    Agarwal A, Virk G, Ong C, du Plessis SS. Effect of oxidative stress on male reproduction. World J Mens Health. 2014;32(1):17.CrossRefGoogle Scholar
  107. 107.
    Pasqualotto FF, Sharma RK, Pasqualotto EB, Agarwal A. Poor semen quality and ROS-TAC scores in patients with idiopathic infertility. Urol Int. 2008;81:263–70.PubMedCrossRefGoogle Scholar
  108. 108.
    Saleh RA, Agarwal A. Oxidative stress and male infertility: from research to clinical practice. J Androl. 2002;23:737–62.PubMedGoogle Scholar
  109. 109.
    Agarwal A, Hamada A, Esteves SC. Insight into oxidative stress in varicocele-associated male infertility: part 1. Nat Rev Urol. 2012;9:678–90.PubMedCrossRefGoogle Scholar
  110. 110.
    Agarwal A, Prabakaran S, Allamaneni SS. Relationship between oxidative stress, varicocele and infertility: a meta-analysis. Reprod Biomed Online. 2006;12:630–3.PubMedCrossRefGoogle Scholar
  111. 111.
    Arafa M, Elbardisi H, Majzoub A, AlSaid S, Jaber A, Khalafalla K, Wang SM, Agarwal A. MP07-17 Role of oxidation reduction potential in varicocele associated male infertility. J Urol. 2017;197:s88.CrossRefGoogle Scholar
  112. 112.
    Agarwal A, Majzoub A, Roychoudhury R, Arafa M. Oxidation reduction potential: a novel marker of varicocele pathophysiology. Fertil Steril. 2016;106:e294–5.CrossRefGoogle Scholar
  113. 113.
    Chen SS, Huang WJ, Chang LS, Wei YH. Attenuation of oxidative stress after varicocelectomy in subfertile patients with varicocele. J Urol. 2008;179:639–42.PubMedCrossRefGoogle Scholar
  114. 114.
    Dada R, Shamsi MB, Venkatesh S, Gupta NP, Kumar R. Attenuation of oxidative stress and DNA damage in varicocelectomy: implications in infertility management. Indian J Med Res. 2010;132:728–30.PubMedPubMedCentralGoogle Scholar
  115. 115.
    Hurtado de Catalfo GE, Ranieri-Casilla A, Marra FA, de Alaniz MJ, Marra CA. Oxidative stress biomarkers and hormonal profile in human patients undergoing varicocelectomy. Int J Androl. 2007;30:519–30.PubMedCrossRefGoogle Scholar
  116. 116.
    Mostafa T, Anis TH, El-Nashar A, Imam H, Othman IA. Varicocelectomy reduces reactive oxygen species levels and increases antioxidant activity of seminal plasma from infertile men with varicocele. Int J Androl. 2001;24:261–5.PubMedCrossRefGoogle Scholar
  117. 117.
    Zini A, Buckspan M, Jamal M, Jarvi K. Effect of varicocelectomy on the abnormal retention of residual cytoplasm by human spermatozoa. Hum Reprod. 1999;14(7):1791–3.PubMedCrossRefGoogle Scholar
  118. 118.
    Bungum M, Humaidan P, Axmon A, Spano M, Bungum L, et al. Sperm DNA integrity assessment in prediction of assisted reproduction technology outcome. Hum Reprod. 2007;22:174–9.PubMedCrossRefGoogle Scholar
  119. 119.
    Duran HE, Morshedi M, Kruger T, Oehninger S. Intrauterine insemination: a systematic review on determinants of success. Hum Reprod Update. 2002;8:373–84.PubMedCrossRefGoogle Scholar
  120. 120.
    Irvine DS, Twigg JP, Gordon EL, Fulton N, Milne PA, et al. DNA integrity in human spermatozoa: relationships with semen quality. J Androl. 2000;21:3–44.Google Scholar
  121. 121.
    Dieamant F, Petersen C, Mauri A, et al. Semen parameters in men with varicocele: DNA fragmentation, chromatin packaging, mitochondrial membrane potential, and apoptosis. JBRA Assist Reprod. 2017;21:295–301.PubMedPubMedCentralGoogle Scholar
  122. 122.
    Sakkas D, Alvarez JG. Sperm DNA fragmentation: mechanisms of origin, impact on reproductive outcome, and analysis. Fertil Steril. 2010;93:1027–36.PubMedCrossRefGoogle Scholar
  123. 123.
    Esteves SC, Gosalvez J, Lopez-Fernandez C, Nunez-Calonge R, Caballero P, et al. Diagnostic accuracy of sperm DNA degradation index (DDSi) as a potential noninvasive biomarker to identify men with varicocele-associated infertility. Int Urol Nephrol. 2015;47:1471–7.PubMedCrossRefGoogle Scholar
  124. 124.
    Lewis SE, Simon L. Clinical implications of sperm DNA damage. Hum Fertil. 2010;13:201–7.CrossRefGoogle Scholar
  125. 125.
    Esteves SC, Sharma RK, Gosalvez J, Agarwal A. A translational medicine appraisal of specialized andrology testing in unexplained male infertility. Int Urol Nephrol. 2014;46:1037–52.PubMedCrossRefGoogle Scholar
  126. 126.
    Sharma RK, Sabanegh E, Mahfouz R, Gupta S, Thiyagarajan A, et al. TUNEL as a test for sperm DNA damage in the evaluation of male infertility. Urology. 2010;76:1380–6.PubMedCrossRefGoogle Scholar
  127. 127.
    Evenson DP, Wixon R. Data analysis of two in vivo fertility studies using sperm chromatin structure assay-derived DNA fragmentation index vs. pregnancy outcome. Fertil Steril. 2008;90:1229–31.PubMedCrossRefGoogle Scholar
  128. 128.
    Feijo CM, Esteves SC. Diagnostic accuracy of sperm chromatin dispersion test to evaluate sperm deoxyribonucleic acid damage in men with unexplained infertility. Fertil Steril. 2014;101:58–63.PubMedCrossRefGoogle Scholar
  129. 129.
    Fernandez JL, Muriel L, Goyanes V, Segrelles E, Gosalvez J, et al. Simple determination of human sperm DNA fragmentation with an improved sperm chromatin dispersion test. Fertil Steril. 2005;84:833–42.PubMedCrossRefGoogle Scholar
  130. 130.
    Majzoub A, Agarwal A, Esteves SC. Sperm DNA fragmentation: overcoming standardization obstacles. Transl Androl Urol. 2017;6:S422–4.PubMedPubMedCentralCrossRefGoogle Scholar
  131. 131.
    Ozturk MI, Koca O, Keles MO, Yilmaz S, Karaman MI. Increased sperm DNA damage in experimental rat varicocele model and the beneficial effect of varicocelectomy. Int J Fertil Steril. 2012;6:95–100.PubMedPubMedCentralGoogle Scholar
  132. 132.
    Zini A, Azhar R, Baazeem A, Gabriel MS. Effect of microsurgical varicocelectomy on human sperm chromatin and DNA integrity: a prospective trial. Int J Androl. 2011;34:14–9.PubMedCrossRefGoogle Scholar
  133. 133.
    Li F, Yamaguchi K, Okada K, Matsushita K, Ando M, et al. Significant improvement of sperm DNA quality after microsurgical repair of varicocele. Syst Biol Reprod Med. 2012;58:274–7.PubMedCrossRefGoogle Scholar
  134. 134.
    Wang YJ, Zhang RQ, Lin YJ, Zhang RG, Zhang WL. Relationship between varicocele and sperm DNA damage and the effect of varicocele repair: a meta-analysis. Reprod Biomed Online. 2012;25:307–14.PubMedCrossRefGoogle Scholar
  135. 135.
    Smit M, Romijn JC, Wildhagen MF, Veldhoven JL, Weber RF, et al. Decreased sperm DNA fragmentation after surgical varicocelectomy is associated with increased pregnancy rate. J Urol. 2010;183:270–4.PubMedCrossRefGoogle Scholar
  136. 136.
    Lacerda JI, Del Giudice PT, da Silva BF, Nichi M, Fariello RM, et al. Adolescent varicocele: improved sperm function after varicocelectomy. Fertil Steril. 2011;95:994–9.PubMedCrossRefGoogle Scholar
  137. 137.
    Sadek A, Almohamdy AS, Zaki A, Aref M, Ibrahim SM, et al. Sperm chromatin condensation in infertile men with varicocele before and after surgical repair. Fertil Steril. 2011;95:1705–8.PubMedCrossRefGoogle Scholar
  138. 138.
    Talebi AR, Moein MR, Tabibnejad N, Ghasemzadeh J. Effect of varicocele on chromatin condensation and DNA integrity of ejaculated spermatozoa using cytochemical tests. Andrologia. 2008;40:245–51.PubMedCrossRefGoogle Scholar
  139. 139.
    Zumrutbas A, Gulpinar O, mermerkaya M, Suer E, Yaman O. The effect of varicocele on sperm morphology and DNA maturity: does acridine orange staining facilitate diagnosis? Turk J Urol. 2014;39(3):165–9.CrossRefGoogle Scholar
  140. 140.
    Agarwal A, Cho C-L, Majzoub A, Esteves SC. The Society for Translational Medicine: clinical practice guidelines for sperm DNA fragmentation testing in male infertility. TAU. 2017;6.(Supp 4:S720–33.PubMedGoogle Scholar
  141. 141.
    Panner Selvam M, Agarwal A. Update on the proteomics of male infertility: a systematic review. Arab J Urol. 2018;16(1):103–12.PubMedCrossRefGoogle Scholar
  142. 142.
    Horgan R, Kenny L. ‘Omic’ technologies: genomics, transcriptomics, proteomics and metabolomics. The Obstet Gynaecol. 2011;13(3):189–95.Google Scholar
  143. 143.
    Circulation Editors’ Picks. Studies in metabolomics, proteomics, genomics, and transcriptomics in circulation. Circulation. 2013;128(25):e472–6.Google Scholar
  144. 144.
    Egea R, Escrivá M, Puchalt N, Varghese A. OMICS: current and future perspectives in reproductive medicine and technology. J Hum Reprod Sci. 2014;7(2):73.PubMedPubMedCentralCrossRefGoogle Scholar
  145. 145.
    Moldenhauer J, Ostermeier G, Johnson A, Diamond M, Krawetz S. Diagnosing male factor infertility using microarrays. J Androl. 2003;24(6):783–9.PubMedCrossRefGoogle Scholar
  146. 146.
    Garrido N, Martínez-Conejero J, Jauregui J, et al. Microarray analysis in sperm from fertile and infertile men without basic sperm analysis abnormalities reveals a significantly different transcriptome. Fertil Steril. 2009;91(4):1307–10.PubMedCrossRefGoogle Scholar
  147. 147.
    Sharma R, Agarwal A, Hamada A, Jesudasan R, Yadav S, Sabanegh E. Proteomic analysis of seminal plasma proteins in men with various semen parameters. Fertil Steril. 2012;98(3):S148.CrossRefGoogle Scholar
  148. 148.
    Agarwal A, Durairajanayagam D, Halabi J, Peng J, Vazquez-Levin M. Proteomics, oxidative stress and male infertility. Reprod Biomed Online. 2014;29(1):32–58.PubMedCrossRefGoogle Scholar
  149. 149.
    Camargo M, Lopes PI, Del Giudice PT, et al. Unbiased label-free quantitative proteomic profiling and enriched proteomic pathways in seminal plasma of adult men before and after varicocelectomy. Hum Reprod. 2013;28:33–46.PubMedCrossRefGoogle Scholar
  150. 150.
    Panner Selvam M, Agarwal A. Update on the proteomics of male infertility: a systematic review. Arab J Urol. 2018;16(1):103–12.PubMedCrossRefGoogle Scholar
  151. 151.
    Hosseinifar H, Sabbaghian M, Nasrabadi D, et al. Study of the effect of varicocelectomy on sperm proteins expression in patients with varicocele and poor sperm quality by using two-dimensional gel electrophoresis. J Assist Reprod Genet. 2014;31:725–9.PubMedPubMedCentralCrossRefGoogle Scholar
  152. 152.
    Del Giudice P, Belardin LB, Camargo M, et al. Determination of testicular function in adolescents with varicocoele–a proteomics approach. Andrology. 2016;4:447–55.PubMedCrossRefGoogle Scholar
  153. 153.
    Agarwal A, Sharma R, Durairajanayagam D, et al. Spermatozoa protein alterations in infertile men with bilateral varicocele. Asian J Androl. 2016;18:43–53.PubMedCrossRefGoogle Scholar
  154. 154.
    Agarwal A, Sharma R, Durairajanayagam D, et al. Differential proteomic profiling of spermatozoal proteins of infertile men with unilateral or bilateral varicocele. Urology. 2015;85:580–8.PubMedCrossRefGoogle Scholar
  155. 155.
    Sharma R, Agarwal A, Mohanty G, et al. Proteomic analysis of human spermatozoa proteins with oxidative stress. Reprod Biol Endocrinol. 2013;11(1):48.PubMedPubMedCentralCrossRefGoogle Scholar
  156. 156.
    Mafra F, Christofolini D, Bianco B, et al. Chromosomal and molecular abnormalities in a group of Brazilian infertile men with severe oligozoospermia or non-obstructive azoospermia attending an infertility service. Int Braz J Urol. 2011;37(2):244–51.PubMedCrossRefGoogle Scholar
  157. 157.
    Suganya J. Chromosomal abnormalities in infertile men from southern India. J Clin Diagn Res. 2015;9:GC05–10. Scholar
  158. 158.
    Arafa M, Majzoub A, AlSaid S, et al. Chromosomal abnormalities in infertile men with azoospermia and severe oligozoospermia in Qatar and their association with sperm retrieval intracytoplasmic sperm injection outcomes. Arab J Urol. 2018;16(1):132–9.PubMedCrossRefGoogle Scholar
  159. 159.
    Hwang K, Lipshultz L, Lamb D. Use of diagnostic testing to detect infertility. Curr Urol Rep. 2010;12(1):68–76.CrossRefGoogle Scholar
  160. 160.
    Colaco S, Modi D. Genetics of the human Y chromosome and its association with male infertility. Reprod Biol Endocrinol. 2018;16(1):14.PubMedPubMedCentralCrossRefGoogle Scholar
  161. 161.
    Singh A, Vrtel R, Vodicka R, et al. Y chromosome and male infertility. Int J Hum Genet. 2005;5(4):225–35.CrossRefGoogle Scholar
  162. 162.
    Esteves SC, et al. Critical appraisal of World Health Organization’s new reference values for human semen characteristics and effect on diagnosis and treatment of subfertile men. Urology. 2012;79(1):16–22.PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Ahmad Majzoub
    • 1
  • Chak-Lam Cho
    • 2
  • Ashok Agarwal
    • 3
  • Sandro C. Esteves
    • 4
  1. 1.Department of UrologyHamad Medical Corporation, Weill Cornell Medicine QatarDohaQatar
  2. 2.S.H. Ho Urology Centre, Department of SurgeryPrince of Wales Hospital, The Chinese University of Hong KongShatinHong Kong
  3. 3.American Center for Reproductive Medicine, Department of UrologyCleveland ClinicClevelandUSA
  4. 4.ANDROFERT, Andrology & Human Reproduction ClinicCampinasBrazil

Personalised recommendations