Advertisement

Modeling Plant Morphogenesis: An Introduction

  • Anne-Lise Routier-Kierzkowska
  • Adam Runions
Chapter

Abstract

In this chapter, we provide an overview of some of the computational models used to understand morphogenesis in plants. In particular, we focus on models of growth and patterning processes in primary tissues, prior to the onset of lignification. We explain the assumptions behind these models and how they relate to biological evidence. Our aim is to provide some basic intuitions regarding the construction, operation, and interpretation of such models.

Keywords

Computational modeling Physically based models Auxin patterning Phyllotaxis Vein formation Leaf development FEM Buckling Growth 

Notes

Acknowledgements

We thank Richard Smith for helpful discussions and providing the simulation of auxin patterning in a developing leaf. We also would like the thank Przemyslaw Prusinkiewicz for discussions that helped to formulate some of the ideas appearing in this chapter. Support for this work was provided by the Bundesministerium für Bildung und Forschung grant 031A492, the Human Frontier Science Program grant RGP0008/2013 and the Max Planck Society. Funding from the European Commission from a Marie Skłodowska-Curie individual fellowship (Horizon 2020, 703886) is also gratefully acknowledged by AR.

References

  1. Abley K, De Reuille PB, Strutt D et al (2013) An intracellular partitioning-based framework for tissue cell polarity in plants and animals. Development 140:2061–2074.  https://doi.org/10.1242/dev.062984CrossRefPubMedGoogle Scholar
  2. Ali O, Mirabet V, Godin C, Traas J (2014) Physical models of plant development. Annu Rev Cell Dev Biol 30:59–78.  https://doi.org/10.1146/annurev-cellbio-101512-122410CrossRefPubMedGoogle Scholar
  3. Alvarez JP, Furumizu C, Efroni I et al (2016) Active suppression of a leaf meristem orchestrates determinate leaf growth. Elife 5:1–17.  https://doi.org/10.7554/elife.15023CrossRefGoogle Scholar
  4. Barbier de Reuille P, Routier-Kierzkowska A-L, Kierzkowski D et al (2015) MorphoGraphX: a platform for quantifying morphogenesis in 4D. Elife 4:1–20.  https://doi.org/10.7554/elife.05864CrossRefGoogle Scholar
  5. Barkoulas M, Hay A, Kougioumoutzi E, Tsiantis M (2008) A developmental framework for dissected leaf formation in the Arabidopsis relative Cardamine hirsuta. Nat Genet 40:1136–41.  https://doi.org/10.1038/ng.189CrossRefPubMedGoogle Scholar
  6. Baskin TI (2005) Anisotropic expansion of the plant cell wall. Annu Rev Cell Dev Biol 21:203–222.  https://doi.org/10.1146/annurev.cellbio.20.082503.103053CrossRefPubMedPubMedCentralGoogle Scholar
  7. Baskin TI, Jensen OE (2013) On the role of stress anisotropy in the growth of stems. J Exp Bot.  https://doi.org/10.1093/jxb/ert176CrossRefPubMedGoogle Scholar
  8. Bassel GW, Stamm P, Mosca G et al (2014) Mechanical constraints imposed by 3D cellular geometry and arrangement modulate growth patterns in the Arabidopsis embryo. Proc Natl Acad Sci USA 111:8685–8690.  https://doi.org/10.1073/pnas.1404616111CrossRefPubMedPubMedCentralGoogle Scholar
  9. Bayer EM, Smith RS, Mandel T et al (2009) Integration of transport-based models for phyllotaxis and midvein formation. Genes Dev 5:373–384.  https://doi.org/10.1101/gad.497009.5CrossRefGoogle Scholar
  10. Bharathan G, Goliber TE, Moore C et al (2002) Homologies in leaf form inferred from KNOXI gene expression during development. Science 296:1858–1860.  https://doi.org/10.1126/science.1070343CrossRefPubMedGoogle Scholar
  11. Bidhendi AJ, Geitmann A (2016) Relating the mechanics of the primary plant cell wall to morphogenesis. J Exp Bot 67:449–461.  https://doi.org/10.1093/jxb/erv535CrossRefPubMedPubMedCentralGoogle Scholar
  12. Bilsborough GD, Runions A, Barkoulas M et al (2011) Model for the regulation of Arabidopsis thaliana leaf margin development. Proc Natl Acad Sci 108:3424–3429.  https://doi.org/10.1073/pnas.1015162108CrossRefPubMedPubMedCentralGoogle Scholar
  13. Bolouri H (2008) Computational modeling of gene regulatory networks: a primer. World Scientific Publishing Co IncGoogle Scholar
  14. Boudon F, Chopard J, Ali O et al (2015) A computational framework for 3D mechanical modeling of plant morphogenesis with cellular resolution. PLoS Comput Biol 11:e1003950.  https://doi.org/10.1371/journal.pcbi.1003950CrossRefPubMedPubMedCentralGoogle Scholar
  15. Bouyer D, Geier F, Kragler F et al (2008) Two-dimensional patterning by a trapping/depletion mechanism: The role of TTG1 and GL3 in Arabidopsis trichome formation. PLoS Biol 6:1166–1177.  https://doi.org/10.1371/journal.pbio.0060141CrossRefGoogle Scholar
  16. Bozorg B, Krupinski P, Jönsson H (2014) Stress and strain provide positional and directional cues in development. PLoS Comput Biol.  https://doi.org/10.1371/journal.pcbi.1003410CrossRefPubMedPubMedCentralGoogle Scholar
  17. Burian A, Raczyńska-Szajgin M, Borowska-Wykręt D et al (2015) The CUP-SHAPED COTYLEDON2 and 3 genes have a post-meristematic effect on Arabidopsis thaliana phyllotaxis. Ann Bot 115:807–820.  https://doi.org/10.1093/aob/mcv013CrossRefPubMedPubMedCentralGoogle Scholar
  18. Chickarmane V, Roeder AHK, Tarr PT et al (2010) Computational morphodynamics: a modeling framework to understand plant growth. Annu Rev Plant Biol 61:65–87.  https://doi.org/10.1146/annurev-arplant-042809-112213CrossRefPubMedPubMedCentralGoogle Scholar
  19. Cieslak M, Runions A, Prusinkiewicz P (2015) Auxin-driven patterning with unidirectional fluxes. J Exp Bot 66:5083–5102.  https://doi.org/10.1093/jxb/erv262CrossRefPubMedPubMedCentralGoogle Scholar
  20. Corson F, Hamant O, Bohn S (2009) Turning a plant tissue into a living cell froth through isotropic growth. Proc Natl Acad Sci 106:8453–8458.  https://doi.org/10.1073/pnas.0812493106CrossRefGoogle Scholar
  21. Cosgrove D (1986) Biophysical control of plant cell growth. Annu Rev Plant Physiol 37:377–405.  https://doi.org/10.1146/annurev.pp.37.060186.002113CrossRefPubMedGoogle Scholar
  22. Cosgrove DJ (2005) Growth of the plant cell wall. Nat Rev Mol Cell Biol 6:850–861.  https://doi.org/10.1038/nrm1746CrossRefPubMedPubMedCentralGoogle Scholar
  23. Cosgrove DJ (2016) Plant cell wall extensibility: connecting plant cell growth with cell wall structure, mechanics, and the action of wall-modifying enzymes. J Exp Bot 67:463–476.  https://doi.org/10.1093/jxb/erv511CrossRefPubMedGoogle Scholar
  24. Couder Y, Pauchard L, Allain C et al (2002) The leaf venation as formed in a tensorial field. Eur Phys J B 28:135–138.  https://doi.org/10.1140/epjb/e2002-00211-1CrossRefGoogle Scholar
  25. De Rybel B, Adibi M, Breda AS et al (2014) Integration of growth and patterning during vascular tissue formation in Arabidopsis. Science 345(80):1255215–1255215.  https://doi.org/10.1126/science.1255215CrossRefPubMedGoogle Scholar
  26. Dumais J (2007) Can mechanics control pattern formation in plants? Curr Opin Plant Biol 10:58–62.  https://doi.org/10.1016/j.pbi.2006.11.014CrossRefPubMedGoogle Scholar
  27. Dumais J, Steele C (2000) New evidence for the role of mechanical forces in the shoot apical meristem. J Plant Growth Regul 7–18.  https://doi.org/10.1007/s003440000003CrossRefPubMedGoogle Scholar
  28. Dyson RJ, Jensen OE (2010) A fibre-reinforced fluid model of anisotropic plant cell growth. J Fluid Mech 655:472–503.  https://doi.org/10.1017/s002211201000100xCrossRefGoogle Scholar
  29. Errera L (1886) Sur une condition fondamentale d’équilibre des cellules vivantes. Comptes Rendus Hebdomadaires des Seances de l’Academie des Sciences 103:822–824Google Scholar
  30. Fayant P, Girlanda O, Chebli Y et al (2010) Finite element model of polar growth in pollen tubes. Plant Cell 22:2579–2593.  https://doi.org/10.1105/tpc.110.075754CrossRefPubMedPubMedCentralGoogle Scholar
  31. Feugier FG, Mochizuki A, Iwasa Y (2005) Self-organization of the vascular system in plant leaves: inter-dependent dynamics of auxin flux and carrier proteins. J Theor Biol 236:366–375.  https://doi.org/10.1016/j.jtbi.2005.03.017CrossRefPubMedGoogle Scholar
  32. Floyd SK, Bowman JL (2010) Gene expression patterns in seed plant shoot meristems and leaves: homoplasy or homology? J Plant Res 123:43–55.  https://doi.org/10.1007/s10265-009-0256-2CrossRefPubMedGoogle Scholar
  33. Fujita H, Toyokura K, Okada K, Kawaguchi M (2011) Reaction-diffusion pattern in shoot apical meristem of plants. PLoS ONE.  https://doi.org/10.1371/journal.pone.0018243CrossRefPubMedPubMedCentralGoogle Scholar
  34. Geitmann A, Ortega JKE (2009) Mechanics and modeling of plant cell growth. Trends Plant Sci 14:467–478.  https://doi.org/10.1016/j.tplants.2009.07.006CrossRefPubMedPubMedCentralGoogle Scholar
  35. Goriely A, Robertson-Tessi M, Tabor M, Vandiver R (2008) Elastic growth models. In: Mathematical modelling of biosystems. Applied optimization, vol 102. Springer, Berlin, Heidelberg.  https://doi.org/10.1007/978-3-540-76784-8_1Google Scholar
  36. Green P (1962) Mechanism for plant cellular morphogenesisCrossRefPubMedGoogle Scholar
  37. Green PB, Steele CS, Rennich SC (1996) Phyllotactic patterns: a biophysical mechanism for their origin. Ann Bot 77:515–527.  https://doi.org/10.1006/anbo.1996.0062CrossRefGoogle Scholar
  38. Grieneisen VA, Xu J, Marée AFM et al (2007) Auxin transport is sufficient to generate a maximum and gradient guiding root growth. Nature 449:1008–1013.  https://doi.org/10.1038/nature06215CrossRefPubMedGoogle Scholar
  39. Hamant O, Heisler MG, Jönsson H et al (2008) Developmental patterning by mechanical signals in Arabidopsis. Science 322:1650–1655.  https://doi.org/10.1126/science.1165594CrossRefPubMedPubMedCentralGoogle Scholar
  40. Hay A, Barkoulas M, Tsiantis M (2006) ASYMMETRIC LEAVES1 and auxin activities converge to repress BREVIPEDICELLUS expression and promote leaf development in Arabidopsis. Development 133:3955–3961.  https://doi.org/10.1242/dev.02545CrossRefPubMedGoogle Scholar
  41. Heisler MG, Hamant O, Krupinski P et al (2010) Alignment between PIN1 polarity and microtubule orientation in the shoot apical meristem reveals a tight coupling between morphogenesis and auxin transport. PLoS Biol 8:e1000516.  https://doi.org/10.1371/journal.pbio.1000516CrossRefPubMedPubMedCentralGoogle Scholar
  42. Hejnowicz Z, Borowska-Wykrȩt D (2005) Buckling of inner cell wall layers after manipulations to reduce tensile stress: observations and interpretations for stress transmission. Planta 220:465–473.  https://doi.org/10.1007/s00425-004-1353-zCrossRefPubMedPubMedCentralGoogle Scholar
  43. Hejnowicz Z, Rusin A, Rusin T (2000) Tensile tissue stress affects the orientation of cortical microtubules in the epidermis of sunflower hypocotyl. J Plant Growth Regul 19:31–44.  https://doi.org/10.1007/s003440000005CrossRefPubMedGoogle Scholar
  44. Hernandez L, Green P (1993) Transductions for the expression of structural pattern: analysis in sunflower. Plant Cell 5:1725–1738.  https://doi.org/10.1105/tpc.5.12.1725CrossRefPubMedPubMedCentralGoogle Scholar
  45. Hisanaga T, Kawade K, Tsukaya H (2015) Compensation: a key to clarifying the organ-level regulation of lateral organ size in plants. J Exp Bot 66:1055–1063.  https://doi.org/10.1093/jxb/erv028CrossRefPubMedGoogle Scholar
  46. Hofmeister W (1863) Zusatze und berichtigungen zu den 1851 veröffentlichen untersuchungen der entwicklung höherer kryptogamen. Jahrbucher für Wissenschaft und Botanik 3:259–293Google Scholar
  47. Hofmeister W (1868) Allgemeine Morphologie der Gewächse. W. EngelmannGoogle Scholar
  48. Hofhuis H, Moulton D, Lessinnes T et al (2016) Morphomechanical innovation drives explosive seed dispersal. Cell 166:222–233.  https://doi.org/10.1016/j.cell.2016.05.002CrossRefPubMedPubMedCentralGoogle Scholar
  49. Jönsson H, Heisler MG, Shapiro BE et al (2006) An auxin-driven polarized transport model for phyllotaxis. Proc Natl Acad Sci USA 103:1633–1638.  https://doi.org/10.1073/pnas.0509839103CrossRefPubMedPubMedCentralGoogle Scholar
  50. Kazama T, Ichihashi Y, Murata S, Tsukaya H (2010) The mechanism of cell cycle arrest front progression explained by a KLUH/CYP78A5-dependent mobile growth factor in developing leaves of arabidopsis thaliana. Plant Cell Physiol 51:1046–1054.  https://doi.org/10.1093/pcp/pcq051CrossRefPubMedGoogle Scholar
  51. Kennaway R, Coen E, Green A, Bangham A (2011) Generation of diverse biological forms through combinatorial interactions between tissue polarity and growth. PLoS Comput Biol 7:e1002071.  https://doi.org/10.1371/journal.pcbi.1002071CrossRefPubMedPubMedCentralGoogle Scholar
  52. Kierzkowski D, Nakayama N, Routier-Kierzkowska A-L et al (2012) Elastic domains regulate growth and organogenesis in the plant shoot apical meristem. Science 335(80):1096.  https://doi.org/10.1126/science.1213100CrossRefPubMedGoogle Scholar
  53. Kicheva A, Pantazis P, Bollenbach T, Kalaidzidis Y, Bittig T, Jülicher F, González-Gaitán M (2007) Kinetics of morphogen gradient formation. Science 315:521–525.  https://doi.org/10.1126/science.1135774CrossRefPubMedGoogle Scholar
  54. Koenig D, Bayer E, Kang J, Kuhlemeier C, Sinha N (2009) Auxin patterns Solanum lycopersicum leaf morphogenesis. Development 136:2997–3006.  https://doi.org/10.1242/dev.033811CrossRefPubMedGoogle Scholar
  55. Kondo S, Miura T (2010) Reaction-diffusion model as a framework for understanding biological pattern formation. Science 329(80):1616–20.  https://doi.org/10.1126/science.1179047CrossRefPubMedGoogle Scholar
  56. Kramer EM (2009) Auxin-regulated cell polarity: an inside job? Trends Plant Sci 14:242–247.  https://doi.org/10.1016/j.tplants.2009.02.005CrossRefPubMedGoogle Scholar
  57. Kuchen EE, Fox S, de Reuille PB et al (2012) Generation of leaf shape through early patterns of growth and tissue polarity. Science 335:1092–1096.  https://doi.org/10.1126/science.1214678CrossRefPubMedPubMedCentralGoogle Scholar
  58. Kwiatkowska D (2004) Structural integration at the shoot apical meristem: models, measurements, and experiments. Am J Bot 91:1277–1293.  https://doi.org/10.3732/ajb.91.9.1277CrossRefPubMedGoogle Scholar
  59. Laguna MF, Bohn S, Jagla EA (2008) The role of elastic stresses on leaf venation morphogenesis. PLoS Comput Biol.  https://doi.org/10.1371/journal.pcbi.1000055CrossRefPubMedPubMedCentralGoogle Scholar
  60. Landrein B, Lathe R, Bringmann M et al (2013) Impaired cellulose synthase guidance leads to stem torsion and twists phyllotactic patterns in arabidopsis. Curr Biol 23:895–900.  https://doi.org/10.1016/j.cub.2013.04.013CrossRefPubMedGoogle Scholar
  61. Laskowski M, Grieneisen VA, Hofhuis H et al (2008) Root system architecture from coupling cell shape to auxin transport. PLoS Biol 6:2721–2735.  https://doi.org/10.1371/journal.pbio.0060307CrossRefGoogle Scholar
  62. Liang H, Mahadevan L (2009) The shape of a long leaf. Proc Natl Acad Sci USA 106:22049–22054.  https://doi.org/10.1073/pnas.0911954106CrossRefPubMedPubMedCentralGoogle Scholar
  63. Liang H, Mahadevan L (2011) Growth, geometry, and mechanics of a blooming lily. Proc Natl Acad Sci USA 108:5516–5521.  https://doi.org/10.1073/pnas.1007808108CrossRefPubMedPubMedCentralGoogle Scholar
  64. Lockhart JA (1965) An analysis of irreversible plant cell elongation. J Theor Biol 8:264–275.  https://doi.org/10.1016/0022-5193(65)90077-9CrossRefPubMedGoogle Scholar
  65. Mähönen AP, Ten Tusscher K, Siligato R et al (2014) PLETHORA gradient formation mechanism separates auxin responses. Nature 515:125–129.  https://doi.org/10.1038/nature13663CrossRefPubMedPubMedCentralGoogle Scholar
  66. Marcos D, Berleth T (2014) Dynamic auxin transport patterns preceding vein formation revealed by live-imaging of Arabidopsis leaf primordia. Front Plant Sci 5:235.  https://doi.org/10.3389/fpls.2014.00235CrossRefPubMedPubMedCentralGoogle Scholar
  67. Meinhardt H (2009) The algorithmic beauty of sea shells. Springer Science & Business Media.  https://doi.org/10.1007/978-3-662-03617-4CrossRefGoogle Scholar
  68. Meinhardt H, Koch A-J, Bernasconi G (1998) Models of pattern formation applied to plant development. In: Barabe D, Jean RV (eds) Symmetry in plants. World Scientific, Singapore, pp 723–758.  https://doi.org/10.1142/9789814261074_0027Google Scholar
  69. Merks RMH, Guravage M, Inze D, Beemster GTS (2011) VirtualLeaf: an open-source framework for cell-based modeling of plant tissue growth and development. Plant Physiol 155:656–666.  https://doi.org/10.1104/pp.110.167619CrossRefPubMedPubMedCentralGoogle Scholar
  70. Mitchison GJ (1980) The dynamics of auxin transport. Proc R Soc London Ser B Biol Sci 209:489–511.  https://doi.org/10.1098/rspb.1980.0109CrossRefGoogle Scholar
  71. Mitchison GJ (1977) Phyllotaxis and the fibonacci series. Science 196:270–275.  https://doi.org/10.1126/science.196.4287.270CrossRefPubMedGoogle Scholar
  72. Mitchison GJ, Hanke DE, Sheldrake AR (1981) The polar transport of auxin and vein patterns in plants [and discussion]. Philos Trans R Soc B Biol Sci 295:461–471.  https://doi.org/10.1098/rstb.1981.0154CrossRefGoogle Scholar
  73. Mosca G, Sapala A, Strauss S et al (2017) On the micro-indentation of plant cells in a tissue context. Phys Biol 14:15003.  https://doi.org/10.1088/1478-3975/aa5698CrossRefGoogle Scholar
  74. Nolte T, Schopfer P (1997) Viscoelastic versus plastic cell wall extensibility in growing seedling organs: a contribution to avoid some misconceptions. J Exp Bot 48:2103–2107.  https://doi.org/10.1093/jxb/48.12.2103CrossRefGoogle Scholar
  75. O’Connor DL, Runions A, Sluis A et al (2014) A division in PIN-Mediated auxin patterning during organ initiation in grasses. PLoS Comput Biol 10:21–24.  https://doi.org/10.1371/journal.pcbi.1003447CrossRefGoogle Scholar
  76. Owens A, Cieslak M, Hart J et al (2016) Modeling dense inflorescences. ACM Trans Graph 35:1–14.  https://doi.org/10.1145/2897824.2925982CrossRefGoogle Scholar
  77. Peters WS, Tomos AD (1996) The history of tissue tension. Ann Bot 77:657–65.  https://doi.org/10.1006/anbo.1996.0082CrossRefPubMedGoogle Scholar
  78. Prusinkiewicz P, Crawford S, Smith RS et al (2009) Control of bud activation by an auxin transport switch. Proc Natl Acad Sci USA 106:17431–17436.  https://doi.org/10.1073/pnas.0906696106CrossRefPubMedPubMedCentralGoogle Scholar
  79. Prusinkiewicz P, Runions A (2012) Computational models of plant development and form. New Phytol 193:549–569.  https://doi.org/10.1111/j.1469-8137.2011.04009.xCrossRefPubMedGoogle Scholar
  80. Reinhardt D, Pesce E-R, Stieger P et al (2003) Regulation of phyllotaxis by polar auxin transport. Nature 426:255–260.  https://doi.org/10.1038/nature02081CrossRefPubMedGoogle Scholar
  81. Rodkaew Y, Chongstitvatana P, Siripant S, Lursinsap C (2003) Particle systems for plant modeling. In: B-G Hu, M Jaeger (eds) Plant growth modeling and applications. Proceedings of PMA03, Tsinghua University Press and Springer, Beijing, pp 210–217Google Scholar
  82. Roeder AH (2012) When and where plant cells divide: a perspective from computational modeling. Curr Opin Plant Biol 15:638–644.  https://doi.org/10.1016/j.pbi.2012.08.002CrossRefPubMedGoogle Scholar
  83. Rojas ER, Hotton S, Dumais J (2011) Chemically mediated mechanical expansion of the pollen tube cell wall. Biophys J 101:1844–1853.  https://doi.org/10.1016/j.bpj.2011.08.016CrossRefPubMedPubMedCentralGoogle Scholar
  84. Rolland-Lagan A-G, Remmler L, Girard-Bock C (2014) Quantifying shape changes and tissue deformation in leaf development. Plant Physiol 165:496–505.  https://doi.org/10.1104/pp.113.231258CrossRefPubMedPubMedCentralGoogle Scholar
  85. Rolland-Lagan AG, Prusinkiewicz P (2005) Reviewing models of auxin canalization in the context of leaf vein pattern formation in Arabidopsis. Plant J 44:854–865.  https://doi.org/10.1111/j.1365-313x.2005.02581.xCrossRefPubMedGoogle Scholar
  86. Roussel MR, Slingerland MJ (2012) A biochemically semi-detailed model of auxin-mediated vein formation in plant leaves. BioSystems 109:475–487.  https://doi.org/10.1016/j.biosystems.2012.05.010CrossRefPubMedGoogle Scholar
  87. Routier-Kierzkowska A-L, Smith RS (2012) Measuring the mechanics of morphogenesis. Curr Op Plant Biol 16:25–32.  https://doi.org/10.1016/j.pbi.2012.11.002CrossRefPubMedGoogle Scholar
  88. Runions A, Fuhrer M, Lane B et al (2005) Modeling and visualization of leaf venation patterns. ACM Trans Graph 24:702.  https://doi.org/10.1145/1073204.1073251CrossRefGoogle Scholar
  89. Runions A (2014) Computational modeling of leaf development and form (Doctoral dissertation, University of Calgary)Google Scholar
  90. Runions A, Smith RS, Prusinkiewicz P et al (2014) Computational models of auxin-driven development. Auxin Its Role Plant Dev 9783709115:315–357.  https://doi.org/10.1007/978-3-7091-1526-8
  91. Runions A, Tsiantis M, Prusinkiewicz P (2017) A common developmental programme can produce diverse leaf shapes. New Phytol.  https://doi.org/10.1111/nph.14449CrossRefPubMedPubMedCentralGoogle Scholar
  92. Sachs J (1878) Über die anordnung der zellen in jüngsten pflanzentheilen. Arb bot Inst Wurzburg 2:46Google Scholar
  93. Sachs T (2003) Collective specification of cellular development. BioEssays 25:897–903.  https://doi.org/10.1002/bies.10328CrossRefPubMedGoogle Scholar
  94. Scarpella E, Marcos D, Friml J, Berleth T (2006) Control of leaf vascular patterning by polar auxin transport. Genes Dev 20:1015–1027.  https://doi.org/10.1101/gad.1402406CrossRefGoogle Scholar
  95. Schopfer P (2006) Biomechanics of plant growth. Am J Bot 93:1415–1425.  https://doi.org/10.3732/ajb.93.10.1415CrossRefPubMedGoogle Scholar
  96. Shapiro BE, Meyerowitz EM, Mjolsness E (2013) Using cellzilla for plant growth simulations at the cellular level. Front Plant Sci 4:408.  https://doi.org/10.3389/fpls.2013.00408CrossRefPubMedPubMedCentralGoogle Scholar
  97. Sharon E, Roman B, Swinney HL (2007) Geometrically driven wrinkling observed in free plastic sheets and leaves. Phys Rev E Stat Nonlinear Soft Matter Phys 75:1–7.  https://doi.org/10.1103/physreve.75.046211CrossRefGoogle Scholar
  98. Smith RS (2007) Simulation models of phyllotaxis and morphogenesis in plants. (Doctoral dissertation, University of Calgary)Google Scholar
  99. Smith RS (2011) Modeling plant morphogenesis and growth. In: New trends in the physics and mechanics of biological systems. Oxford University Press, pp 301–338CrossRefGoogle Scholar
  100. Smith RS, Bayer EM (2009) Auxin transport-feedback models of patterning in plants. Plant Cell Environ 32:1258–1271.  https://doi.org/10.1111/j.1365-3040.2009.01997.xCrossRefPubMedGoogle Scholar
  101. Smith RS, Guyomarc’h S, Mandel T et al (2006a) A plausible model of phyllotaxis. Proc Natl Acad Sci USA 103:1301–6.  https://doi.org/10.1073/pnas.0510457103CrossRefGoogle Scholar
  102. Smith RS, Kuhlemeier C, Prusinkiewicz P (2006b) Inhibition fields for phyllotactic pattern formation: a simulation study. This article is one of a selection of papers published on the Special Theme of Shoot Apical Meristems. Can J Bot 84:1635–1649.  https://doi.org/10.1139/b06-133CrossRefGoogle Scholar
  103. Stoma S, Lucas M, Chopard J et al (2008) Flux-based transport enhancement as a plausible unifying mechanism for auxin transport in meristem development. PLoS Comput Biol 4:e1000207.  https://doi.org/10.1371/journal.pcbi.1000207CrossRefPubMedPubMedCentralGoogle Scholar
  104. Vlad D, Kierzkowski D, Rast MI et al (2014) Leaf shape evolution through duplication, regulatory diversification, and loss of a homeobox gene. Science 343(80):780–3.  https://doi.org/10.1126/science.1248384CrossRefPubMedGoogle Scholar
  105. Vogler H, Draeger C, Weber A, Felekis D et al (2013) The pollen tube: a soft shell with a hard core. Plant J 73:617–627.  https://doi.org/10.1111/tpj.12061CrossRefPubMedGoogle Scholar
  106. Wabnik K, Kleine-Vehn J, Balla J et al (2010) Emergence of tissue polarization from synergy of intracellular and extracellular auxin signaling. Mol Syst Biol 6:447.  https://doi.org/10.1038/msb.2010.103CrossRefPubMedPubMedCentralGoogle Scholar
  107. Wartlick O, Kicheva A, González-Gaitán M (2009) Morphogen gradient formation. Cold Spring Harb Perspect Biol 1:1–23.  https://doi.org/10.1101/cshperspect.a001255CrossRefGoogle Scholar
  108. Weber A, Braybrook S, Huflejt M, Mosca G et al (2015) Measuring the mechanical properties of plant cells by combining micro-indentation with osmotic treatments. J Exp Bot 66:3229–3241.  https://doi.org/10.1093/jxb/erv135CrossRefPubMedPubMedCentralGoogle Scholar
  109. Winship LJ, Obermeyer G, Geitmann A, Hepler PK (2010) Under pressure, cell walls set the pace. Trends Plant Sci 15:363–369.  https://doi.org/10.1016/j.tplants.2010.04.005CrossRefPubMedPubMedCentralGoogle Scholar
  110. Wolpert L (1969) Positional information and the spatial pattern of cellular differentiation. J Theor Biol 25:1–47.  https://doi.org/10.1016/s0022-5193(69)80016-0CrossRefPubMedGoogle Scholar
  111. Yanagisawa M, Desyatova AS, Belteton SA et al (2015) Patterning mechanisms of cytoskeletal and cell wall systems during leaf trichome morphogenesis. Nat Plants 1:15014.  https://doi.org/10.1038/nplants.2015.14CrossRefPubMedGoogle Scholar
  112. Yoshida S, Barbier de Reuille P, Lane B et al (2014) Genetic control of plant development by overriding a geometric division rule. Dev Cell 29:75–87.  https://doi.org/10.1016/j.devcel.2014.02.002CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Comparative Development and GeneticsMax Planck Institute for Plant Breeding ResearchCologneGermany
  2. 2.Département de Sciences BiologiquesInstitut de Recherche En Biologie VégétaleMontréalCanada

Personalised recommendations